|
|
|
|
|
""" |
|
|
Pearson correlation analysis for muscle fat vs Cobb angles |
|
|
""" |
|
|
|
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
from scipy.stats import pearsonr |
|
|
from pathlib import Path |
|
|
|
|
|
dev_fat_file = "../fatty_data/dev_fat.csv" |
|
|
dev_cobb_file = "../cobb_angles/dev_cobb.csv" |
|
|
dev_output_dir = "../pearson_correlation/dev_cobb_corr" |
|
|
|
|
|
|
|
|
dev_model_pred_fat_file = "../fatty_data/model_pred_dev.csv" |
|
|
dev_model_pred_output_dir = "../pearson_correlation/dev_model_cobb_corr" |
|
|
|
|
|
test_fat_file = "../fatty_data/test_fat.csv" |
|
|
test_cobb_file = "../cobb_angles/test_cobb.csv" |
|
|
test_output_dir = "../pearson_correlation/test_cobb_corr" |
|
|
|
|
|
muscle_names = [ |
|
|
"psoas", "quadratus_lumborum", "paraspinal", "latissimus_dorsi", |
|
|
"iliacus", "rectus_femoris", "vastus", "rhomboid", "trapezius" |
|
|
] |
|
|
|
|
|
def load_dev_data(): |
|
|
"""Load development dataset (100-120).""" |
|
|
print("Loading development dataset...") |
|
|
|
|
|
fat_df = pd.read_csv(dev_fat_file) |
|
|
print(f"Fatty data loaded: {len(fat_df)} cases") |
|
|
|
|
|
cobb_df = pd.read_csv(dev_cobb_file, sep='\t', header=None) |
|
|
print(f"Cobb data loaded: {len(cobb_df)} cases") |
|
|
|
|
|
fat_df = fat_df[fat_df['case_id'] != 'Mean ± SD'].copy() |
|
|
fat_df = fat_df[pd.to_numeric(fat_df['case_id'], errors='coerce').notna()] |
|
|
fat_df['case_id'] = fat_df['case_id'].astype(int) |
|
|
|
|
|
n_cases = min(len(cobb_df), len(fat_df)) |
|
|
print(f"Using {n_cases} cases for development correlation analysis") |
|
|
|
|
|
cobb_values = cobb_df.iloc[:n_cases].values |
|
|
cobb_aligned = np.mean(cobb_values, axis=1) |
|
|
fat_aligned = fat_df.iloc[:n_cases] |
|
|
|
|
|
print(f"Cobb angles range: {cobb_aligned.min():.1f} to {cobb_aligned.max():.1f}") |
|
|
|
|
|
return cobb_aligned, fat_aligned, n_cases |
|
|
|
|
|
def load_dev_model_pred_data(): |
|
|
"""Load development dataset with model predictions (100-120).""" |
|
|
print("Loading development dataset with model predictions...") |
|
|
|
|
|
fat_df = pd.read_csv(dev_model_pred_fat_file) |
|
|
print(f"Model prediction fatty data loaded: {len(fat_df)} cases") |
|
|
|
|
|
cobb_df = pd.read_csv(dev_cobb_file, sep='\t', header=None) |
|
|
print(f"Cobb data loaded: {len(cobb_df)} cases") |
|
|
|
|
|
fat_df = fat_df[fat_df['case_id'] != 'Mean ± SD'].copy() |
|
|
fat_df = fat_df[pd.to_numeric(fat_df['case_id'], errors='coerce').notna()] |
|
|
fat_df['case_id'] = fat_df['case_id'].astype(int) |
|
|
|
|
|
n_cases = min(len(cobb_df), len(fat_df)) |
|
|
print(f"Using {n_cases} cases for model prediction correlation analysis") |
|
|
|
|
|
cobb_values = cobb_df.iloc[:n_cases].values |
|
|
cobb_aligned = np.mean(cobb_values, axis=1) |
|
|
fat_aligned = fat_df.iloc[:n_cases] |
|
|
|
|
|
print(f"Cobb angles range: {cobb_aligned.min():.1f} to {cobb_aligned.max():.1f}") |
|
|
|
|
|
return cobb_aligned, fat_aligned, n_cases |
|
|
|
|
|
def load_test_data(): |
|
|
"""Load test dataset (251-500).""" |
|
|
print("Loading test dataset...") |
|
|
|
|
|
fat_df = pd.read_csv(test_fat_file) |
|
|
print(f"Fatty data loaded: {len(fat_df)} cases") |
|
|
|
|
|
cobb_df = pd.read_csv(test_cobb_file, header=None, names=['cobb_angle']) |
|
|
print(f"Cobb data loaded: {len(cobb_df)} cases") |
|
|
|
|
|
fat_df = fat_df[fat_df['case_id'] != 'Mean ± SD'].copy() |
|
|
fat_df = fat_df[pd.to_numeric(fat_df['case_id'], errors='coerce').notna()] |
|
|
fat_df['case_id'] = fat_df['case_id'].astype(int) |
|
|
|
|
|
n_cases = min(len(cobb_df), len(fat_df)) |
|
|
print(f"Using {n_cases} cases for test correlation analysis") |
|
|
|
|
|
cobb_aligned = cobb_df.iloc[:n_cases]['cobb_angle'].values |
|
|
fat_aligned = fat_df.iloc[:n_cases] |
|
|
|
|
|
print(f"Cobb angles range: {cobb_aligned.min():.1f} to {cobb_aligned.max():.1f}") |
|
|
|
|
|
return cobb_aligned, fat_aligned, n_cases |
|
|
|
|
|
def calculate_correlations(cobb_angles, fat_data, dataset_name): |
|
|
"""Calculate Pearson correlations between Cobb angles and fatty percentages.""" |
|
|
|
|
|
