onlineinfoh commited on
Commit
3dfe48c
·
1 Parent(s): ed52846

add model weights and logs

Browse files
model_training/nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/.ipynb_checkpoints/progress-checkpoint.png ADDED

Git LFS Details

  • SHA256: 413c7f45425db97ff458e9f7049a0972ea5b82a9abc9dc8e69cbbf31ed043c2a
  • Pointer size: 131 Bytes
  • Size of remote file: 481 kB
model_training/nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/.ipynb_checkpoints/training_log_2025_10_10_01_01_57-checkpoint.txt ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #######################################################################
3
+ Please cite the following paper when using nnU-Net:
4
+ Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
5
+ #######################################################################
6
+
7
+ 2025-10-10 01:01:58.822350: Using torch.compile...
8
+ 2025-10-10 01:01:59.568636: do_dummy_2d_data_aug: False
9
+
10
+ This is the configuration used by this training:
11
+ Configuration name: 3d_fullres
12
+ {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 128], 'median_image_size_in_voxels': [391.0, 512.0, 512.0], 'spacing': [2.5, 0.87109375, 0.87109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}
13
+
14
+ These are the global plan.json settings:
15
+ {'dataset_name': 'Dataset101_FinalSet', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [2.5, 0.87109375, 0.87109375], 'original_median_shape_after_transp': [391, 512, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1567.0, 'mean': 30.700855255126953, 'median': 39.0, 'min': -1024.0, 'percentile_00_5': -95.0, 'percentile_99_5': 116.0, 'std': 39.6912956237793}}}
16
+
17
+ 2025-10-10 01:02:00.254874: Unable to plot network architecture: nnUNet_compile is enabled!
18
+ 2025-10-10 01:02:00.262840:
19
+ 2025-10-10 01:02:00.263093: Epoch 0
20
+ 2025-10-10 01:02:00.263730: Current learning rate: 0.01
21
+ 2025-10-10 01:02:52.677278: train_loss 0.4693
22
+ 2025-10-10 01:02:52.677473: val_loss 0.3563
23
+ 2025-10-10 01:02:52.677547: Pseudo dice [np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0)]
24
+ 2025-10-10 01:02:52.677599: Epoch time: 52.42 s
25
+ 2025-10-10 01:02:52.677628: Yayy! New best EMA pseudo Dice: 0.0
26
+ 2025-10-10 01:02:53.382452:
27
+ 2025-10-10 01:02:53.382595: Epoch 1
28
+ 2025-10-10 01:02:53.382679: Current learning rate: 0.00999
29
+ 2025-10-10 01:03:05.693481: train_loss 0.341
30
+ 2025-10-10 01:03:05.693637: val_loss 0.3249
31
+ 2025-10-10 01:03:05.693710: Pseudo dice [np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0)]
32
+ 2025-10-10 01:03:05.693762: Epoch time: 12.31 s
33
+ 2025-10-10 01:03:06.324357:
34
+ 2025-10-10 01:03:06.324465: Epoch 2
35
+ 2025-10-10 01:03:06.324546: Current learning rate: 0.00998
36
+ 2025-10-10 01:03:18.689049: train_loss 0.3171
37
+ 2025-10-10 01:03:18.689218: val_loss 0.3228
38
+ 2025-10-10 01:03:18.689289: Pseudo dice [np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0)]
39
+ 2025-10-10 01:03:18.689340: Epoch time: 12.37 s
40
+ 2025-10-10 01:03:19.348528:
41
+ 2025-10-10 01:03:19.348741: Epoch 3
42
+ 2025-10-10 01:03:19.348851: Current learning rate: 0.00997
43
+ 2025-10-10 01:03:31.769313: train_loss 0.3046
44
+ 2025-10-10 01:03:31.769485: val_loss 0.2864
45
+ 2025-10-10 01:03:31.769561: Pseudo dice [np.float32(0.0), np.float32(0.0), np.float32(0.0052), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0)]
