--- annotations_creators: - expert-annotated language: - fas - rus - zho license: odc-by multilinguality: multilingual source_datasets: - mteb/neuclir-2022 - mteb/neuclir-2023-hard-negatives task_categories: - text-retrieval task_ids: [] dataset_info: - config_name: fas-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 83757983 num_examples: 15921 download_size: 38473931 dataset_size: 83757983 - config_name: fas-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 1408660 num_examples: 25612 download_size: 976032 dataset_size: 1408660 - config_name: fas-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 9573 num_examples: 74 download_size: 7005 dataset_size: 9573 - config_name: rus-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 80653243 num_examples: 16247 download_size: 40100727 dataset_size: 80653243 - config_name: rus-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 1395955 num_examples: 25381 download_size: 968631 dataset_size: 1395955 - config_name: rus-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 11051 num_examples: 75 download_size: 7939 dataset_size: 11051 - config_name: zho-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 54494878 num_examples: 17265 download_size: 37483273 dataset_size: 54494878 - config_name: zho-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 1496330 num_examples: 27206 download_size: 1038588 dataset_size: 1496330 - config_name: zho-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 5511 num_examples: 75 download_size: 5659 dataset_size: 5511 configs: - config_name: fas-corpus data_files: - split: test path: fas-corpus/test-* - config_name: fas-qrels data_files: - split: test path: fas-qrels/test-* - config_name: fas-queries data_files: - split: test path: fas-queries/test-* - config_name: rus-corpus data_files: - split: test path: rus-corpus/test-* - config_name: rus-qrels data_files: - split: test path: rus-qrels/test-* - config_name: rus-queries data_files: - split: test path: rus-queries/test-* - config_name: zho-corpus data_files: - split: test path: zho-corpus/test-* - config_name: zho-qrels data_files: - split: test path: zho-qrels/test-* - config_name: zho-queries data_files: - split: test path: zho-queries/test-* tags: - mteb - text ---

NeuCLIR2023RetrievalHardNegatives

An MTEB dataset
Massive Text Embedding Benchmark
The task involves identifying and retrieving the documents that are relevant to the queries. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | News, Written | | Reference | https://neuclir.github.io/ | Source datasets: - [mteb/neuclir-2022](https://huggingface.co/datasets/mteb/neuclir-2022) - [mteb/neuclir-2023-hard-negatives](https://huggingface.co/datasets/mteb/neuclir-2023-hard-negatives) ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("NeuCLIR2023RetrievalHardNegatives") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{lawrie2024overview, archiveprefix = {arXiv}, author = {Dawn Lawrie and Sean MacAvaney and James Mayfield and Paul McNamee and Douglas W. Oard and Luca Soldaini and Eugene Yang}, eprint = {2404.08071}, primaryclass = {cs.IR}, title = {Overview of the TREC 2023 NeuCLIR Track}, year = {2024}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("NeuCLIR2023RetrievalHardNegatives") desc_stats = task.metadata.descriptive_stats ``` ```json {} ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*