onlineinfoh's picture
add all scripts
9ee6a3d
raw
history blame
5.17 kB
#!/usr/bin/env python3
"""
Fat filtering script - replace voxels with HU < -20 with label 10
Processes both manual labels and model predictions separately
"""
import os
from pathlib import Path
import numpy as np # type: ignore
import nibabel as nib # type: ignore
# Input directories
root_100_120 = Path("../100-120")
manual_labels_dir = root_100_120 / "labels_9_muscles"
model_pred_labels_dir = root_100_120 / "label_9_muscles_model_pred"
images_dir = root_100_120 / "images_100-120"
# Output directories
output_base = Path("../fat_filtered_100-120")
manual_output_dir = output_base / "labels_9_muscles_fat_filtered"
model_pred_output_dir = output_base / "label_9_muscles_model_pred_fat_filtered"
# Fat threshold
fat_hu_thresh = -20
fat_label = 10
def load_image_and_label(case_id: int, label_dir: Path):
"""Load CT image and label file for a specific case."""
img_path = images_dir / f"{case_id}_0000.nii.gz"
if not img_path.exists():
print(f"Image not found: {img_path}")
return None, None, None
lab_path = label_dir / f"{case_id}.nii.gz"
if not lab_path.exists():
print(f"Label not found: {lab_path}")
return None, None, None
try:
img_nib = nib.load(str(img_path)) # type: ignore
lab_nib = nib.load(str(lab_path)) # type: ignore
img_arr = img_nib.get_fdata()
lab_arr = lab_nib.get_fdata()
return img_arr, lab_arr, lab_nib
except Exception as e:
print(f"Error loading case {case_id}: {e}")
return None, None, None
def apply_fat_filter(img_arr: np.ndarray, lab_arr: np.ndarray):
"""Apply fat filtering - replace muscle voxels with HU < -20 with label 10."""
filtered_lab = lab_arr.copy()
fat_mask = (img_arr <= fat_hu_thresh) & (lab_arr > 0)
filtered_lab[fat_mask] = fat_label
return filtered_lab
def process_labels(label_dir: Path, output_dir: Path, label_type: str):
"""Process all labels in a directory and save fat-filtered versions."""
print(f"\nProcessing {label_type} labels...")
print(f"Input directory: {label_dir}")
print(f"Output directory: {output_dir}")
output_dir.mkdir(parents=True, exist_ok=True)
processed_count = 0
failed_count = 0
for case_id in range(100, 121):
print(f"Processing case {case_id}...")
img_arr, lab_arr, lab_nib = load_image_and_label(case_id, label_dir)
if img_arr is not None and lab_arr is not None and lab_nib is not None:
filtered_lab = apply_fat_filter(img_arr, lab_arr)
filtered_nib = nib.Nifti1Image(
filtered_lab.astype(np.uint8), # type: ignore
lab_nib.affine,
lab_nib.header
)
output_path = output_dir / f"{case_id}.nii.gz"
nib.save(filtered_nib, str(output_path)) # type: ignore
original_muscle_voxels = np.count_nonzero((lab_arr > 0) & (lab_arr <= 9)) # type: ignore
fat_voxels = np.count_nonzero(filtered_lab == fat_label) # type: ignore
total_muscle_voxels = np.count_nonzero(lab_arr > 0) # type: ignore
print(f" Case {case_id}: {fat_voxels} fat voxels added (original muscle voxels: {original_muscle_voxels})")
processed_count += 1
else:
print(f" Case {case_id}: Failed to load")
failed_count += 1
print(f"\n{label_type} processing complete:")
print(f" Successfully processed: {processed_count} cases")
print(f" Failed: {failed_count} cases")
print(f" Output saved to: {output_dir}")
def main():
"""Main function to process both manual and model prediction labels."""
print("="*80)
print("FAT FILTERING SCRIPT")
print("Replace voxels with HU < -20 with label 10")
print("="*80)
if not manual_labels_dir.exists():
print(f"Error: Manual labels directory not found: {manual_labels_dir}")
return
if not model_pred_labels_dir.exists():
print(f"Error: Model prediction labels directory not found: {model_pred_labels_dir}")
return
if not images_dir.exists():
print(f"Error: Images directory not found: {images_dir}")
return
process_labels(
label_dir=manual_labels_dir,
output_dir=manual_output_dir,
label_type="Manual"
)
process_labels(
label_dir=model_pred_labels_dir,
output_dir=model_pred_output_dir,
label_type="Model Prediction"
)
print("\n" + "="*80)
print("FAT FILTERING COMPLETE")
print("="*80)
print(f"Results saved to:")
print(f" - {manual_output_dir} (manual labels with fat filtering)")
print(f" - {model_pred_output_dir} (model predictions with fat filtering)")
print(f"\nFat filtering details:")
print(f" - Threshold: HU < {fat_hu_thresh}")
print(f" - Fat label: {fat_label}")
print(f" - Original muscle labels preserved (1-9)")
print(f" - Fat voxels labeled as {fat_label}")
if __name__ == "__main__":
main()