mstz commited on
Commit
c28342b
·
1 Parent(s): 1132072

updated to datasets 4.*

Browse files
Files changed (5) hide show
  1. README.md +11 -9
  2. Test_Dataset.csv +0 -3
  3. Train_Dataset.csv +0 -3
  4. default/train.csv +0 -0
  5. nbfi.py +0 -264
README.md CHANGED
@@ -1,18 +1,20 @@
1
  ---
2
- language:
3
- - en
 
 
 
 
 
 
 
 
4
  tags:
5
- - nbfi
6
  - tabular_classification
7
  - binary_classification
8
- pretty_name: NBFI
9
- size_categories:
10
- - 1K<n<10K
11
  task_categories:
12
  - tabular-classification
13
- configs:
14
- - default
15
- license: cc
16
  ---
17
  # NBFI
18
  The [NBFI dataset](https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset) from the [Kaggle](https://www.kaggle.com/datasets).
 
1
  ---
2
+ configs:
3
+ - config_name: default
4
+ data_files:
5
+ - path: default/train.csv
6
+ split: train
7
+ default: true
8
+ language: en
9
+ license: cc
10
+ pretty_name: Nbfi
11
+ size_categories: 1M<n<10M
12
  tags:
 
13
  - tabular_classification
14
  - binary_classification
15
+ - multiclass_classification
 
 
16
  task_categories:
17
  - tabular-classification
 
 
 
18
  ---
19
  # NBFI
20
  The [NBFI dataset](https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset) from the [Kaggle](https://www.kaggle.com/datasets).
Test_Dataset.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fce61c89339cc849186d4e9964c8d154c933359ea51e5c8d401c4312040aa137
3
- size 15229326
 
 
 
 
Train_Dataset.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bfaa92b0e2bf3cb523c2c287d00502328bdc19366cdb2a49486c58ce7cae5e33
3
- size 23193688
 
 
 
