luxuan-lulu commited on
Commit
edad6ca
·
1 Parent(s): ae9f179

Upload dataset and scripts

Browse files
.DS_Store ADDED
Binary file (10.2 kB). View file
 
README.md CHANGED
@@ -1,3 +1,54 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pretty_name: Drug-Likeness RDKit Dataset
4
+ tags:
5
+ - cheminformatics
6
+ - rdkit
7
+ - drug-likeness
8
+ - classification
9
+ - AutoML
10
+ task_categories:
11
+ - classification
12
+ task_ids:
13
+ - binary-classification
14
+ source_datasets:
15
+ - DBPP-Predictor(https://github.com/yxgu2353/DBPP-Predictor.git)
16
+ ---
17
+
18
+ # Drug-Likeness Prediction Dataset (Based on DBPP-Predictor Data)
19
+
20
+ This dataset was created as part of a final project on drug-likeness prediction, based on the data from the DBPP-Predictor paper:
21
+
22
+ > Gu, Y., Wang, Y., Zhu, K. et al. DBPP-Predictor: a novel strategy for prediction of chemical drug-likeness based on property profiles. J Cheminform 16, 4 (2024). https://doi.org/10.1186/s13321-024-00800-9
23
+
24
+ It includes curated molecular data, preprocessed RDKit descriptors, and training/test splits suitable for training classification models to distinguish drug-like from non-drug-like molecules.
25
+
26
+ ## Project Background
27
+
28
+ Drug-likeness refers to the potential of a small molecule to become a drug. Traditional rule-based approaches (e.g., Lipinski's Rule of Five) often fail to generalize across complex compounds. This project uses RDKit descriptors and AutoML (H2O) to construct a highly interpretable, generalizable classification model.
29
+
30
+ ## Dataset Description
31
+
32
+ The dataset is derived from the DBPP GitHub repository (https://github.com/yxgu2353/DBPP-Predictor.git). It includes:
33
+ - 5,147 drug-like molecules (FDA and globally approved drugs)
34
+ - 10,000 non-drug-like molecules sampled from ZINC
35
+
36
+ All molecules were standardized using MolVS(clean_data.py), the datasets were split by sklearn(split_dataset.py), and RDKit descriptors (216 features) were computed (Rdkit_descriptor.py).
37
+
38
+ ### Files:
39
+ - 'train.parquet': Raw training set (SMILES + labels)
40
+ - 'test.parquet': Raw test set (SMILES + labels)
41
+ - 'train_rdkit_descriptors.parquet': RDKit descriptors for training data
42
+ - 'test_rdkit_descriptors.parquet': RDKit descriptors for test data
43
+
44
+ Each descriptor file contains:
45
+ - 'label': 0 for non-drug, 1 for drug
46
+ - 'Standardized_SMILES'
47
+ - 216 numerical RDKit descriptors
48
+
49
+ ## Model Development
50
+
51
+ All models were trained using H2O AutoML with 10-fold cross-validation(model_constrcution.py). The top 3 models were also evaluated using an independent test set, and SHAP analysis was used to interpret the top structural features contributing to drug-likeness(model_analysis.py).
