Datasets:

Modalities:
Text
Formats:
json
Languages:
Hindi
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,584 Bytes
1a63565
 
 
 
 
 
7debc40
 
 
 
 
 
 
 
 
 
 
 
 
1a63565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# IFEval-Hi Evaluation Framework

## Overview

IFEval-Hi is a Hindi language adaptation of the IFEval (Instruction Following Evaluation) benchmark, designed to evaluate the instruction-following capabilities of Large Language Models (LLMs) in Hindi. This implementation maintains the core evaluation methodology of the original English IFEval while incorporating language-specific modifications to ensure accurate and fair assessment of Hindi language models.

## Getting Started

You have two options to use this evaluation framework:

1. **Option 1: Use the Ready-to-Use Fork** (Recommended)
   - Fork or clone the repository directly from: https://github.com/anushaknvidia/lm-evaluation-harness
   - This fork already includes all the Hindi-specific configurations and modifications
   - Skip to [Step 3: Run Evaluation](#step-3-run-evaluation)

2. **Option 2: Manual Setup**
   - Follow the step-by-step instructions below to set up IFEval-Hi from scratch
   - This is useful if you want to customize or understand the implementation details

## Setup and Usage

### Step 1: Create Task Configuration

1. Navigate to the lm-evaluation-harness tasks directory:
   ```
   https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/ifeval
   ```

2. Create a copy of the English IFEval directory and rename it to ifevalhi 

3. Rename the task file in the copied folder to `ifevalhi.yaml` for Hindi-specific configuration

### Step 2: Configure Parameters

Update the `ifevalhi.yaml` configuration file with the following Hindi-specific parameters:

```yaml
# Dataset Configuration
dataset_path: nvidia/IFEval-Hi

# Generation Parameters
max_gen_toks: 4096  # Increased from 1280 to accommodate Hindi morphology

# Additional Hindi-specific settings
# (Include language-specific preprocessing and normalization settings as needed)
```

**Key Configuration Changes:**
- **`dataset_path`**: Changed from `google/IFEval` to `nvidia/IFEval-Hi`
- **`max_gen_toks`**: Increased to 4096 tokens to handle Hindi's linguistic complexity

### Step 3: Run Evaluation

Execute the evaluation using the lm-eval-harness framework with the Hindi task configuration:

```bash
# Basic evaluation command add other arguments as per lm-eval-harness repo
lm-eval --model hf \
        --model_args pretrained=<model_name_or_path> \
        --tasks ifevalhi \
        --batch_size auto \
        --output_path ./results/
```

### Expected Output

The evaluation will generate results including:
- **prompt_level_strict_acc**: Primary accuracy metric
- **normalised_acc**: Normalized accuracy with text preprocessing

## Key Differences from English IFEval

### 1. Configuration Parameters

#### Maximum Generation Token Limit
- **English IFEval**: 1,280 tokens
- **IFEval-Hindi**: 4,096 tokens

The increased token limit accommodates the morphological and syntactic properties of Hindi text, which often requires more tokens to express equivalent content compared to English.

### 2. Language-Specific Processing

#### Tokenization and Segmentation
- **English Implementation**: Uses standard tokenizer for sentence and word segmentation
- **IFEval-Hi**: Incorporates Hindi-specific punctuation handling, including:
  - Sentence delimitation using the vertical bar (`|`) character
  - Custom punctuation rules tailored to Hindi text structure

### 3. Constrained Response Categories

IFEval-Hi expands the constrained response category with Hindi-specific response patterns:

```
- मेरा जवाब हाँ है (My answer is yes)
- मेरा जवाब नहीं है (My answer is no)
- मेरा जवाब शायद है (My answer is maybe)
- हाँ (Yes)
- नहीं (No)
- शायद (Maybe)
```

These additions ensure fair evaluation for Hindi responses and align with natural Hindi language usage patterns.

### 4. Text Normalization

IFEval-Hindi implements comprehensive normalization procedures for model-generated Hindi text and evaluation parameters:

#### Character Normalization
- **Consonant Unification**: Characters like क़ and क are unified to maintain consistency
- **Diacritic Removal**: Diacritical marks such as "ँ" (chandrabindu) are stripped
- **Symbol Cleanup**: Redundant symbols and spacing irregularities are removed
- **Orthographic Standardization**: Variations in Hindi script representation are normalized

These normalization steps ensure consistent processing across input prompts and model-generated outputs, reducing evaluation bias from orthographic variations.

### 5. Validation Logic Updates

#### Letter Frequency Checker
- **English IFEval**: Includes English alphabet-only validation logic
- **IFEval-Hi**: English alphabet validation has been deprecated and removed from `instructions.py` to align with Hindi-specific evaluation requirements

This modification ensures that character-level constraints are appropriately evaluated for the Devanagari script used in Hindi.


IFEval-Hi follows the same execution pipeline as the English variant within the lm-eval-harness repository

```
Pipeline Structure:
1. Load dataset from nvidia/IFEval-Hi
2. Generate model responses with Hindi-specific configurations
3. Apply Hindi text normalization
4. Evaluate instruction-following accuracy
5. Report metrics
```

Both implementations utilize the same core Python utility modules, ensuring consistency in evaluation methodology while supporting language-specific adaptations.
Please find the fork to the evaluation repo with the above changes here https://github.com/anushaknvidia/lm-evaluation-harness