luxuan-lulu commited on
Commit
a61f6bb
·
1 Parent(s): 18f8bf5

modify scripts

Browse files
scripts/model_analysis.py CHANGED
@@ -26,9 +26,9 @@ feature_cols = x_train.columns.tolist()
26
 
27
  ###Reload the model
28
  from h2o import load_model
29
- restored_model1 = h2o.load_model("../product/top_model_1/StackedEnsemble_AllModels_1_AutoML_1_20250401_220205")
30
- restored_model2 = h2o.load_model("../product/top_model_2/StackedEnsemble_BestOfFamily_1_AutoML_1_20250401_220205")
31
- restored_model3 = h2o.load_model("../product/top_model_3/GBM_4_AutoML_1_20250401_220205")
32
 
33
  ###Test the model
34
  perf1=restored_model1.model_performance(test_h2o)
 
26
 
27
  ###Reload the model
28
  from h2o import load_model
29
+ restored_model1 = h2o.load_model("./product/top_model_1/StackedEnsemble_AllModels_1_AutoML_1_20250401_220205")
30
+ restored_model2 = h2o.load_model("./product/top_model_2/StackedEnsemble_BestOfFamily_1_AutoML_1_20250401_220205")
31
+ restored_model3 = h2o.load_model("./product/top_model_3/GBM_4_AutoML_1_20250401_220205")
32
 
33
  ###Test the model
34
  perf1=restored_model1.model_performance(test_h2o)
scripts/model_constrcution.py CHANGED
@@ -52,36 +52,3 @@ for model_id in model_ids:
52
 
53
  cv_all_models_df = pd.concat(all_model_summaries, ignore_index=True)
54
  cv_all_models_df.to_csv("./intermediate/cross_validation_result.csv",index=False)
55
-
56
- ###Reload the model for addtional test
57
- from h2o import load_model
58
- restored_model1 = h2o.load_model("./product/top_model_1/StackedEnsemble_AllModels_1_AutoML_1_20250401_220205")
59
- restored_model2 = h2o.load_model("./product/top_model_2/StackedEnsemble_BestOfFamily_1_AutoML_1_20250401_220205")
60
- restored_model3 = h2o.load_model("./product/top_model_3/GBM_4_AutoML_1_20250401_220205")
61
-
62
- perf1=restored_model1.model_performance(test_h2o)
63
- perf2=restored_model2.model_performance(test_h2o)
64
- perf3=restored_model3.model_performance(test_h2o)
65
-
66
- ###Obtain the performance
67
- threshold = 0.5
68
- acc = perf1.accuracy(thresholds=[threshold])[0][1]
69
- f1 = perf1.F1(thresholds=[threshold])[0][1]
70
- prec = perf1.precision(thresholds=[threshold])[0][1]
71
- rec = perf1.recall(thresholds=[threshold])[0][1]
72
- spec = perf1.specificity(thresholds=[threshold])[0][1]
73
- AUC= perf1.auc()
74
- LogLoss=perf1.logloss()
75
- print(f"AUC = {AUC}")
76
- print(f"LogLoss = {LogLoss}")
77
- print(f"Threshold = {threshold}")
78
- print(f"Accuracy = {acc:.4f}")
79
- print(f"F1 Score = {f1:.4f}")
80
- print(f"Precision = {prec:.4f}")
81
- print(f"Recall = {rec:.4f}")
82
- print(f"Specificity = {spec:.4f}")
83
-
84
- ###SHAP analysis for the third-best model
85
- restored_model3.shap_summary_plot(test_h2o[:,:-1])
86
- fig = plt.gcf()
87
- fig.savefig("./product/3shap_summary_plot.png", dpi=300, bbox_inches="tight")
 
52
 
53
  cv_all_models_df = pd.concat(all_model_summaries, ignore_index=True)
54
  cv_all_models_df.to_csv("./intermediate/cross_validation_result.csv",index=False)