52
+
53
+
54
+
scripts/.DS_Store ADDED
Binary file (6.15 kB). View file
 
scripts/.ipynb_checkpoints/Rdkit_descriptor-checkpoint.py ADDED
File without changes
scripts/.ipynb_checkpoints/change_type-checkpoint.py ADDED
File without changes
scripts/.ipynb_checkpoints/clean_data-checkpoint.py ADDED
File without changes
scripts/.ipynb_checkpoints/model_construction-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
scripts/.ipynb_checkpoints/split_dataset-checkpoint.py ADDED
File without changes
scripts/.ipynb_checkpoints/untitled-checkpoint.py ADDED
File without changes
scripts/.virtual_documents/model_construction.ipynb ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import h2o
5
+ from h2o.automl import H2OAutoML
6
+ import pyarrow as pa
7
+ import pyarrow.parquet as pq
8
+
9
+
10
+ h2o.init()
11
+
12
+
13
+ df_train = pd.read_csv("./intermediate/train_rdkit_descriptors.csv")
14
+ df_test = pd.read_csv("./intermediate/test_rdkit_descriptors.csv")
15
+
16
+
17
+ x_train = df_train.drop(columns=["label", "Standardized_SMILES"])
18
+ y_train = df_train["label"]
19
+
20
+
21
+ x_test = df_test.drop(columns=["label", "Standardized_SMILES"])
22
+ y_test = df_test["label"]
23
+
24
+
25
+ train_h2o = h2o.H2OFrame(pd.concat([x_train, y_train], axis=1))
26
+ test_h2o = h2o.H2OFrame(pd.concat([x_test, y_test], axis=1))
27
+
28
+
29
+ train_h2o["label"] = train_h2o["label"].asfactor()
30
+ test_h2o["label"] = test_h2o["label"].asfactor()
31
+
32
+
33
+ feature_cols = x_train.columns.tolist()
34
+
35
+
36
+ aml = H2OAutoML(max_models=20,seed=42,nfolds=10,sort_metric="AUC")
37
+ aml.train(x=feature_cols, y="label", training_frame=train_h2o)
38
+
39
+
40
+ lb = aml.leaderboard
41
+ lb.head(rows=lb.nrows)
42
+ best_model = aml.leader
43
+
44
+
45
+ top_3_models = lb.as_data_frame()["model_id"].head(3).tolist()
46
+
47
+
48
+ top_3_models
49
+
50
+
51
+ for i, model_id in enumerate(top_3_models, start=1):
52
+ model = h2o.get_model(model_id)
53
+ model_path = h2o.save_model(model=model, path=f"../product/top_model_{i}", force=True)
54
+
55
+
56
+ model_ids = lb.as_data_frame()["model_id"].tolist()
57
+ all_model_summaries = []
58
+ for model_id in model_ids:
59
+ model = h2o.get_model(model_id)
60
+ cv_summary = model.cross_validation_metrics_summary().as_data_frame()
61
+ cv_summary["model_id"] = model_id
62
+ all_model_summaries.append(cv_summary)
63
+
64
+ cv_all_models_df = pd.concat(all_model_summaries, ignore_index=True)
65
+ cv_all_models_df.to_csv("../intermediate/cross_validation_result.csv",index=False)
66
+
67
+
68
+
69
+
70
+
71
+ from h2o import load_model
72
+ restored_model1 = h2o.load_model("./product/top_model_1/StackedEnsemble_AllModels_1_AutoML_1_20250401_220205")
73
+ restored_model2 = h2o.load_model("./product/top_model_2/StackedEnsemble_BestOfFamily_1_AutoML_1_20250401_220205")
74
+ restored_model3 = h2o.load_model("./product/top_model_3/GBM_4_AutoML_1_20250401_220205")
75
+
76
+
77
+ perf1=restored_model1.model_performance(test_h2o)
78
+ perf2=restored_model2.model_performance(test_h2o)
79
+ perf3=restored_model3.model_performance(test_h2o)
80
+
81
+
82
+
83
+
84
+
85
+ threshold = 0.5
86
+ acc = perf1.accuracy(thresholds=[threshold])[0][1]
87
+ f1 = perf1.F1(thresholds=[threshold])[0][1]
88
+ prec = perf1.precision(thresholds=[threshold])[0][1]
89
+ rec = perf1.recall(thresholds=[threshold])[0][1]
90
+ spec = perf1.specificity(thresholds=[threshold])[0][1]