46
+ 2025-10-10 01:03:31.769661: Epoch time: 12.42 s
47
+ 2025-10-10 01:03:31.769700: Yayy! New best EMA pseudo Dice: 9.999999747378752e-05
48
+ 2025-10-10 01:03:32.571169:
49
+ 2025-10-10 01:03:32.571304: Epoch 4
50
+ 2025-10-10 01:03:32.571398: Current learning rate: 0.00996
51
+ 2025-10-10 01:03:45.008398: train_loss 0.2734
52
+ 2025-10-10 01:03:45.008551: val_loss 0.2431
53
+ 2025-10-10 01:03:45.008620: Pseudo dice [np.float32(0.0), np.float32(0.0), np.float32(0.5296), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0)]
54
+ 2025-10-10 01:03:45.008673: Epoch time: 12.44 s
55
+ 2025-10-10 01:03:45.008704: Yayy! New best EMA pseudo Dice: 0.005900000222027302
56
+ 2025-10-10 01:03:45.816751:
57
+ 2025-10-10 01:03:45.816903: Epoch 5
58
+ 2025-10-10 01:03:45.816992: Current learning rate: 0.00995
59
+ 2025-10-10 01:03:58.279692: train_loss 0.2456
60
+ 2025-10-10 01:03:58.279913: val_loss 0.2106
61
+ 2025-10-10 01:03:58.280334: Pseudo dice [np.float32(0.2983), np.float32(0.0), np.float32(0.629), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0), np.float32(0.0006)]
62
+ 2025-10-10 01:03:58.280401: Epoch time: 12.46 s
63
+ 2025-10-10 01:03:58.280439: Yayy! New best EMA pseudo Dice: 0.015699999406933784
64
+ 2025-10-10 01:03:59.066660:
65
+ 2025-10-10 01:03:59.066812: Epoch 6
66
+ 2025-10-10 01:03:59.066964: Current learning rate: 0.00995
67
+ 2025-10-10 01:04:11.536456: train_loss 0.2018
68
+ 2025-10-10 01:04:11.536756: val_loss 0.1539
69
+ 2025-10-10 01:04:11.536861: Pseudo dice [np.float32(0.5945), np.float32(0.0), np.float32(0.6986), np.float32(0.0), np.float32(0.0), np.float32(0.0011), np.float32(0.0), np.float32(0.0), np.float32(0.3696)]
70
+ 2025-10-10 01:04:11.536930: Epoch time: 12.47 s
71
+ 2025-10-10 01:04:11.536964: Yayy! New best EMA pseudo Dice: 0.032600000500679016
72
+ 2025-10-10 01:04:12.321670:
73
+ 2025-10-10 01:04:12.321822: Epoch 7
74
+ 2025-10-10 01:04:12.321927: Current learning rate: 0.00994
75
+ 2025-10-10 01:04:24.823251: train_loss 0.1426
76
+ 2025-10-10 01:04:24.823452: val_loss 0.122
77
+ 2025-10-10 01:04:24.823526: Pseudo dice [np.float32(0.6552), np.float32(0.0), np.float32(0.684), np.float32(0.0), np.float32(0.1185), np.float32(0.13), np.float32(0.0), np.float32(0.0), np.float32(0.5228)]
78
+ 2025-10-10 01:04:24.823584: Epoch time: 12.5 s
79
+ 2025-10-10 01:04:24.823619: Yayy! New best EMA pseudo Dice: 0.052799999713897705
80
+ 2025-10-10 01:04:25.620759:
81
+ 2025-10-10 01:04:25.620902: Epoch 8
82
+ 2025-10-10 01:04:25.620995: Current learning rate: 0.00993
83
+ 2025-10-10 01:04:38.122212: train_loss 0.0939
84
+ 2025-10-10 01:04:38.122365: val_loss 0.0189
85
+ 2025-10-10 01:04:38.122432: Pseudo dice [np.float32(0.7589), np.float32(0.0), np.float32(0.792), np.float32(0.0), np.float32(0.576), np.float32(0.0743), np.float32(0.0), np.float32(0.0), np.float32(0.598)]
86
+ 2025-10-10 01:04:38.122488: Epoch time: 12.5 s
87
+ 2025-10-10 01:04:38.122518: Yayy! New best EMA pseudo Dice: 0.07859999686479568
88
+ 2025-10-10 01:04:38.935607:
89
+ 2025-10-10 01:04:38.935712: Epoch 9
90
+ 2025-10-10 01:04:38.935801: Current learning rate: 0.00992
91
+ 2025-10-10 01:04:51.429118: train_loss 0.0677
92
+ 2025-10-10 01:04:51.429311: val_loss 0.0416
93
+ 2025-10-10 01:04:51.429384: Pseudo dice [np.float32(0.7192), np.float32(0.0), np.float32(0.757), np.float32(0.0), np.float32(0.4609), np.float32(0.3806), np.float32(0.0532), np.float32(0.0118), np.float32(0.5489)]
