import pandas as pd import numpy as np import matplotlib.pyplot as plt import h2o from h2o.automl import H2OAutoML import pyarrow as pa import pyarrow.parquet as pq h2o.init() ###Data preparation df_train = pd.read_csv("./intermediate/train_rdkit_descriptors.csv") df_test = pd.read_csv("./intermediate/test_rdkit_descriptors.csv") x_train = df_train.drop(columns=["label", "Standardized_SMILES"]) y_train = df_train["label"] x_test = df_test.drop(columns=["label", "Standardized_SMILES"]) y_test = df_test["label"] train_h2o = h2o.H2OFrame(pd.concat([x_train, y_train], axis=1)) test_h2o = h2o.H2OFrame(pd.concat([x_test, y_test], axis=1)) train_h2o["label"] = train_h2o["label"].asfactor() test_h2o["label"] = test_h2o["label"].asfactor() feature_cols = x_train.columns.tolist() ###Training aml = H2OAutoML(max_models=20,seed=42,nfolds=10,sort_metric="AUC") aml.train(x=feature_cols, y="label", training_frame=train_h2o) ###Model Selection lb = aml.leaderboard lb.head(rows=lb.nrows) best_model = aml.leader ###Save the best model #best_model = h2o.save_model(model = best_model, path ='./product/', force = True) top_3_models = lb.as_data_frame()["model_id"].head(3).tolist() for i, model_id in enumerate(top_3_models, start=1): model = h2o.get_model(model_id) model_path = h2o.save_model(model=model, path=f"./product/top_model_{i}", force=True) ###Save the corss validation result for all models model_ids = lb.as_data_frame()["model_id"].tolist() all_model_summaries = [] for model_id in model_ids: model = h2o.get_model(model_id) cv_summary = model.cross_validation_metrics_summary().as_data_frame() cv_summary["model_id"] = model_id all_model_summaries.append(cv_summary) cv_all_models_df = pd.concat(all_model_summaries, ignore_index=True) cv_all_models_df.to_csv("./intermediate/cross_validation_result.csv",index=False)