91
+ print(f"Threshold = {threshold}")
92
+ print(f"Accuracy = {acc:.4f}")
93
+ print(f"F1 Score = {f1:.4f}")
94
+ print(f"Precision = {prec:.4f}")
95
+ print(f"Recall = {rec:.4f}")
96
+ print(f"Specificity = {spec:.4f}")
97
+
98
+
99
+ metrics1 = {
100
+ "AUC": perf1.auc(),
101
+ "LogLoss": perf1.logloss(),
102
+ "Accuracy": perf1.accuracy(),
103
+ "F1": perf1.F1(),
104
+ "Precision": perf1.precision(),
105
+ "Recall": perf1.recall(),
106
+ "Specificity": perf1.specificity()
107
+ }
108
+ metrics1
109
+
110
+
111
+ perf1.plot(type="roc")
112
+ perf1.plot(type="pr")
113
+
114
+
115
+
116
+
117
+
118
+ threshold = 0.5
119
+ acc = perf2.accuracy(thresholds=[threshold])[0][1]
120
+ f1 = perf2.F1(thresholds=[threshold])[0][1]
121
+ prec = perf2.precision(thresholds=[threshold])[0][1]
122
+ rec = perf2.recall(thresholds=[threshold])[0][1]
123
+ spec = perf2.specificity(thresholds=[threshold])[0][1]
124
+ print(f"Threshold = {threshold}")
125
+ print(f"Accuracy = {acc:.4f}")
126
+ print(f"F1 Score = {f1:.4f}")
127
+ print(f"Precision = {prec:.4f}")
128
+ print(f"Recall = {rec:.4f}")
129
+ print(f"Specificity = {spec:.4f}")
130
+
131
+
132
+ metrics2 = {
133
+ "AUC": perf2.auc(),
134
+ "LogLoss": perf2.logloss(),
135
+ "Accuracy": perf2.accuracy(),
136
+ "F1": perf2.F1(),
137
+ "Precision": perf2.precision(),
138
+ "Recall": perf2.recall(),
139
+ "Specificity": perf2.specificity()
140
+ }
141
+
142
+
143
+ metrics2
144
+
145
+
146
+ perf2.plot(type="roc")
147
+ perf2.plot(type="pr")
148
+
149
+
150
+
151
+
152
+
153
+ threshold = 0.5
154
+ acc = perf3.accuracy(thresholds=[threshold])[0][1]
155
+ f1 = perf3.F1(thresholds=[threshold])[0][1]
156
+ prec = perf3.precision(thresholds=[threshold])[0][1]
157
+ rec = perf3.recall(thresholds=[threshold])[0][1]
158
+ spec = perf3.specificity(thresholds=[threshold])[0][1]
159
+ print(f"Threshold = {threshold}")
160
+ print(f"Accuracy = {acc:.4f}")
161
+ print(f"F1 Score = {f1:.4f}")
162
+ print(f"Precision = {prec:.4f}")
163
+ print(f"Recall = {rec:.4f}")
164
+ print(f"Specificity = {spec:.4f}")
165
+
166
+
167
+ metrics3 = {
168
+ "AUC": perf3.auc(),
169
+ "LogLoss": perf3.logloss(),
170
+ "Accuracy": perf3.accuracy(),
171
+ "F1": perf3.F1(),
172
+ "Precision": perf3.precision(),
173
+ "Recall": perf3.recall(),
174
+ "Specificity": perf3.specificity()
175
+ }
176
+
177
+
178
+ metrics3
179
+
180
+
181
+ perf3.plot(type="roc")
182
+ perf3.plot(type="pr")
183
+
184
+
185
+ restored_model3.shap_summary_plot(test_h2o[:,:-1])
186
+ fig = plt.gcf()
187
+ fig.savefig("./product/3shap_summary_plot.png", dpi=300, bbox_inches="tight")
scripts/Rdkit_descriptor.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from rdkit import Chem
4
+ from rdkit.Chem import Descriptors
5
+
6
+ df_train = pd.read_csv("./intermediate/train.csv")
7
+ df_test = pd.read_csv("./intermediate/test.csv")
8
+ df_train = df_train.drop(['SMILES'], axis=1)
9
+ df_test = df_test.drop(['SMILES'], axis=1)
10
+
11
+ descriptor_names = [desc_name for desc_name, _ in Descriptors.descList]
12
+ len(descriptor_names)
13
+
14
+ def calculate_rdkit_descriptors(smiles):
15
+ mol = Chem.MolFromSmiles(smiles)
16
+ if mol is None:
17
+ return None
18
+ return {desc_name: func(mol) for desc_name, func in Descriptors.descList}
19
+
20
+ df_train_descriptors = df_train["Standardized_SMILES"].apply(calculate_rdkit_descriptors)
21
+ df_test_descriptors = df_test["Standardized_SMILES"].apply(calculate_rdkit_descriptors)