94
+ 2025-10-10 01:04:51.429441: Epoch time: 12.49 s
95
+ 2025-10-10 01:04:51.429474: Yayy! New best EMA pseudo Dice: 0.10329999774694443
96
+ 2025-10-10 01:04:52.220202:
97
+ 2025-10-10 01:04:52.220456: Epoch 10
98
+ 2025-10-10 01:04:52.220555: Current learning rate: 0.00991
99
+ 2025-10-10 01:05:04.743607: train_loss 0.037
100
+ 2025-10-10 01:05:04.743788: val_loss -0.0382
101
+ 2025-10-10 01:05:04.744165: Pseudo dice [np.float32(0.777), np.float32(0.0), np.float32(0.7957), np.float32(0.0763), np.float32(0.6634), np.float32(0.4366), np.float32(0.0901), np.float32(0.0009), np.float32(0.5299)]
102
+ 2025-10-10 01:05:04.744234: Epoch time: 12.52 s
103
+ 2025-10-10 01:05:04.744266: Yayy! New best EMA pseudo Dice: 0.13040000200271606
104
+ 2025-10-10 01:05:05.533273:
105
+ 2025-10-10 01:05:05.533397: Epoch 11
106
+ 2025-10-10 01:05:05.533483: Current learning rate: 0.0099
107
+ 2025-10-10 01:05:18.056954: train_loss 0.0095
108
+ 2025-10-10 01:05:18.057138: val_loss -0.0461
109
+ 2025-10-10 01:05:18.057213: Pseudo dice [np.float32(0.7797), np.float32(0.0), np.float32(0.8266), np.float32(0.31), np.float32(0.7487), np.float32(0.3754), np.float32(0.4726), np.float32(0.1103), np.float32(0.6531)]
110
+ 2025-10-10 01:05:18.057270: Epoch time: 12.52 s
111
+ 2025-10-10 01:05:18.057301: Yayy! New best EMA pseudo Dice: 0.164900004863739
112
+ 2025-10-10 01:05:19.283666:
113
+ 2025-10-10 01:05:19.283898: Epoch 12
114
+ 2025-10-10 01:05:19.283999: Current learning rate: 0.00989
115
+ 2025-10-10 01:05:31.667317: train_loss -0.0153
116
+ 2025-10-10 01:05:31.667476: val_loss -0.076
117
+ 2025-10-10 01:05:31.667547: Pseudo dice [np.float32(0.784), np.float32(0.0), np.float32(0.8209), np.float32(0.2568), np.float32(0.6728), np.float32(0.5426), np.float32(0.6018), np.float32(0.1444), np.float32(0.6122)]
118
+ 2025-10-10 01:05:31.667600: Epoch time: 12.38 s
119
+ 2025-10-10 01:05:31.667629: Yayy! New best EMA pseudo Dice: 0.19769999384880066
120
+ 2025-10-10 01:05:32.464355:
121
+ 2025-10-10 01:05:32.464503: Epoch 13
122
+ 2025-10-10 01:05:32.464578: Current learning rate: 0.00988
123
+ 2025-10-10 01:05:44.843656: train_loss -0.0454
124
+ 2025-10-10 01:05:44.843891: val_loss -0.0821
125
+ 2025-10-10 01:05:44.843974: Pseudo dice [np.float32(0.721), np.float32(0.0), np.float32(0.7782), np.float32(0.4168), np.float32(0.6777), np.float32(0.5887), np.float32(0.5534), np.float32(0.0746), np.float32(0.6663)]
126
+ 2025-10-10 01:05:44.844036: Epoch time: 12.38 s
127
+ 2025-10-10 01:05:44.844068: Yayy! New best EMA pseudo Dice: 0.22769999504089355
128
+ 2025-10-10 01:05:45.645461:
129
+ 2025-10-10 01:05:45.645612: Epoch 14
130
+ 2025-10-10 01:05:45.645688: Current learning rate: 0.00987
131
+ 2025-10-10 01:05:58.043095: train_loss -0.077
132
+ 2025-10-10 01:05:58.043283: val_loss -0.1018
133
+ 2025-10-10 01:05:58.043360: Pseudo dice [np.float32(0.7999), np.float32(0.0135), np.float32(0.8192), np.float32(0.4498), np.float32(0.7035), np.float32(0.4472), np.float32(0.458), np.float32(0.3218), np.float32(0.6268)]
134
+ 2025-10-10 01:05:58.043417: Epoch time: 12.4 s
135
+ 2025-10-10 01:05:58.043450: Yayy! New best EMA pseudo Dice: 0.2563999891281128
136
+ 2025-10-10 01:05:58.857145:
137
+ 2025-10-10 01:05:58.857291: Epoch 15
138
+ 2025-10-10 01:05:58.857357: Current learning rate: 0.00986
139
