#!/usr/bin/env python3 """ Create correlation plots for muscle fat vs Cobb angles """ import pandas as pd # type: ignore import numpy as np # type: ignore import matplotlib.pyplot as plt # type: ignore import seaborn as sns # type: ignore from pathlib import Path from scipy.stats import pearsonr # type: ignore import argparse plt.style.use('seaborn-v0_8') sns.set_palette("husl") dev_correlation_csv = Path("../pearson_correlation/dev_cobb_corr/fatty_atrophy_thoracic_correlations.csv") test_correlation_csv = Path("../pearson_correlation/test_cobb_corr/fatty_atrophy_thoracic_correlations.csv") dev_fatty_csv = Path("../fatty_data/dev_fat.csv") test_fatty_csv = Path("../fatty_data/test_fat.csv") dev_cobb_csv = Path("../cobb_angles/dev_cobb.csv") test_cobb_csv = Path("../cobb_angles/test_cobb.csv") def load_correlation_data(dataset="dev"): """Load the correlation data from the CSV file.""" if dataset == "dev": csv_path = dev_correlation_csv else: csv_path = test_correlation_csv if not csv_path.exists(): print(f"Error: Correlation file not found at {csv_path}") return None df = pd.read_csv(csv_path) print(f"Loaded correlation data: {len(df)} muscles") return df def create_dev_correlation_scatter(df): """Create a scatter plot for development dataset (100-120).""" fatty_df = pd.read_csv(dev_fatty_csv) manual_cobb_df = pd.read_csv(dev_cobb_csv, sep='\t', header=None) # type: ignore thor_avg = np.round(manual_cobb_df.mean(axis=1)).astype(int) fatty_manual = fatty_df[fatty_df['case_id'].str.isdigit()].copy() fatty_manual['case_id'] = pd.to_numeric(fatty_manual['case_id']) # type: ignore fig, ax = plt.subplots(figsize=(14, 8)) # type: ignore fig.patch.set_facecolor('#f8f9fa') ax.set_facecolor('#ffffff') muscle_cols = [col for col in fatty_manual.columns if col.endswith('_fat_pct')] trapezius_col = None for col in muscle_cols: if 'trapezius' in col.lower(): trapezius_col = col break if trapezius_col is None: print("Trapezius muscle not found in the data") return None, None colors = ['#1f77b4'] col = trapezius_col muscle_data = pd.to_numeric(fatty_manual[col], errors='coerce').values # type: ignore cobb_data = thor_avg[:len(muscle_data)] valid_mask = ~(np.isnan(muscle_data) | np.isnan(cobb_data)) # type: ignore muscle_clean = muscle_data[valid_mask] cobb_clean = cobb_data[valid_mask] if len(muscle_clean) > 1: muscle_name = col.replace('_fat_pct', '').replace('_', ' ').title() ax.scatter(muscle_clean, cobb_clean, color=colors[0], # type: ignore label=muscle_name, s=60, alpha=0.7, edgecolors='black', linewidth=0.5) z = np.polyfit(muscle_clean, cobb_clean, 1) p = np.poly1d(z) ax.plot(muscle_clean, p(muscle_clean), color=colors[0], # type: ignore linestyle='-', alpha=0.8, linewidth=2) muscle_name = col.replace('_fat_pct', '') correlation_row = df[df['Muscle'] == muscle_name] if not correlation_row.empty: r = correlation_row['Correlation'].iloc[0] p_val = correlation_row['P_Value'].iloc[0] else: r, p_val = pearsonr(muscle_clean, cobb_clean) # type: ignore ax.set_xlabel('Fat Percentage (%)', fontsize=12, fontweight='bold') ax.set_ylabel('Thoracic Cobb Angle (deg)', fontsize=12, fontweight='bold') ax.set_title('Trapezius Muscle Fat Percentage vs Thoracic Cobb Angle\n(n = 21 cases)', fontsize=14, fontweight='bold', pad=20) ax.grid(True, alpha=0.3, color='gray', linestyle='-', linewidth=0.5) for spine in ax.spines.values(): spine.set_edgecolor('#333333') spine.set_linewidth(1.5) plt.tight_layout() output_path = "../pearson_correlation/dev_cobb_corr/muscle_correlation_scatter.png" plt.savefig(output_path, dpi=300, bbox_inches='tight', facecolor='white', edgecolor='none') print(f"Saved