22
+ df_train_descriptors = pd.DataFrame(df_train_descriptors.tolist())
23
+ df_test_descriptors = pd.DataFrame(df_test_descriptors.tolist())
24
+ df_train_final = pd.concat([df_train, df_train_descriptors], axis=1)
25
+ df_test_final = pd.concat([df_test, df_test_descriptors], axis=1)
26
+ df_train_final.to_csv("./intermediate/train_rdkit_descriptors.csv", index=False)
27
+ df_test_final.to_csv("./intermediate/test_rdkit_descriptors.csv", index=False)
scripts/clean_data.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from rdkit import Chem
2
+ from molvs import Standardizer
3
+ import pandas as pd
4
+ df0 = pd.read_csv("data/negative.csv")
5
+ df1 = pd.read_csv("data/positive.csv")
6
+ s = Standardizer()
7
+
8
+ def standardize_smiles(smiles):
9
+ try:
10
+ mol = Chem.MolFromSmiles(smiles)
11
+ if mol:
12
+ clean_mol = s.fragment_parent(mol)
13
+ standardized_mol = s.standardize(clean_mol)
14
+ return Chem.MolToSmiles(standardized_mol)
15
+ except:
16
+ return None
17
+
18
+ df0["Standardized_SMILES"] = df0.iloc[:,0].apply(standardize_smiles)
19
+ df0 = df0.dropna(subset=["Standardized_SMILES"])
20
+ df0.to_csv("intermediate/cleaned_negative.csv", index=False)
21
+
22
+ df1["Standardized_SMILES"] = df1.iloc[:,0].apply(standardize_smiles)
23
+ df1 = df1.dropna(subset=["Standardized_SMILES"])
24
+ df1.to_csv("intermediate/cleaned_positive.csv", index=False)
scripts/model_analysis.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import h2o
5
+ from h2o.automl import H2OAutoML
6
+ import pyarrow as pa
7
+ import pyarrow.parquet as pq
8
+
9
+ h2o.init()
10
+
11
+ ###Data preparation
12
+ df_train = pd.read_csv("./intermediate/train_rdkit_descriptors.csv")
13
+ df_test = pd.read_csv("./intermediate/test_rdkit_descriptors.csv")
14
+
15
+ x_train = df_train.drop(columns=["label", "Standardized_SMILES"])
16
+ y_train = df_train["label"]
17
+ x_test = df_test.drop(columns=["label", "Standardized_SMILES"])
18
+ y_test = df_test["label"]
19
+
20
+ train_h2o = h2o.H2OFrame(pd.concat([x_train, y_train], axis=1))
21
+ test_h2o = h2o.H2OFrame(pd.concat([x_test, y_test], axis=1))
22
+
23
+ train_h2o["label"] = train_h2o["label"].asfactor()
24
+ test_h2o["label"] = test_h2o["label"].asfactor()
25
+ feature_cols = x_train.columns.tolist()
26
+
27
+ ###Reload the model
28
+ from h2o import load_model
29
+ restored_model1 = h2o.load_model("../product/top_model_1/StackedEnsemble_AllModels_1_AutoML_1_20250401_220205")
30
+ restored_model2 = h2o.load_model("../product/top_model_2/StackedEnsemble_BestOfFamily_1_AutoML_1_20250401_220205")
31
+ restored_model3 = h2o.load_model("../product/top_model_3/GBM_4_AutoML_1_20250401_220205")
32
+
33
+ ###Test the model
34
+ perf1=restored_model1.model_performance(test_h2o)
35
+ perf2=restored_model2.model_performance(test_h2o)
36
+ perf3=restored_model3.model_performance(test_h2o)
37
+
38
+ ###Get the result with different threshold
39
+
40
+ threshold = 0.5
41
+ acc = perf1.accuracy(thresholds=[threshold])[0][1]
42
+ f1 = perf1.F1(thresholds=[threshold])[0][1]
43
+ prec = perf1.precision(thresholds=[threshold])[0][1]
44
+ rec = perf1.recall(thresholds=[threshold])[0][1]
45
+ spec = perf1.specificity(thresholds=[threshold])[0][1]
46
+ print(f"Threshold = {threshold}")
47
+ print(f"Accuracy = {acc:.4f}")
48
+ print(f"F1 Score = {f1:.4f}")
49
+ print(f"Precision = {prec:.4f}")
50
+ print(f"Recall = {rec:.4f}")