 
default/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
nbfi.py DELETED
@@ -1,264 +0,0 @@
1
- """NBFI"""
2
-
3
- from typing import List
4
- from functools import partial
5
-
6
- import datasets
7
-
8
- import pandas
9
-
10
-
11
- VERSION = datasets.Version("1.0.0")
12
- _ORIGINAL_FEATURE_NAMES = [
13
- "ID",
14
- "Client_Income",
15
- "Car_Owned",
16
- "Bike_Owned",
17
- "Active_Loan",
18
- "House_Own",
19
- "Child_Count",
20
- "Credit_Amount",
21
- "Loan_Annuity",
22
- "Accompany_Client",
23
- "Client_Income_Type",
24
- "Client_Education",
25
- "Client_Marital_Status",
26
- "Client_Gender",
27
- "Loan_Contract_Type",
28
- "Client_Housing_Type",
29
- "Population_Region_Relative",
30
- "Age_Days",
31
- "Employed_Days",
32
- "Registration_Days",
33
- "ID_Days",
34
- "Own_House_Age",
35
- "Mobile_Tag",
36
- "Homephone_Tag",
37
- "Workphone_Working",
38
- "Client_Occupation",
39
- "Client_Family_Members",
40
- "Cleint_City_Rating",
41
- "Application_Process_Day",
42
- "Application_Process_Hour",
43
- "Client_Permanent_Match_Tag",
44
- "Client_Contact_Work_Tag",
45
- "Type_Organization",
46
- "Score_Source_1",
47
- "Score_Source_2",
48
- "Score_Source_3",
49
- "Social_Circle_Default",
50
- "Phone_Change",
51
- "Credit_Bureau",
52
- "Default"
53
- ]
54
- _BASE_FEATURE_NAMES = [
55
- "income",
56
- "owns_a_car",
57
- "owns_a_bike",
58
- "has_an_active_loan",
59
- "owns_a_house",
60
- "nr_children",
61
- "credit",
62
- "loan_annuity",
63
- "accompanied_by",
64
- "income_type",
65
- "education_level",
66
- "marital_status",
67
- "is_male",
68
- "type_of_contract",
69
- "type_of_housing",
70
- "residence_density",
71
- "age_in_days",
72
- "consecutive_days_of_employment",
73
- "nr_days_since_last_registration_change",
74
- "nr_days_since_last_document_change",
75
- "has_provided_a_mobile_number",
76
- "has_provided_a_home_number",
77
- "was_reachable_at_work",
78
- "job",
79
- "nr_family_members",
80
- "city_rating",
81
- "weekday_of_application",
82
- "hour_of_application",
83
- "same_residence_and_home",
84
- "same_work_and_home",
85
- "score_1",
86
- "score_2",
87
- "score_3",
88
- "nr_defaults_in_social_circle",
89
- "inquiries_in_last_year",
90
- "has_defaulted"
91
- ]
92
- features_types_per_config = {
93
- "default": {
94
- "income": datasets.Value("float32"),
95
- "owns_a_car": datasets.Value("bool"),
96
- "owns_a_bike": datasets.Value("bool"),
97
- "has_an_active_loan": datasets.Value("bool"),
98
- "owns_a_house": datasets.Value("bool"),
99
- "nr_children": datasets.Value("int8"),
100
- "credit": datasets.Value("float32"),
101
- "loan_annuity": datasets.Value("float32"),
102
- "accompanied_by": datasets.Value("string"),
103
- "income_type": datasets.Value("string"),
104
- "education_level": datasets.Value("float32"),
105
- "marital_status": datasets.Value("string"),
106
- "is_male": datasets.Value("bool"),
107
- "type_of_contract": datasets.Value("string"),
108
- "type_of_housing": datasets.Value("string"),
109
- "residence_density": datasets.Value("float32"),
110
- "age_in_days": datasets.Value("int32"),
111
- "consecutive_days_of_employment": datasets.Value("int16"),
112
- "nr_days_since_last_registration_change": datasets.Value("int32"),
113
- "nr_days_since_last_document_change": datasets.Value("int32"),
114
- "has_provided_a_mobile_number": datasets.Value("bool"),
115
- "has_provided_a_home_number": datasets.Value("bool"),
116
- "was_reachable_at_work": datasets.Value("bool"),
117
- "job": datasets.Value("string"),
118
- "nr_family_members": datasets.Value("int8"),
119
- "city_rating": datasets.Value("int8"),
120
- "weekday_of_application": datasets.Value("int8"),
121
- "hour_of_application": datasets.Value("float32"),
122
- "same_residence_and_home": datasets.Value("bool"),
123
- "same_work_and_home": datasets.Value("bool"),
124
- "score_1": datasets.Value("float32"),
125
- "score_2": datasets.Value("float32"),
126
- "score_3": datasets.Value("float32"),
127
- "nr_defaults_in_social_circle": datasets.Value("bool"),
128
- "inquiries_in_last_year": datasets.Value("float32"),
129
- "has_defaulted": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
130
- }
131
- }
132
- _ENCODING_DICS = {}
133
- _EDUCATION_ENCODING = {
134
- "Junior secondary": 0,
135
- "Secondary": 1,
136
- "Graduation dropout": 2,
137
- "Graduation": 2,
138
- "Post Grad": 4
139
- }
140
-
141
- DESCRIPTION = "NBFI dataset from default prediction."
142
- _HOMEPAGE = "https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset"
143
- _URLS = ("https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset")
144
- _CITATION = """"""
145
-
146
- # Dataset info
147
- urls_per_split = {
148
- "train": "https://gist.githubusercontent.com/msetzu/6c83dc3b7092d428ae2f08dc91e1020c/raw/9fc3171b293d0dc29963357450308eb4c7e3a15b/Train_Dataset.csv"
