|
|
|
|
|
""" |
|
|
Fat filtering script - replace voxels with HU < -20 with label 10 |
|
|
Processes both manual labels and model predictions separately |
|
|
""" |
|
|
|
|
|
import os |
|
|
from pathlib import Path |
|
|
import numpy as np |
|
|
import nibabel as nib |
|
|
|
|
|
|
|
|
root_100_120 = Path("../100-120") |
|
|
manual_labels_dir = root_100_120 / "labels_9_muscles" |
|
|
model_pred_labels_dir = root_100_120 / "label_9_muscles_model_pred" |
|
|
images_dir = root_100_120 / "images_100-120" |
|
|
|
|
|
|
|
|
output_base = Path("../fat_filtered_100-120") |
|
|
manual_output_dir = output_base / "labels_9_muscles_fat_filtered" |
|
|
model_pred_output_dir = output_base / "label_9_muscles_model_pred_fat_filtered" |
|
|
|
|
|
|
|
|
fat_hu_thresh = -20 |
|
|
fat_label = 10 |
|
|
|
|
|
def load_image_and_label(case_id: int, label_dir: Path): |
|
|
"""Load CT image and label file for a specific case.""" |
|
|
|
|
|
img_path = images_dir / f"{case_id}_0000.nii.gz" |
|
|
if not img_path.exists(): |
|
|
print(f"Image not found: {img_path}") |
|
|
return None, None, None |
|
|
|
|
|
lab_path = label_dir / f"{case_id}.nii.gz" |
|
|
if not lab_path.exists(): |
|
|
print(f"Label not found: {lab_path}") |
|
|
return None, None, None |
|
|
|
|
|
try: |
|
|
img_nib = nib.load(str(img_path)) |
|
|
lab_nib = nib.load(str(lab_path)) |
|
|
|
|
|
img_arr = img_nib.get_fdata() |
|
|
lab_arr = lab_nib.get_fdata() |
|
|
|
|
|
return img_arr, lab_arr, lab_nib |
|
|
except Exception as e: |
|
|
print(f"Error loading case {case_id}: {e}") |
|
|
return None, None, None |
|
|
|
|
|
def apply_fat_filter(img_arr: np.ndarray, lab_arr: np.ndarray): |
|
|
"""Apply fat filtering - replace muscle voxels with HU < -20 with label 10.""" |
|
|
filtered_lab = lab_arr.copy() |
|
|
fat_mask = (img_arr <= fat_hu_thresh) & (lab_arr > 0) |
|
|
filtered_lab[fat_mask] = fat_label |
|
|
return filtered_lab |
|
|
|
|
|
def process_labels(label_dir: Path, output_dir: Path, label_type: str): |
|
|
"""Process all labels in a directory and save fat-filtered versions.""" |
|
|
|
|
|
print(f"\nProcessing {label_type} labels...") |
|
|
print(f"Input directory: {label_dir}") |
|
|
print(f"Output directory: {output_dir}") |
|
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
processed_count = 0 |
|
|
failed_count = 0 |
|
|
|
|
|
for case_id in range(100, 121): |
|
|
print(f"Processing case {case_id}...") |
|
|
|
|
|
img_arr, lab_arr, lab_nib = load_image_and_label(case_id, label_dir) |
|
|
|
|
|
if img_arr is not None and lab_arr is not None and lab_nib is not None: |
|
|
filtered_lab = apply_fat_filter(img_arr, lab_arr) |
|
|
|
|
|
filtered_nib = nib.Nifti1Image( |
|
|
filtered_lab.astype(np.uint8), |
|
|
lab_nib.affine, |
|
|
lab_nib.header |
|
|
) |
|
|
|
|
|
output_path = output_dir / f"{case_id}.nii.gz" |
|
|
nib.save(filtered_nib, str(output_path)) |
|
|
|
|
|
original_muscle_voxels = np.count_nonzero((lab_arr > 0) & (lab_arr <= 9)) |
|
|
fat_voxels = np.count_nonzero(filtered_lab == fat_label) |
|
|
total_muscle_voxels = np.count_nonzero(lab_arr > 0) |
|
|
|
|
|
print(f" Case {case_id}: {fat_voxels} fat voxels added (original muscle voxels: {original_muscle_voxels})") |
|
|
|
|
|
processed_count += 1 |
|
|
else: |
|
|
print(f" Case {case_id}: Failed to load") |
|
|
failed_count += 1 |
|
|
|
|
|
print(f"\n{label_type} processing complete:") |
|
|
print(f" Successfully processed: {processed_count} cases") |
|
|
print(f" Failed: {failed_count} cases") |
|
|
print(f" Output saved to: {output_dir}") |
|
|
|
|
|
def main(): |
|
|
"""Main function to process both manual and model prediction labels.""" |
|
|
|
|
|
print("="*80) |
|
|
print("FAT FILTERING SCRIPT") |
|
|
print("Replace voxels with HU < -20 with label 10") |
|
|
print("="*80) |
|
|
|
|
|
if not manual_labels_dir.exists(): |
|
|
print(f"Error: Manual labels directory not found: {manual_labels_dir}") |
|
|
return |
|
|
|
|
|
if not model_pred_labels_dir.exists(): |
|
|
print(f"Error: Model prediction labels directory not found: {model_pred_labels_dir}") |
|
|
return |
|
|
|
|
|
if not images_dir.exists(): |
|
|
print(f"Error: Images directory not found: {images_dir}") |
|
|
return |
|
|
|
|
|
process_labels( |
|
|
label_dir=manual_labels_dir, |
|
|
output_dir=manual_output_dir, |
|
|
label_type="Manual" |
|
|
) |
|
|
|
|
|
process_labels( |
|
|
label_dir=model_pred_labels_dir, |
|
|
output_dir=model_pred_output_dir, |
|
|
label_type="Model Prediction" |
|
|
) |
|
|
|
|
|
print("\n" + "="*80) |
|
|
print("FAT FILTERING COMPLETE") |
|
|
print("="*80) |
|
|
print(f"Results saved to:") |
|
|
print(f" - {manual_output_dir} (manual labels with fat filtering)") |
|
|
print(f" - {model_pred_output_dir} (model predictions with fat filtering)") |
|
|
print(f"\nFat filtering details:") |
|
|
print(f" - Threshold: HU < {fat_hu_thresh}") |
|
|
print(f" - Fat label: {fat_label}") |
|
|
print(f" - Original muscle labels preserved (1-9)") |
|
|
print(f" - Fat voxels labeled as {fat_label}") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|