correlation scatter plot to: {output_path}") return fig, ax def create_test_correlation_scatter(df): """Create a scatter plot for test dataset (251-500).""" fatty_df = pd.read_csv(test_fatty_csv) cobb_df = pd.read_csv(test_cobb_csv, header=None, names=['cobb_angle']) # type: ignore fatty_df = fatty_df[fatty_df['case_id'] != 'Mean ± SD'].copy() fatty_df = fatty_df[pd.to_numeric(fatty_df['case_id'], errors='coerce').notna()] # type: ignore fatty_df['case_id'] = fatty_df['case_id'].astype(int) n_cases = min(len(cobb_df), len(fatty_df)) print(f"Using {n_cases} cases for test correlation analysis") cobb_values = cobb_df.iloc[:n_cases, 0].values # Get the first column as numpy array fat_values = fatty_df.iloc[:n_cases] trapezius_col = None for col in fat_values.columns: if 'trapezius' in col.lower() and col.endswith('_fat_pct'): trapezius_col = col break if trapezius_col is None: print("Trapezius muscle not found in the test data") return None, None trapezius_data = pd.to_numeric(fat_values[trapezius_col], errors='coerce').values # type: ignore cobb_data = cobb_values valid_mask = ~(np.isnan(trapezius_data) | np.isnan(cobb_data)) # type: ignore trapezius_clean = trapezius_data[valid_mask] cobb_clean = cobb_data[valid_mask] print(f"Valid data points: {len(trapezius_clean)}") print(f"Trapezius range: {trapezius_clean.min():.2f} to {trapezius_clean.max():.2f}") print(f"Cobb range: {cobb_clean.min():.1f} to {cobb_clean.max():.1f}") fig, ax = plt.subplots(figsize=(14, 8)) # type: ignore fig.patch.set_facecolor('#f8f9fa') ax.set_facecolor('#ffffff') ax.scatter(trapezius_clean, cobb_clean, color='#1f77b4', s=60, alpha=0.7, # type: ignore edgecolors='black', linewidth=0.5) z = np.polyfit(trapezius_clean, cobb_clean, 1) p = np.poly1d(z) ax.plot(trapezius_clean, p(trapezius_clean), color='#1f77b4', # type: ignore linestyle='-', alpha=0.8, linewidth=2) muscle_name = trapezius_col.replace('_fat_pct', '') correlation_row = df[df['Muscle'] == muscle_name] if not correlation_row.empty: r = correlation_row['Correlation'].iloc[0] p_val = correlation_row['P_Value'].iloc[0] else: r, p_val = pearsonr(trapezius_clean, cobb_clean) # type: ignore ax.set_xlabel('Trapezius Fat Percentage (%)', fontsize=12, fontweight='bold') ax.set_ylabel('Thoracic Cobb Angle (deg)', fontsize=12, fontweight='bold') ax.set_title(f'Trapezius Muscle Fat Percentage vs Thoracic Cobb Angle\n(n = {len(trapezius_clean)} cases)', fontsize=14, fontweight='bold', pad=20) ax.grid(True, alpha=0.3, color='gray', linestyle='-', linewidth=0.5) for spine in ax.spines.values(): spine.set_edgecolor('#333333') spine.set_linewidth(1.5) plt.tight_layout() output_path = "../pearson_correlation/test_cobb_corr/trapezius_fat_vs_thoracic_cobb_250_cases.png" plt.savefig(output_path, dpi=300, bbox_inches='tight', facecolor='white', edgecolor='none') print(f"Saved test correlation plot to: {output_path}") return fig, ax def create_aggregate_plot(df, dataset="dev"): """Create a 3x3 aggregate plot showing all 9 muscles.""" if dataset == "dev": fatty_df = pd.read_csv(dev_fatty_csv) cobb_df = pd.read_csv(dev_cobb_csv, sep='\t', header=None) # type: ignore cobb_data = np.round(cobb_df.mean(axis=1)).astype(int) n_cases = 21 else: fatty_df = pd.read_csv(test_fatty_csv) cobb_df = pd.read_csv(test_cobb_csv, header=None, names=['cobb_angle']) # type: ignore cobb_data = cobb_df.iloc[:, 0].values n_cases = 250 fatty_df = fatty_df[fatty_df['case_id'] != 'Mean ± SD'].copy() fatty_df = fatty_df[pd.to_numeric(fatty_df['case_id'], errors='coerce').notna()] # type: ignore fatty_df['case_id'] = fatty_df['case_id'].astype(int) muscle_cols = [col for col in