| import os | |
| import datasets | |
| import pandas as pd | |
| import json | |
| class semiHomoConfig(datasets.BuilderConfig): | |
| def __init__(self, features, data_url, **kwargs): | |
| super(semiHomoConfig, self).__init__(**kwargs) | |
| self.features = features | |
| self.data_url = data_url | |
| class semiHomo(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| semiHomoConfig( | |
| name="pairs", | |
| features={ | |
| "ltable_id": datasets.Value("string"), | |
| "rtable_id": datasets.Value("string"), | |
| "label": datasets.Value("string"), | |
| }, | |
| data_url="https://huggingface.co/datasets/matchbench/semi-homo/resolve/main/", | |
| ), | |
| semiHomoConfig( | |
| name="source", | |
| features={ | |
| "content": datasets.Value("string"), | |
| }, | |
| data_url="https://huggingface.co/datasets/matchbench/semi-homo/resolve/main/left.json", | |
| ), | |
| semiHomoConfig( | |
| name="target", | |
| features={ | |
| "content": datasets.Value("string"), | |
| }, | |
| data_url="https://huggingface.co/datasets/matchbench/semi-homo/resolve/main/right.json", | |
| ), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| features=datasets.Features(self.config.features) | |
| ) | |
| def _split_generators(self, dl_manager): | |
| if self.config.name == "pairs": | |
| return [ | |
| datasets.SplitGenerator( | |
| name=split, | |
| gen_kwargs={ | |
| "path_file": dl_manager.download_and_extract( | |
| os.path.join(self.config.data_url, f"{split}.csv")), | |
| "split": split, | |
| } | |
| ) | |
| for split in ["train", "valid", "test"] | |
| ] | |
| if self.config.name == "source": | |
| return [datasets.SplitGenerator(name="source", gen_kwargs={ | |
| "path_file": dl_manager.download_and_extract(self.config.data_url), "split": "source", })] | |
| if self.config.name == "target": | |
| return [datasets.SplitGenerator(name="target", gen_kwargs={ | |
| "path_file": dl_manager.download_and_extract(self.config.data_url), "split": "target", })] | |
| def _generate_examples(self, path_file, split): | |
| if split in ['source','target']: | |
| with open(path_file, "r") as f: | |
| file = json.load(f) | |
| for i in range(len(file)): | |
| yield i, { | |
| "content": json.dumps(file[i]) | |
| } | |
| else: | |
| file = pd.read_csv(path_file) | |
| for i, row in file.iterrows(): | |
| yield i, { | |
| "ltable_id": row["ltable_id"], | |
| "rtable_id": row["rtable_id"], | |
| "label": row["label"], | |
| } |