51
+ print(f"Specificity = {spec:.4f}")
52
+
53
+ threshold = 0.5
54
+ acc = perf2.accuracy(thresholds=[threshold])[0][1]
55
+ f1 = perf2.F1(thresholds=[threshold])[0][1]
56
+ prec = perf2.precision(thresholds=[threshold])[0][1]
57
+ rec = perf2.recall(thresholds=[threshold])[0][1]
58
+ spec = perf2.specificity(thresholds=[threshold])[0][1]
59
+ print(f"Threshold = {threshold}")
60
+ print(f"Accuracy = {acc:.4f}")
61
+ print(f"F1 Score = {f1:.4f}")
62
+ print(f"Precision = {prec:.4f}")
63
+ print(f"Recall = {rec:.4f}")
64
+ print(f"Specificity = {spec:.4f}")
65
+
66
+ threshold = 0.5
67
+ acc = perf3.accuracy(thresholds=[threshold])[0][1]
68
+ f1 = perf3.F1(thresholds=[threshold])[0][1]
69
+ prec = perf3.precision(thresholds=[threshold])[0][1]
70
+ rec = perf3.recall(thresholds=[threshold])[0][1]
71
+ spec = perf3.specificity(thresholds=[threshold])[0][1]
72
+ print(f"Threshold = {threshold}")
73
+ print(f"Accuracy = {acc:.4f}")
74
+ print(f"F1 Score = {f1:.4f}")
75
+ print(f"Precision = {prec:.4f}")
76
+ print(f"Recall = {rec:.4f}")
77
+ print(f"Specificity = {spec:.4f}")
78
+
79
+ metrics1 = {
80
+ "AUC": perf1.auc(),
81
+ "LogLoss": perf1.logloss(),
82
+ "Accuracy": perf1.accuracy(),
83
+ "F1": perf1.F1(),
84
+ "Precision": perf1.precision(),
85
+ "Recall": perf1.recall(),
86
+ "Specificity": perf1.specificity()
87
+ }
88
+
89
+ metrics2 = {
90
+ "AUC": perf2.auc(),
91
+ "LogLoss": perf2.logloss(),
92
+ "Accuracy": perf2.accuracy(),
93
+ "F1": perf2.F1(),
94
+ "Precision": perf2.precision(),
95
+ "Recall": perf2.recall(),
96
+ "Specificity": perf2.specificity()
97
+ }
98
+
99
+ metrics3 = {
100
+ "AUC": perf3.auc(),
101
+ "LogLoss": perf3.logloss(),
102
+ "Accuracy": perf3.accuracy(),
103
+ "F1": perf3.F1(),
104
+ "Precision": perf3.precision(),
105
+ "Recall": perf3.recall(),
106
+ "Specificity": perf3.specificity()
107
+ }
108
+ ###Get the figure for roc and pr
109
+ perf1.plot(type="roc")
110
+ perf1.plot(type="pr")
111
+
112
+ perf2.plot(type="roc")
113
+ perf2.plot(type="pr")
114
+
115
+ perf3.plot(type="roc")
116
+ perf3.plot(type="pr")
117
+
118
+ ### SHAP analysis
119
+ restored_model3.shap_summary_plot(test_h2o[:,:-1])
120
+ fig = plt.gcf()
121
+ fig.savefig("./product/3shap_summary_plot.png", dpi=300, bbox_inches="tight")
scripts/model_constrcution.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import h2o
5
+ from h2o.automl import H2OAutoML
6
+ import pyarrow as pa
7
+ import pyarrow.parquet as pq
8
+
9
+ h2o.init()
10
+
11
+ ###Data preparation
12
+ df_train = pd.read_csv("./intermediate/train_rdkit_descriptors.csv")
13
+ df_test = pd.read_csv("./intermediate/test_rdkit_descriptors.csv")
14
+
15
+ x_train = df_train.drop(columns=["label", "Standardized_SMILES"])
16
+ y_train = df_train["label"]
17
+ x_test = df_test.drop(columns=["label", "Standardized_SMILES"])
18
+ y_test = df_test["label"]
19
+
20
+ train_h2o = h2o.H2OFrame(pd.concat([x_train, y_train], axis=1))
21
+ test_h2o = h2o.H2OFrame(pd.concat([x_test, y_test], axis=1))
22
+
23
+ train_h2o["label"] = train_h2o["label"].asfactor()
24
+ test_h2o["label"] = test_h2o["label"].asfactor()
25
+ feature_cols = x_train.columns.tolist()
26
+
27
+ ###Training
28
+ aml = H2OAutoML(max_models=20,seed=42,nfolds=10,sort_metric="AUC")
29
+ aml.train(x=feature_cols, y="label", training_frame=train_h2o)
30
+
31
+ ###Model Selection
32
+ lb = aml.leaderboard
33
+ lb.head(rows=lb.nrows)
34
