--- license: mit task_categories: - image-segmentation - image-classification tags: - medical - ct-scan - radiology - chest-ct size_categories: - n<1K configs: - config_name: default data_files: - split: train path: "train/*.parquet" --- # RadGenome ChestCT Reshaped Tiny Dataset This dataset contains resized chest CT scans from the RadGenome-ChestCT dataset. ## Dataset Details - **Original Resolution**: 900x900xN - **Resized Resolution**: 300x300xN - **Format**: NIfTI (.nii.gz) - **Number of Volumes**: 253 - **Space Reduction**: ~89% (resized to 1/9th of original spatial dimensions) ## Dataset Structure Each entry contains: - `volumename`: Name of the CT volume file (string) - `anatomy`: Anatomical region information (string) - `sentence`: Associated radiology report sentence (string) - `volume_path`: Relative path to the .nii.gz file (string) ## Columns | Column | Type | Description | |--------|------|-------------| | volumename | string | CT volume filename | | anatomy | string | Anatomical region | | sentence | string | Radiology report text | | volume_path | string | Path to .nii.gz file | ## Usage ```python from datasets import load_dataset import nibabel as nib # Load the dataset ds = load_dataset("nahidhasan/radgenome-ct-reshaped-tiny") # Access dataset information print(f"Number of samples: {len(ds['train'])}") # Access a single entry sample = ds['train'][0] print(f"Volumename: {sample['volumename']}") print(f"Anatomy: {sample['anatomy']}") print(f"Sentence: {sample['sentence']}") print(f"Volume path: {sample['volume_path']}") # Download and load the NIfTI file # nii = nib.load(sample['volume_path']) # data = nii.get_fdata() # print(f"Volume shape: {data.shape}") ``` ## Source This is a resized subset of the [RadGenome-ChestCT dataset](https://huggingface.co/datasets/RadGenome/RadGenome-ChestCT). ## Processing CT volumes were resized from 900x900xN to 300x300xN using trilinear interpolation while preserving the slice dimension.