xrenaa nielsr HF Staff commited on
Commit
45bc128
·
verified ·
1 Parent(s): de5a191

Improve dataset card: Add task categories, GitHub link, comprehensive sample usage, and clarify license (#1)

Browse files

- Improve dataset card: Add task categories, GitHub link, comprehensive sample usage, and clarify license (3807333834a1c991ed2e4544998c7ebb10eb39d4)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +84 -9
README.md CHANGED
@@ -1,9 +1,18 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
3
  ---
 
4
  # Lyra: Generative 3D Scene Reconstruction via Video Diffusion Model Self-Distillation
5
 
6
- **[Paper](https://arxiv.org/abs/2509.19296), [Project Page](https://research.nvidia.com/labs/toronto-ai/lyra/)**
7
 
8
  [Sherwin Bahmani](https://sherwinbahmani.github.io/),
9
  [Tianchang Shen](https://www.cs.toronto.edu/~shenti11/),
@@ -15,8 +24,8 @@ license: cc-by-4.0
15
  [David B. Lindell](https://davidlindell.com/),
16
  [Zan Gojcic](https://zgojcic.github.io/),
17
  [Sanja Fidler](https://www.cs.utoronto.ca/~fidler/),
18
- [Huan Ling](https://www.cs.toronto.edu/~linghuan/),
19
- [Jun Gao](https://www.cs.toronto.edu/~jungao/),
20
  [Xuanchi Ren](https://xuanchiren.com/) <br>
21
 
22
  ## Dataset Description:
@@ -34,8 +43,7 @@ NVIDIA Corporation
34
  2025/09/23
35
 
36
  ## License/Terms of Use:
37
- [Visit the NVIDIA Legal Release Process](https://nvidia.sharepoint.com/sites/ProductLegalSupport) for instructions on getting legal support for a license selection:
38
- https://docs.google.com/spreadsheets/d/1e1K8nsMV9feowjmgXhdfa0qo-oGJNlnsBc1Qhwck7vU/edit?usp=sharing
39
 
40
  ## Intended Usage:
41
  Researchers and academics working in spatial intelligence problems can use it to train AI models for multi-view video generation or reconstruction.
@@ -63,12 +71,79 @@ For each view, we have videos in Red, Green, Blue (RGB) and camera poses and dep
63
 
64
  Storage: 25TB
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  ## Reference(s):
67
 
68
- Please refer to https://github.com/nv-tlabs/lyra for how to use this dataset.
69
 
70
  ## Ethical Considerations:
71
- NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
72
 
