DNS-Challenge / NSNet-baseline /nsnet_eval_local.py
ltnghia's picture
Add files using upload-large-folder tool
bfb21c3 verified
#!/usr/bin/env python3
"""
Runnable script to invoke
noise_suppression.nsnet.inference.onnx
"""
import os
import glob
import logging
import pathlib
import concurrent.futures
import argparse
import onnx as ns_onnx
# pylint: disable=too-few-public-methods
class Worker:
"""
Delayed constructor of NSNetInference to make sure each
multiprocessing worker has its own instance of the ONNX model.
"""
nsnet = None
def __init__(self, *args):
self.args = args
def __call__(self, fname):
if Worker.nsnet is None:
# pylint: disable=no-value-for-parameter
Worker.nsnet = ns_onnx.NSNetInference(*self.args)
logging.debug("NSNet/ONNX: process file %s", fname)
Worker.nsnet(fname)
def _main():
parser = argparse.ArgumentParser(description='NSNet Noise Suppressor inference', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--noisyspeechdir', required=True, help="Input directory with noisy WAV files")
parser.add_argument('--enhanceddir', required=True, help="Output directory to save enhanced WAV files")
parser.add_argument('--modelpath', required=True, help="ONNX model to use for inference")
parser.add_argument('--window_length', type=float, default=0.02)
parser.add_argument('--hopfraction', type=float, default=0.5)
parser.add_argument('--dft_size', type=int, default=512)
parser.add_argument('--sampling_rate', type=int, default=16000)
parser.add_argument('--spectral_floor', type=float, default=-120.0)
parser.add_argument('--timesignal_floor', type=float, default=1e-12)
parser.add_argument('--audioformat', default="*.wav")
parser.add_argument('--num_workers', type=int, default=4,
help="Number of OS processes to run in parallel")
parser.add_argument('--chunksize', type=int, default=1,
help="Number of files per worker to process in one batch")
args = parser.parse_args()
logging.info("NSNet inference args: %s", args)
input_filelist = glob.glob(os.path.join(args.noisyspeechdir, args.audioformat))
pathlib.Path(args.enhanceddir).mkdir(parents=True, exist_ok=True)
worker = Worker(args.modelpath, args.window_length, args.hopfraction,
args.dft_size, args.sampling_rate, args.enhanceddir)
logging.debug("NSNet local workers start with %d input files", len(input_filelist))
# with concurrent.futures.ThreadPoolExecutor(max_workers=args.num_workers) as executor:
# executor.map(worker, input_filelist, chunksize=args.chunksize)
for fname in input_filelist:
worker(fname)
logging.info("NSNet local workers complete")
logging.basicConfig(
format='%(asctime)s %(levelname)s %(message)s',
level=logging.DEBUG) # Use logging.WARNING in prod
if __name__ == '__main__':
_main()