Datasets:
Tasks:
Audio Classification
Sub-tasks:
audio-emotion-recognition
Languages:
English
Size:
1K<n<10K
License:
Upload ravdess.py
Browse files- ravdess.py +191 -0
ravdess.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""RAVDESS multimodal dataset for emotion recognition."""
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
from pathlib import Path, PurePath, PurePosixPath
|
| 22 |
+
from collections import OrderedDict
|
| 23 |
+
import pandas as pd
|
| 24 |
+
import datasets
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
_CITATION = """\
|
| 28 |
+
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
_DESCRIPTION = """\
|
| 32 |
+
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
_URL = "https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24.zip"
|
| 36 |
+
_HOMEPAGE = "https://smartlaboratory.org/ravdess/"
|
| 37 |
+
|
| 38 |
+
_CLASS_NAMES = [
|
| 39 |
+
'neutral',
|
| 40 |
+
'calm',
|
| 41 |
+
'happy',
|
| 42 |
+
'sad',
|
| 43 |
+
'angry',
|
| 44 |
+
'fearful',
|
| 45 |
+
'disgust',
|
| 46 |
+
'surprised'
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
_FEAT_DICT = OrderedDict([
|
| 52 |
+
('Modality', ['full-AV', 'video-only', 'audio-only']),
|
| 53 |
+
('Vocal channel', ['speech', 'song']),
|
| 54 |
+
('Emotion', ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised']),
|
| 55 |
+
('Emotion intensity', ['normal', 'strong']),
|
| 56 |
+
('Statement', ["Kids are talking by the door", "Dogs are sitting by the door"]),
|
| 57 |
+
('Repetition', ["1st repetition", "2nd repetition"]),
|
| 58 |
+
])
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def filename2feats(filename):
|
| 62 |
+
codes = filename.stem.split('-')
|
| 63 |
+
d = {}
|
| 64 |
+
for i, k in enumerate(_FEAT_DICT.keys()):
|
| 65 |
+
d[k] = _FEAT_DICT[k][int(codes[i])-1]
|
| 66 |
+
d['Actor'] = codes[-1]
|
| 67 |
+
d['Gender'] = 'female' if int(codes[-1]) % 2 == 0 else 'male'
|
| 68 |
+
d['Path_to_Wav'] = str(filename)
|
| 69 |
+
return d
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def preprocess(data_root_path):
|
| 73 |
+
output_dir = data_root_path / "RAVDESS_ser"
|
| 74 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 75 |
+
|
| 76 |
+
data = []
|
| 77 |
+
for actor_dir in data_root_path.iterdir():
|
| 78 |
+
if actor_dir.is_dir() and "Actor" in actor_dir.name:
|
| 79 |
+
for f in actor_dir.iterdir():
|
| 80 |
+
data.append(filename2feats(f))
|
| 81 |
+
|
| 82 |
+
df = pd.DataFrame(data, columns=list(_FEAT_DICT.keys()) + ['Actor', 'Gender', 'Path_to_Wav'])
|
| 83 |
+
df.to_csv(output_dir / 'data.csv')
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class RAVDESSConfig(datasets.BuilderConfig):
|
| 88 |
+
"""BuilderConfig for RAVDESS."""
|
| 89 |
+
|
| 90 |
+
def __init__(self, **kwargs):
|
| 91 |
+
"""
|
| 92 |
+
Args:
|
| 93 |
+
data_dir: `string`, the path to the folder containing the files in the
|
| 94 |
+
downloaded .tar
|
| 95 |
+
citation: `string`, citation for the data set
|
| 96 |
+
url: `string`, url for information about the data set
|
| 97 |
+
**kwargs: keyword arguments forwarded to super.
|
| 98 |
+
"""
|
| 99 |
+
super(RAVDESSConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class RAVDESS(datasets.GeneratorBasedBuilder):
|
| 103 |
+
"""RAVDESS dataset."""
|
| 104 |
+
|
| 105 |
+
BUILDER_CONFIGS = [] #RAVDESSConfig(name="clean", description="'Clean' speech.")]
|
| 106 |
+
|
| 107 |
+
def _info(self):
|
| 108 |
+
return datasets.DatasetInfo(
|
| 109 |
+
description=_DESCRIPTION,
|
| 110 |
+
features=datasets.Features(
|
| 111 |
+
{
|
| 112 |
+
"audio": datasets.Audio(sampling_rate=48000),
|
| 113 |
+
"text": datasets.Value("string"),
|
| 114 |
+
"labels": datasets.ClassLabel(names=_CLASS_NAMES),
|
| 115 |
+
"speaker_id": datasets.Value("string"),
|
| 116 |
+
"speaker_gender": datasets.Value("string")
|
| 117 |
+
# "id": datasets.Value("string"),
|
| 118 |
+
}
|
| 119 |
+
),
|
| 120 |
+
homepage=_HOMEPAGE,
|
| 121 |
+
citation=_CITATION
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def _split_generators(self, dl_manager):
|
| 126 |
+
archive_path = dl_manager.download_and_extract(_URL)
|
| 127 |
+
archive_path = Path(archive_path)
|
| 128 |
+
preprocess(archive_path)
|
| 129 |
+
csv_path = os.path.join(archive_path, "RAVDESS_ser/data.csv")
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
return [
|
| 133 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
| 134 |
+
gen_kwargs={"data_info_csv": csv_path}),
|
| 135 |
+
]
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def _generate_examples(self, data_info_csv):
|
| 139 |
+
print("\nGenerating an example")
|
| 140 |
+
|
| 141 |
+
# Read the data info to extract rows mentioning about non-converted audio only
|
| 142 |
+
data_info = pd.read_csv(open(data_info_csv, encoding="utf8"))
|
| 143 |
+
|
| 144 |
+
# Iterating the contents of the data to extract the relevant information
|
| 145 |
+
for audio_idx in range(data_info.shape[0]):
|
| 146 |
+
audio_data = data_info.iloc[audio_idx]
|
| 147 |
+
|
| 148 |
+
# subpath = str(audio_data["Path_to_Wav"])
|
| 149 |
+
# import pathlib
|
| 150 |
+
# subpath = subpath.replace('\\', '/')
|
| 151 |
+
# p2 = pathlib.PurePosixPath(subpath)
|
| 152 |
+
# wav_path = str(pathlib.PurePath(data_path) / p2)
|
| 153 |
+
# labels = audio_data["Emotion"] #.lower().split(',')
|
| 154 |
+
|
| 155 |
+
# labels = [l for l in labels if len(l) > 1]
|
| 156 |
+
|
| 157 |
+
example = {
|
| 158 |
+
"audio": audio_data['Path_to_Wav'], #wav_path,
|
| 159 |
+
"text": audio_data['Statement'],
|
| 160 |
+
"labels": audio_data['Emotion'],
|
| 161 |
+
"speaker_id": audio_data["Actor"],
|
| 162 |
+
"speaker_gender": audio_data["Gender"]
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
yield audio_idx, example
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
# def class_names(self):
|
| 182 |
+
# return _CLASS_NAMES
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# transcript =
|
| 189 |
+
# # extract transcript
|
| 190 |
+
# with open(wav_path.replace(".WAV", ".TXT"), encoding="utf-8") as op:
|
| 191 |
+
# transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number
|