|
|
|
|
|
"""
|
|
|
Runnable script to invoke
|
|
|
noise_suppression.nsnet.inference.onnx
|
|
|
"""
|
|
|
|
|
|
import os
|
|
|
import glob
|
|
|
import logging
|
|
|
import pathlib
|
|
|
import concurrent.futures
|
|
|
import argparse
|
|
|
import onnx as ns_onnx
|
|
|
|
|
|
|
|
|
class Worker:
|
|
|
"""
|
|
|
Delayed constructor of NSNetInference to make sure each
|
|
|
multiprocessing worker has its own instance of the ONNX model.
|
|
|
"""
|
|
|
nsnet = None
|
|
|
|
|
|
def __init__(self, *args):
|
|
|
self.args = args
|
|
|
|
|
|
def __call__(self, fname):
|
|
|
if Worker.nsnet is None:
|
|
|
|
|
|
Worker.nsnet = ns_onnx.NSNetInference(*self.args)
|
|
|
logging.debug("NSNet/ONNX: process file %s", fname)
|
|
|
Worker.nsnet(fname)
|
|
|
|
|
|
|
|
|
def _main():
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='NSNet Noise Suppressor inference', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
|
|
|
|
parser.add_argument('--noisyspeechdir', required=True, help="Input directory with noisy WAV files")
|
|
|
parser.add_argument('--enhanceddir', required=True, help="Output directory to save enhanced WAV files")
|
|
|
parser.add_argument('--modelpath', required=True, help="ONNX model to use for inference")
|
|
|
parser.add_argument('--window_length', type=float, default=0.02)
|
|
|
parser.add_argument('--hopfraction', type=float, default=0.5)
|
|
|
parser.add_argument('--dft_size', type=int, default=512)
|
|
|
parser.add_argument('--sampling_rate', type=int, default=16000)
|
|
|
parser.add_argument('--spectral_floor', type=float, default=-120.0)
|
|
|
parser.add_argument('--timesignal_floor', type=float, default=1e-12)
|
|
|
parser.add_argument('--audioformat', default="*.wav")
|
|
|
parser.add_argument('--num_workers', type=int, default=4,
|
|
|
help="Number of OS processes to run in parallel")
|
|
|
parser.add_argument('--chunksize', type=int, default=1,
|
|
|
help="Number of files per worker to process in one batch")
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
logging.info("NSNet inference args: %s", args)
|
|
|
|
|
|
input_filelist = glob.glob(os.path.join(args.noisyspeechdir, args.audioformat))
|
|
|
pathlib.Path(args.enhanceddir).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
worker = Worker(args.modelpath, args.window_length, args.hopfraction,
|
|
|
args.dft_size, args.sampling_rate, args.enhanceddir)
|
|
|
|
|
|
logging.debug("NSNet local workers start with %d input files", len(input_filelist))
|
|
|
|
|
|
|
|
|
|
|
|
for fname in input_filelist:
|
|
|
worker(fname)
|
|
|
|
|
|
logging.info("NSNet local workers complete")
|
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
|
format='%(asctime)s %(levelname)s %(message)s',
|
|
|
level=logging.DEBUG)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
_main()
|
|
|
|