print(f"\nCalculating correlations for {dataset_name} dataset...") |
|
|
results = [] |
|
|
|
|
|
for muscle in muscle_names: |
|
|
fat_col = f"{muscle}_fat_pct" |
|
|
|
|
|
if fat_col in fat_data.columns: |
|
|
fat_percentages = pd.to_numeric(fat_data[fat_col], errors='coerce').values |
|
|
valid_indices = ~np.isnan(fat_percentages) |
|
|
if not np.any(valid_indices): |
|
|
print(f"Warning: No valid data for {muscle}") |
|
|
continue |
|
|
|
|
|
cobb_filtered = cobb_angles[valid_indices] |
|
|
fat_filtered = fat_percentages[valid_indices] |
|
|
|
|
|
correlation, p_value = pearsonr(cobb_filtered, fat_filtered) |
|
|
|
|
|
results.append({ |
|
|
'Muscle': muscle, |
|
|
'Correlation': round(correlation, 4), |
|
|
'P_Value': round(p_value, 4), |
|
|
'N_Cases': len(cobb_filtered) |
|
|
}) |
|
|
|
|
|
print(f"{muscle}: r = {correlation:.4f}, p = {p_value:.4f}") |
|
|
else: |
|
|
print(f"Warning: Column {fat_col} not found in fatty data") |
|
|
|
|
|
return results |
|
|
|
|
|
def save_results(results, output_dir, dataset_name): |
|
|
"""Save correlation results to CSV.""" |
|
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
results_df = pd.DataFrame(results) |
|
|
output_file = output_dir / "fatty_atrophy_thoracic_correlations.csv" |
|
|
results_df.to_csv(output_file, index=False) |
|
|
print(f"\nResults saved to: {output_file}") |
|
|
|
|
|
print(f"\n=== {dataset_name.upper()} CORRELATION ANALYSIS SUMMARY ===") |
|
|
print(f"Total muscles analyzed: {len(results)}") |
|
|
print(f"Cases used: {results[0]['N_Cases'] if results else 'N/A'}") |
|
|
|
|
|
if results: |
|
|
strongest_positive = max(results, key=lambda x: x['Correlation']) |
|
|
strongest_negative = min(results, key=lambda x: x['Correlation']) |
|
|
|
|
|
print(f"\nStrongest positive correlation: {strongest_positive['Muscle']} (r = {strongest_positive['Correlation']})") |
|
|
print(f"Strongest negative correlation: {strongest_negative['Muscle']} (r = {strongest_negative['Correlation']})") |
|
|
|
|
|
significant = [r for r in results if r['P_Value'] < 0.05] |
|
|
print(f"Significant correlations (p < 0.05): {len(significant)}/{len(results)}") |
|
|
|
|
|
def main(): |
|
|
"""Main function to run correlation analysis for both datasets.""" |
|
|
print("=== PEARSON CORRELATION ANALYSIS ===") |
|
|
print("Cobb angles vs Fatty percentages") |
|
|
print("="*50) |
|
|
|
|
|
try: |
|
|
print("\n" + "="*50) |
|
|
print("DEVELOPMENT DATASET ANALYSIS (100-120) - MANUAL LABELS") |
|
|
print("="*50) |
|
|
cobb_dev, fat_dev, n_dev = load_dev_data() |
|
|
results_dev = calculate_correlations(cobb_dev, fat_dev, "Development") |
|
|
save_results(results_dev, Path(dev_output_dir), "Development") |
|
|
|
|
|
print("\n" + "="*50) |
|
|
print("DEVELOPMENT DATASET ANALYSIS (100-120) - MODEL PREDICTIONS") |
|
|
print("="*50) |
|
|
cobb_dev_model, fat_dev_model, n_dev_model = load_dev_model_pred_data() |
|
|
results_dev_model = calculate_correlations(cobb_dev_model, fat_dev_model, "Development Model Predictions") |
|
|
save_results(results_dev_model, Path(dev_model_pred_output_dir), "Development Model Predictions") |
|
|
|
|
|
print("\n" + "="*50) |
|
|
print("TEST DATASET ANALYSIS (251-500)") |
|
|
print("="*50) |
|
|
cobb_test, fat_test, n_test = load_test_data() |
|
|
results_test = calculate_correlations(cobb_test, fat_test, "Test") |
|
|
save_results(results_test, Path(test_output_dir), "Test") |
|
|
|
|
|
print("\n" + "="*50) |
|
|
print("ANALYSIS COMPLETE") |
|
|
print("="*50) |
|
|
print(f"Development dataset (manual): {n_dev} cases analyzed") |
|
|
print(f"Development dataset (model): {n_dev_model} cases analyzed") |
|
|
print(f"Test dataset: {n_test} cases analyzed") |
|
|
print(f"Results saved to:") |
|
|
print(f" - {dev_output_dir}/fatty_atrophy_thoracic_correlations.csv") |
|
|
print(f" - {dev_model_pred_output_dir}/fatty_atrophy_thoracic_correlations.csv") |
|
|
print(f" - {test_output_dir}/fatty_atrophy_thoracic_correlations.csv") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error during analysis: {e}") |
|
|
return False |
|
|
|
|
|
return True |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|