fatty_df.columns if col.endswith('_fat_pct')] fig, axes = plt.subplots(3, 3, figsize=(18, 15)) # type: ignore fig.patch.set_facecolor('#f8f9fa') axes_flat = axes.flatten() colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22'] for i, col in enumerate(muscle_cols): if i >= 9: break ax = axes_flat[i] ax.set_facecolor('#ffffff') muscle_data = pd.to_numeric(fatty_df[col], errors='coerce').values # type: ignore cobb_clean = cobb_data[:len(muscle_data)] valid_mask = ~(np.isnan(muscle_data) | np.isnan(cobb_clean)) # type: ignore muscle_clean = muscle_data[valid_mask] cobb_clean = cobb_clean[valid_mask] if len(muscle_clean) > 1: muscle_name = col.replace('_fat_pct', '').replace('_', ' ').title() ax.scatter(muscle_clean, cobb_clean, color=colors[i], # type: ignore s=40, alpha=0.7, edgecolors='black', linewidth=0.3) if len(muscle_clean) > 1: z = np.polyfit(muscle_clean, cobb_clean, 1) p = np.poly1d(z) ax.plot(muscle_clean, p(muscle_clean), color=colors[i], # type: ignore linestyle='-', alpha=0.8, linewidth=1.5) muscle_name_csv = col.replace('_fat_pct', '') correlation_row = df[df['Muscle'] == muscle_name_csv] if not correlation_row.empty: r = correlation_row['Correlation'].iloc[0] p_val = correlation_row['P_Value'].iloc[0] else: r, p_val = pearsonr(muscle_clean, cobb_clean) # type: ignore ax.set_title(f'{muscle_name}\nr = {r:.3f}', fontsize=10, fontweight='bold') ax.set_xlabel('Fat %', fontsize=8) ax.set_ylabel('Cobb Angle (deg)', fontsize=8) ax.grid(True, alpha=0.3, linewidth=0.5) for spine in ax.spines.values(): spine.set_edgecolor('#333333') spine.set_linewidth(0.8) for i in range(len(muscle_cols), 9): axes_flat[i].set_visible(False) plt.tight_layout() output_path = f"../pearson_correlation/{dataset}_cobb_corr/aggregate_muscle_correlations.png" plt.savefig(output_path, dpi=300, bbox_inches='tight', facecolor='white', edgecolor='none') print(f"Saved aggregate plot to: {output_path}") return fig, axes def main(): """Main function to create correlation plots.""" parser = argparse.ArgumentParser(description='Create muscle correlation plots') parser.add_argument('--dataset', choices=['dev', 'test', 'both'], default='both', help='Which dataset to plot (dev, test, or both)') parser.add_argument('--plot-type', choices=['trapezius', 'aggregate', 'both'], default='both', help='Which plot type to create (trapezius, aggregate, or both)') args = parser.parse_args() print("=== MUSCLE CORRELATION VISUALIZATION ===") if args.dataset in ['dev', 'both']: print("\n=== DEVELOPMENT DATASET (100-120) ===") df_dev = load_correlation_data("dev") if df_dev is not None: if args.plot_type in ['trapezius', 'both']: fig1, ax1 = create_dev_correlation_scatter(df_dev) if fig1 is not None: print("Development trapezius plot created successfully") plt.show() if args.plot_type in ['aggregate', 'both']: fig2, ax2 = create_aggregate_plot(df_dev, "dev") if fig2 is not None: print("Development aggregate plot created successfully") plt.show() if args.dataset in ['test', 'both']: print("\n=== TEST DATASET (251-500) ===") df_test = load_correlation_data("test") if df_test is not None: if args.plot_type in ['trapezius', 'both']: fig3, ax3 = create_test_correlation_scatter(df_test) if fig3 is not None: print("Test trapezius plot created successfully") plt.show() if args.plot_type in ['aggregate', 'both']: fig4, ax4 = create_aggregate_plot(df_test, "test") if fig4 is not None: print("Test aggregate plot created successfully") plt.show() print("\n=== VISUALIZATION COMPLETE ===") print("Generated Pearson correlation scatter plots for muscle fat percentages vs thoracic Cobb angles") if __name__ == "__main__": main()