+ 2025-10-10 01:06:11.235147: train_loss -0.11
140
+ 2025-10-10 01:06:11.235322: val_loss -0.1833
141
+ 2025-10-10 01:06:11.235394: Pseudo dice [np.float32(0.8483), np.float32(0.57), np.float32(0.8643), np.float32(0.3281), np.float32(0.7543), np.float32(0.7414), np.float32(0.6258), np.float32(0.3824), np.float32(0.6234)]
142
+ 2025-10-10 01:06:11.235450: Epoch time: 12.38 s
143
+ 2025-10-10 01:06:11.235480: Yayy! New best EMA pseudo Dice: 0.2946000099182129
144
+ 2025-10-10 01:06:12.051040:
145
+ 2025-10-10 01:06:12.051180: Epoch 16
146
+ 2025-10-10 01:06:12.051282: Current learning rate: 0.00986
model_training/nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/checkpoint_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceb8d0fbcc7ceb2848c0e77e2667b08b7c37052ed77615738f15147a260c37e6
3
+ size 249317439
model_training/nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/checkpoint_latest.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02d5bed847706905fbeb7f778b68159f314e3c121ff1b0eac4e2e82f158a07d7
3
+ size 249320315
model_training/nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/debug.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 128], 'median_image_size_in_voxels': [391.0, 512.0, 512.0], 'spacing': [2.5, 0.87109375, 0.87109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 90800,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0xf2e431454ee0>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader.nnUNetDataLoader object at 0xf2e431454d90>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "None",
12
+ "dataloader_val": "<batchgenerators.dataloading.nondet_multi_threaded_augmenter.NonDetMultiThreadedAugmenter object at 0xf2e431454f70>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader.nnUNetDataLoader object at 0xf2e431454df0>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "None",
16
+ "dataset_json": "{'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'class_1': 1, 'class_2': 2, 'class_3': 3, 'class_4': 4, 'class_5': 5, 'class_6': 6, 'class_7': 7, 'class_8': 8, 'class_9': 9}, 'numTraining': 21, 'file_ending': '.nii.gz'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "enable_deep_supervision": "True",
20
+ "fold": "all",
21
+ "folder_with_segs_from_previous_stage": "None",
22
+ "gpu_name": "NVIDIA GH200 480GB",
23
+ "grad_scaler": "<torch.amp.grad_scaler.GradScaler object at 0xf2e433eb10c0>",
24
+ "hostname": "192-222-57-227",
25
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
26
+ "initial_lr": "0.01",
27
+ "is_cascaded": "False",
28
+ "is_ddp": "False",
29
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0xf2e433eb0f70>",
30
+ "local_rank": "0",
31
+ "log_file": "nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/training_log_2025_10_10_01_01_57.txt",
32
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0xf2e433eb0fa0>",
33
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): OptimizedModule(\n (_orig_mod): MemoryEfficientSoftDiceLoss()\n )\n )\n)",
34
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0xf2e433d31090>",
35