149
- }
150
-
151
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
152
-
153
-
154
- class NBFIConfig(datasets.BuilderConfig):
155
- def __init__(self, **kwargs):
156
- super(NBFIConfig, self).__init__(version=VERSION, **kwargs)
157
- self.features = features_per_config[kwargs["name"]]
158
-
159
-
160
- class NBFI(datasets.GeneratorBasedBuilder):
161
- # dataset versions
162
- DEFAULT_CONFIG = "default"
163
- BUILDER_CONFIGS = [
164
- NBFIConfig(name="default",
165
- description="NBFI for default binary classification.")
166
- ]
167
-
168
-
169
- def _info(self):
170
- if self.config.name not in features_per_config:
171
- raise ValueError(f"Unknown configuration: {self.config.name}")
172
-
173
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
174
- features=features_per_config[self.config.name])
175
-
176
- return info
177
-
178
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
179
- downloads = dl_manager.download_and_extract(urls_per_split)
180
-
181
- return [
182
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
183
- ]
184
-
185
- def _generate_examples(self, filepath: str):
186
- if self.config.name == "default":
187
- data = pandas.read_csv(filepath)
188
- data = self.preprocess(data, config=self.config.name)
189
-
190
- for row_id, row in data.iterrows():
191
- data_row = dict(row)
192
-
193
- yield row_id, data_row
194
- else:
195
- raise ValueError(f"Unknown config: {self.config.name}")
196
-
197
-
198
-
199
- def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
200
- data.drop("ID", axis="columns", inplace=True)
201
- data.drop("Own_House_Age", axis="columns", inplace=True)
202
- data.drop("Type_Organization", axis="columns", inplace=True)
203
- data.drop("Phone_Change", axis="columns", inplace=True)
204
-
205
- data = data[~data.Client_Income.isna()]
206
- data = data[~data.Client_Education.isna()]
207
- data = data[~data.Child_Count.isna()]
208
- data = data[~data.Client_Marital_Status.isna()]
209
- data = data[~data.Client_Gender.isna()]
210
- data = data[~data.Loan_Contract_Type.isna()]
211
- data = data[~data.Client_Housing_Type.isna()]
212
- data = data[~data.Age_Days.isna()]
213
- data = data[~data.Employed_Days.isna()]
214
- data = data[~data.Registration_Days.isna()]
215
- data = data[~data.ID_Days.isna()]
216
- data = data[~data.Cleint_City_Rating.isna()]
217
- data = data[~data.Application_Process_Day.isna()]
218
- data = data[~data.Application_Process_Hour.isna()]
219
- data = data[~data.Client_Permanent_Match_Tag.isna()]
220
- data = data[~data.Client_Contact_Work_Tag.isna()]
221
- data = data[~data.Score_Source_1.isna()]
222
- data = data[~data.Score_Source_2.isna()]
223
- data = data[~data.Score_Source_3.isna()]
224
- data = data[~data.Credit_Bureau.isna()]
225
- data = data[~data.Credit_Amount.isna()]
226
- data = data[~data.Loan_Annuity.isna()]
227
- data = data[~data.Accompany_Client.isna()]
228
- data = data[~data.Client_Occupation.isna()]
229
- data = data[~data.Client_Family_Members.isna()]
230
- data = data[~data.Social_Circle_Default.isna()]
231
- data = data[~data.Population_Region_Relative.isin(("@", "#"))]
232
- data = data[~data.Population_Region_Relative.isna()]
233
- data = data[data.Loan_Annuity != "#VALUE!"]
234
- data = data[data.Age_Days != "x"]
235
- data = data[data.Employed_Days != "x"]
236
- data = data[data.Registration_Days != "x"]
237
- data = data[data.ID_Days != "x"]
238
-
239
- data.columns = _BASE_FEATURE_NAMES
240
-
241
- data["education_level"] = data["education_level"].apply(lambda x: _EDUCATION_ENCODING[x])
242
- data["is_male"] = data["is_male"].apply(lambda x: x == "M")
243
- data["owns_a_car"] = data["owns_a_car"].apply(bool)
244
- data["owns_a_bike"] = data["owns_a_bike"].apply(bool)
245
- data["has_an_active_loan"] = data["has_an_active_loan"].apply(bool)
246
- data["owns_a_house"] = data["owns_a_house"].apply(bool)
247
- data["is_male"] = data["is_male"].apply(bool)
248
- data["has_provided_a_mobile_number"] = data["has_provided_a_mobile_number"].apply(bool)
249
- data["has_provided_a_home_number"] = data["has_provided_a_home_number"].apply(bool)
250
- data["was_reachable_at_work"] = data["was_reachable_at_work"].apply(bool)
251
- data["same_residence_and_home"] = data["same_residence_and_home"].apply(bool)
252
- data["same_work_and_home"] = data["same_work_and_home"].apply(bool)
253
- data["nr_defaults_in_social_circle"] = data["same_work_and_home"].apply(bool)
254
- data["residence_density"] = data["residence_density"].apply(float)
255
-
256
- data = data.astype({
257
- "is_male": "bool",
258
- "nr_children": "int8"
259
- })
260
-
261
-
262
-
263
- return data[list(features_types_per_config[config].keys())]
264
-