|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | from transformers import pipeline | 
					
						
						|  | from transformers import AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | model_id = "HuggingFaceTB/SmolLM3-3B" | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_id) | 
					
						
						|  |  | 
					
						
						|  | pipe = pipeline("text-generation", model=model_id, tokenizer=tokenizer) | 
					
						
						|  |  | 
					
						
						|  | messages = [ | 
					
						
						|  | {"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}, | 
					
						
						|  | ] | 
					
						
						|  | pipe(messages) | 
					
						
						|  |  | 
					
						
						|  | messages = [ | 
					
						
						|  | {"role": "system", "content": "/no_think"}, | 
					
						
						|  | {"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}, | 
					
						
						|  | ] | 
					
						
						|  | pipe(messages) | 
					
						
						|  |  | 
					
						
						|  | from transformers import AutoModelForCausalLM, AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | model_name = "HuggingFaceTB/SmolLM3-3B" | 
					
						
						|  | device = "cuda" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_name) | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained( | 
					
						
						|  | model_name, | 
					
						
						|  | ).to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt = "Give me a brief explanation of gravity in simple terms." | 
					
						
						|  | messages_think = [ | 
					
						
						|  | {"role": "user", "content": prompt} | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | text = tokenizer.apply_chat_template( | 
					
						
						|  | messages_think, | 
					
						
						|  | tokenize=False, | 
					
						
						|  | add_generation_prompt=True, | 
					
						
						|  | ) | 
					
						
						|  | model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | generated_ids = model.generate(**model_inputs, max_new_tokens=32768) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] | 
					
						
						|  | print(tokenizer.decode(output_ids, skip_special_tokens=True)) | 
					
						
						|  |  | 
					
						
						|  | prompt = "Give me a brief explanation of gravity in simple terms." | 
					
						
						|  | messages = [ | 
					
						
						|  | {"role": "system", "content": "/no_think"}, | 
					
						
						|  | {"role": "user", "content": prompt} | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | text = tokenizer.apply_chat_template( | 
					
						
						|  | messages, | 
					
						
						|  | tokenize=False, | 
					
						
						|  | add_generation_prompt=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | generated_ids = model.generate(**model_inputs, max_new_tokens=32768) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] | 
					
						
						|  | print(tokenizer.decode(output_ids, skip_special_tokens=True)) | 
					
						
						|  |  | 
					
						
						|  | tools = [ | 
					
						
						|  | { | 
					
						
						|  | "name": "get_weather", | 
					
						
						|  | "description": "Get the weather in a city", | 
					
						
						|  | "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}} | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | messages = [ | 
					
						
						|  | { | 
					
						
						|  | "role": "user", | 
					
						
						|  | "content": "Hello! How is the weather today in Copenhagen?" | 
					
						
						|  | } | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | inputs = tokenizer.apply_chat_template( | 
					
						
						|  | messages, | 
					
						
						|  | enable_thinking=False, | 
					
						
						|  | xml_tools=tools, | 
					
						
						|  | add_generation_prompt=True, | 
					
						
						|  | tokenize=True, | 
					
						
						|  | return_tensors="pt" | 
					
						
						|  | ).to(model.device) | 
					
						
						|  |  | 
					
						
						|  | outputs = model.generate(inputs) | 
					
						
						|  | print(tokenizer.decode(outputs[0])) | 
					
						
						|  | with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f: | 
					
						
						|  | f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_0.txt') | 
					
						
						|  | except Exception as e: | 
					
						
						|  | with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f: | 
					
						
						|  | import traceback | 
					
						
						|  | traceback.print_exc(file=f) | 
					
						
						|  | finally: | 
					
						
						|  | from huggingface_hub import upload_file | 
					
						
						|  | upload_file( | 
					
						
						|  | path_or_fileobj='HuggingFaceTB_SmolLM3-3B_0.txt', | 
					
						
						|  | repo_id='model-metadata/custom_code_execution_files', | 
					
						
						|  | path_in_repo='HuggingFaceTB_SmolLM3-3B_0.txt', | 
					
						
						|  | repo_type='dataset', | 
					
						
						|  | ) |