73
  Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
74
 
@@ -88,9 +163,9 @@ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.
88
  @inproceedings{ren2025gen3c,
89
  title={GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control},
90
  author={Ren, Xuanchi and Shen, Tianchang and Huang, Jiahui and Ling, Huan and
91
- Lu, Yifan and Nimier-David, Merlin and Müller, Thomas and Keller, Alexander and
92
  Fidler, Sanja and Gao, Jun},
93
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
94
  year={2025}
95
  }
96
- ```
 
1
  ---
2
  license: cc-by-4.0
3
+ task_categories:
4
+ - image-to-3d
5
+ - text-to-3d
6
+ tags:
7
+ - 3d-reconstruction
8
+ - gaussian-splatting
9
+ - video-diffusion
10
+ - synthetic-data
11
  ---
12
+
13
  # Lyra: Generative 3D Scene Reconstruction via Video Diffusion Model Self-Distillation
14
 
15
+ **[Paper](https://arxiv.org/abs/2509.19296), [Project Page](https://research.nvidia.com/labs/toronto-ai/lyra/), [Code](https://github.com/nv-tlabs/lyra)**
16
 
17
  [Sherwin Bahmani](https://sherwinbahmani.github.io/),
18
  [Tianchang Shen](https://www.cs.toronto.edu/~shenti11/),
 
24
  [David B. Lindell](https://davidlindell.com/),
25
  [Zan Gojcic](https://zgojcic.github.io/),
26
  [Sanja Fidler](https://www.cs.utoronto.ca/~fidler/),
27
+ [Huan Ling](https://www.cs.utoronto.ca/~linghuan/),
28
+ [Jun Gao](https://www.cs.utoronto.ca/~jungao/),
29
  [Xuanchi Ren](https://xuanchiren.com/) <br>
30
 
31
  ## Dataset Description:
 
43
  2025/09/23
44
 
45
  ## License/Terms of Use:
46
+ This dataset is licensed under the [Creative Commons Attribution 4.0 International License (CC-BY-4.0)](https://creativecommons.org/licenses/by/4.0/).
 
47
 
48
  ## Intended Usage:
49
  Researchers and academics working in spatial intelligence problems can use it to train AI models for multi-view video generation or reconstruction.
 
71
 
72
  Storage: 25TB
73
 
74
+ ## Sample Usage
75
+
76
+ Lyra supports both images and videos as input for 3D Gaussian generation. First, you need to download the demo samples:
77
+
78
+ ```bash
79
+ # Download test samples from Hugging Face
80
+ huggingface-cli download nvidia/Lyra-Testing-Example --repo-type dataset --local-dir assets/demo
81
+ ```
82
+
83
+ ### Example 1: Single Image to 3D Gaussians Generation
84
+
85
+ 1) Generate multi-view video latents from the input image using scripts/bash/static_sdg.sh.
86
+
87
+ ```bash
88
+ CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) torchrun --nproc_per_node=1 cosmos_predict1/diffusion/inference/gen3c_single_image_sdg.py \
89
+ --checkpoint_dir checkpoints \
90
+ --num_gpus 1 \
91
+ --input_image_path assets/demo/static/diffusion_input/images/00172.png \
92
+ --video_save_folder assets/demo/static/diffusion_output_generated \
93
+ --foreground_masking \
94
+ --multi_trajectory
95
+ ```
96
+
97
+ 2) Reconstruct multi-view video latents with the 3DGS decoder:
98
+
99
+ ```bash
100
+ accelerate launch sample.py --config configs/demo/lyra_static.yaml
101
+ ```
102
+
103
+ ### Example 2: Single Video to Dynamic 3D Gaussians Generation
104
+
105
+ 1) Generate multi-view video latents from the input video and ViPE estimated depth using scripts/bash/dynamic_sdg.sh.
106
+
107
+ ```bash
108
+ CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) torchrun --nproc_per_node=1 cosmos_predict1/diffusion/inference/gen3c_dynamic_sdg.py \
109
+ --checkpoint_dir checkpoints \
110
+ --vipe_path assets/demo/dynamic/diffusion_input/rgb/6a71ee0422ff4222884f1b2a3cba6820.mp4 \
111
+ --video_save_folder assets/demo/dynamic/diffusion_output \
112
+ --disable_prompt_upsampler \
113
+ --num_gpus 1 \
114
+ --foreground_masking \
115
+ --multi_trajectory
116
+ ```
117
+
118
+ 2) Reconstruct multi-view video latents with the 3DGS decoder:
119
+
120
+ ```bash
121
+ accelerate launch sample.py --config configs/demo/lyra_dynamic.yaml
122
+ ```
123
+
124
+ ### Training
125
+
126
+ To train, you need to download the full training data (this dataset) from Hugging Face:
127
+
128
+ ```bash
129
+ # Download our training datasets from Hugging Face and untar them into a static/dynamic folder
130
+ huggingface-cli download nvidia/PhysicalAI-SpatialIntelligence-Lyra-SDG --repo-type dataset --local-dir lyra_dataset/tar
131
+ ```
132
+
133
+ Then you can use the provided progressive training script (as detailed in the GitHub repository):
134
+
135
+ ```bash
136
+ bash train.sh
137
+ ```
138
+
139
+ For more detailed usage instructions, including how to test on your own videos or perform training, please refer to the [Lyra GitHub repository](https://github.com/nv-tlabs/lyra).
140
+
141
  ## Reference(s):
142
 
143
+ - [GEN3C](https://github.com/nv-tlabs/GEN3C)
144
 
145
  ## Ethical Considerations:
146
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
147
 
148
  Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
149
 
 
163
  @inproceedings{ren2025gen3c,
164
  title={GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control},
165
  author={Ren, Xuanchi and Shen, Tianchang and Huang, Jiahui and Ling, Huan and
166
+ Lu, Yifan and Nimier-David, Merlin and M\u00fcller, Thomas and Keller, Alexander and
167
  Fidler, Sanja and Gao, Jun},
168
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
169
  year={2025}
170
  }
171
+ ```