Datasets:
add load dataset method
Browse files
matrix.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import glob
|
| 4 |
+
import orjson
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
import datasets
|
| 8 |
+
from itertools import islice
|
| 9 |
+
|
| 10 |
+
_DESCRIPTION = """
|
| 11 |
+
An open-source pretraining dataset containing 4690 billion tokens,
|
| 12 |
+
this bilingual dataset with both English and Chinese texts is used for training neo models.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
_CITATION = """
|
| 16 |
+
@article{zhang2024mapneo,
|
| 17 |
+
title = {MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series},
|
| 18 |
+
author = {
|
| 19 |
+
Ge Zhang and
|
| 20 |
+
Scott Qu and
|
| 21 |
+
Jiaheng Liu and
|
| 22 |
+
Chenchen Zhang and
|
| 23 |
+
Chenghua Lin and
|
| 24 |
+
Chou Leuang Yu and
|
| 25 |
+
Danny Pan and
|
| 26 |
+
Esther Cheng and
|
| 27 |
+
Jie Liu and
|
| 28 |
+
Qunshu Lin and
|
| 29 |
+
Raven Yuan and
|
| 30 |
+
Tuney Zheng and
|
| 31 |
+
Wei Pang and
|
| 32 |
+
Xinrun Du and
|
| 33 |
+
Yiming Liang and
|
| 34 |
+
Yinghao Ma and
|
| 35 |
+
Yizhi Li and
|
| 36 |
+
Ziyang Ma and
|
| 37 |
+
Bill Lin and
|
| 38 |
+
Emmanouil Benetos and
|
| 39 |
+
Huan Yang and
|
| 40 |
+
Junting Zhou and
|
| 41 |
+
Kaijing Ma and
|
| 42 |
+
Minghao Liu and
|
| 43 |
+
Morry Niu and
|
| 44 |
+
Noah Wang and
|
| 45 |
+
Quehry Que and
|
| 46 |
+
Ruibo Liu and
|
| 47 |
+
Sine Liu and
|
| 48 |
+
Shawn Guo and
|
| 49 |
+
Soren Gao and
|
| 50 |
+
Wangchunshu Zhou and
|
| 51 |
+
Xinyue Zhang and
|
| 52 |
+
Yizhi Zhou and
|
| 53 |
+
Yubo Wang and
|
| 54 |
+
Yuelin Bai and
|
| 55 |
+
Yuhan Zhang and
|
| 56 |
+
Yuxiang Zhang and
|
| 57 |
+
Zenith Wang and
|
| 58 |
+
Zhenzhu Yang and
|
| 59 |
+
Zijian Zhao and
|
| 60 |
+
Jiajun Zhang and
|
| 61 |
+
Wanli Ouyang and
|
| 62 |
+
Wenhao Huang and
|
| 63 |
+
Wenhu Chen
|
| 64 |
+
},
|
| 65 |
+
year = {2024},
|
| 66 |
+
journal = {arXiv preprint arXiv: 2405.19327}
|
| 67 |
+
}
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
_HOMEPAGE = "https://huggingface.co/datasets/m-a-p/Matrix"
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class MatrixDataset(datasets.GeneratorBasedBuilder):
|
| 74 |
+
"""Custom dataset for JSON files with filtering capabilities."""
|
| 75 |
+
|
| 76 |
+
VERSION = datasets.Version("1.0.0")
|
| 77 |
+
|
| 78 |
+
def _info(self):
|
| 79 |
+
return datasets.DatasetInfo(
|
| 80 |
+
description=_DESCRIPTION,
|
| 81 |
+
features=datasets.Features({
|
| 82 |
+
"id": datasets.Value("string"),
|
| 83 |
+
"text": datasets.Value("string"),
|
| 84 |
+
}),
|
| 85 |
+
homepage=_HOMEPAGE,
|
| 86 |
+
citation=_CITATION,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
def _split_generators(self, dl_manager):
|
| 90 |
+
"""Returns SplitGenerators."""
|
| 91 |
+
import random
|
| 92 |
+
|
| 93 |
+
data_files = glob.glob("*/*.jsonl")
|
| 94 |
+
data_shards = []
|
| 95 |
+
for filepath in data_files:
|
| 96 |
+
# max size of each shard is 1GB
|
| 97 |
+
num_shards = -os.path.getsize(filepath) // -1024**3
|
| 98 |
+
for i in range(num_shards):
|
| 99 |
+
data_shards.append((filepath, i, num_shards))
|
| 100 |
+
random.Random(42).shuffle(data_shards)
|
| 101 |
+
|
| 102 |
+
return [
|
| 103 |
+
datasets.SplitGenerator(
|
| 104 |
+
name=datasets.Split.TRAIN,
|
| 105 |
+
gen_kwargs={
|
| 106 |
+
"data_shards": data_shards,
|
| 107 |
+
},
|
| 108 |
+
),
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
def _generate_examples(self, data_shards):
|
| 112 |
+
for file, split, num_shards in data_shards:
|
| 113 |
+
with open(file, "r") as f:
|
| 114 |
+
for i, line in islice(enumerate(f), split, None, num_shards):
|
| 115 |
+
data = orjson.loads(line)
|
| 116 |
+
if 'id' not in data:
|
| 117 |
+
data['id'] = f"{file}_{i}"
|
| 118 |
+
if 'content' in data and 'text' not in data:
|
| 119 |
+
data['text'] = data.pop('content')
|
| 120 |
+
if data['text'] is not None:
|
| 121 |
+
yield data["id"], data
|