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset101_FinalSet', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [2.5, 0.87109375, 0.87109375], 'original_median_shape_after_transp': [391, 512, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 12, 'patch_size': [512, 512], 'median_image_size_in_voxels': [512.0, 512.0], 'spacing': [0.87109375, 0.87109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [216, 193, 193], 'spacing': [4.515278086673537, 2.310432649036382, 2.310432649036382], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 128], 'median_image_size_in_voxels': [391.0, 512.0, 512.0], 'spacing': [2.5, 0.87109375, 0.87109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1567.0, 'mean': 30.700855255126953, 'median': 39.0, 'min': -1024.0, 'percentile_00_5': -95.0, 'percentile_99_5': 116.0, 'std': 39.6912956237793}}}, 'configuration': '3d_fullres', 'fold': 'all', 'dataset_json': {'channel_names': {'0': 'CT'}, 'labels': {'background': 0, 'class_1': 1, 'class_2': 2, 'class_3': 3, 'class_4': 4, 'class_5': 5, 'class_6': 6, 'class_7': 7, 'class_8': 8, 'class_9': 9}, 'numTraining': 21, 'file_ending': '.nii.gz'}, 'device': device(type='cuda')}",
36
+ "network": "OptimizedModule",
37
+ "num_epochs": "1000",
38
+ "num_input_channels": "1",
39
+ "num_iterations_per_epoch": "250",
40
+ "num_val_iterations_per_epoch": "50",
41
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
42
+ "output_folder": "nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all",
43
+ "output_folder_base": "nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres",
44
+ "oversample_foreground_percent": "0.33",
45
+ "plans_manager": "{'dataset_name': 'Dataset101_FinalSet', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [2.5, 0.87109375, 0.87109375], 'original_median_shape_after_transp': [391, 512, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 12, 'patch_size': [512, 512], 'median_image_size_in_voxels': [512.0, 512.0], 'spacing': [0.87109375, 0.87109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 512, 512, 512, 512], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_lowres': {'data_identifier': 'nnUNetPlans_3d_lowres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [216, 193, 193], 'spacing': [4.515278086673537, 2.310432649036382, 2.310432649036382], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False, 'next_stage': '3d_cascade_fullres'}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 128, 128], 'median_image_size_in_voxels': [391.0, 512.0, 512.0], 'spacing': [2.5, 0.87109375, 0.87109375], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 6, 'features_per_stage': [32, 64, 128, 256, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}, '3d_cascade_fullres': {'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1567.0, 'mean': 30.700855255126953, 'median': 39.0, 'min': -1024.0, 'percentile_00_5': -95.0, 'percentile_99_5': 116.0, 'std': 39.6912956237793}}}",
46
+ "preprocessed_dataset_folder": "nnUNet_preprocessed/Dataset101_FinalSet/nnUNetPlans_3d_fullres",
47
+ "preprocessed_dataset_folder_base": "nnUNet_preprocessed/Dataset101_FinalSet",
48
+ "probabilistic_oversampling": "False",
49
+ "save_every": "50",
50
+ "torch_version": "2.7.1+cu128",
51
+ "was_initialized": "True",
52
+ "weight_decay": "3e-05"
53
+ }
model_training/nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/progress.png ADDED

Git LFS Details

  • SHA256: 4396e7f9db1e086dc297fa27df34a2f413f9bedc6d3d29770347b619dc612152
  • Pointer size: 131 Bytes
  • Size of remote file: 551 kB
model_training/nnUNet_results/Dataset101_FinalSet/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_all/training_log_2025_10_10_01_01_57.txt ADDED
The diff for this file is too large to render. See raw diff