+ best_model = aml.leader
35
+
36
+ ###Save the best model
37
+ #best_model = h2o.save_model(model = best_model, path ='./product/', force = True)
38
+ top_3_models = lb.as_data_frame()["model_id"].head(3).tolist()
39
+
40
+ for i, model_id in enumerate(top_3_models, start=1):
41
+ model = h2o.get_model(model_id)
42
+ model_path = h2o.save_model(model=model, path=f"./product/top_model_{i}", force=True)
43
+
44
+ ###Save the corss validation result for all models
45
+ model_ids = lb.as_data_frame()["model_id"].tolist()
46
+ all_model_summaries = []
47
+ for model_id in model_ids:
48
+ model = h2o.get_model(model_id)
49
+ cv_summary = model.cross_validation_metrics_summary().as_data_frame()
50
+ cv_summary["model_id"] = model_id
51
+ all_model_summaries.append(cv_summary)
52
+
53
+ cv_all_models_df = pd.concat(all_model_summaries, ignore_index=True)
54
+ cv_all_models_df.to_csv("./intermediate/cross_validation_result.csv",index=False)
55
+
56
+ ###Reload the model for addtional test
57
+ from h2o import load_model
58
+ restored_model1 = h2o.load_model("./product/top_model_1/StackedEnsemble_AllModels_1_AutoML_1_20250401_220205")
59
+ restored_model2 = h2o.load_model("./product/top_model_2/StackedEnsemble_BestOfFamily_1_AutoML_1_20250401_220205")
60
+ restored_model3 = h2o.load_model("./product/top_model_3/GBM_4_AutoML_1_20250401_220205")
61
+
62
+ perf1=restored_model1.model_performance(test_h2o)
63
+ perf2=restored_model2.model_performance(test_h2o)
64
+ perf3=restored_model3.model_performance(test_h2o)
65
+
66
+ ###Obtain the performance
67
+ threshold = 0.5
68
+ acc = perf1.accuracy(thresholds=[threshold])[0][1]
69
+ f1 = perf1.F1(thresholds=[threshold])[0][1]
70
+ prec = perf1.precision(thresholds=[threshold])[0][1]
71
+ rec = perf1.recall(thresholds=[threshold])[0][1]
72
+ spec = perf1.specificity(thresholds=[threshold])[0][1]
73
+ AUC= perf1.auc()
74
+ LogLoss=perf1.logloss()
75
+ print(f"AUC = {AUC}")
76
+ print(f"LogLoss = {LogLoss}")
77
+ print(f"Threshold = {threshold}")
78
+ print(f"Accuracy = {acc:.4f}")
79
+ print(f"F1 Score = {f1:.4f}")
80
+ print(f"Precision = {prec:.4f}")
81
+ print(f"Recall = {rec:.4f}")
82
+ print(f"Specificity = {spec:.4f}")
83
+
84
+ ###SHAP analysis for the third-best model
85
+ restored_model3.shap_summary_plot(test_h2o[:,:-1])
86
+ fig = plt.gcf()
87
+ fig.savefig("./product/3shap_summary_plot.png", dpi=300, bbox_inches="tight")
scripts/model_construction.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
scripts/split_dataset.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+
5
+ df_positive = pd.read_csv("./intermediate/cleaned_positive.csv")
6
+ df_negative = pd.read_csv("./intermediate/cleaned_negative.csv")
7
+
8
+ pos_train, pos_test = train_test_split(df_positive, test_size=0.2, random_state=42)
9
+ neg_train_full, neg_test = train_test_split(df_negative, test_size=0.2, random_state=42)
10
+ neg_train = neg_train_full.sample(n=len(pos_train), random_state=42)
11
+ neg_remaining = neg_train_full.drop(neg_train.index)
12
+ neg_test = pd.concat([neg_test, neg_remaining]).reset_index(drop=True)
13
+ train_df = pd.concat([pos_train, neg_train]).sample(frac=1, random_state=42).reset_index(drop=True)
14
+ test_df = pd.concat([pos_test, neg_test]).sample(frac=1, random_state=42).reset_index(drop=True)
15
+ train_df.to_csv("./intermediate/train.csv", index=False)
16
+ test_df.to_csv("./intermediate/test.csv", index=False)