#!/usr/bin/env python3 """ saggital_ICC.py Recompute ICC analysis for sagittal measurements only using the 2 CSV files. Each column represents data from one rater, comparing all 5 columns for ICC. """ import pandas as pd # type: ignore import numpy as np # type: ignore import matplotlib.pyplot as plt # type: ignore from scipy import stats # type: ignore from scipy.stats import f # type: ignore import argparse import sys from pathlib import Path ID_LIKE = {"case", "case_id", "id", "subject", "subject_id", "uid", "study", "study_id"} def detect_rater_columns(df: pd.DataFrame, min_unique: int = 3): """Detect rater columns.""" rater_like = [c for c in df.columns if str(c).strip().lower().startswith("rater")] if len(rater_like) >= 2: return rater_like num_cols = df.select_dtypes(include=[np.number]).columns.tolist() keep = [] for c in num_cols: cl = str(c).strip().lower() if cl in ID_LIKE: continue if df[c].nunique(dropna=True) >= min_unique: keep.append(c) return keep def icc2k_absolute(y: np.ndarray): """ Compute ICC(2,k): two-way random-effects, absolute-agreement, average of k raters. Returns ICC(2,k) and mean-square terms. """ y = np.asarray(y, float) n, k = y.shape mean_targets = y.mean(axis=1, keepdims=True) mean_raters = y.mean(axis=0, keepdims=True) grand_mean = y.mean() SSR = k * np.sum((mean_targets - grand_mean)**2) SSC = n * np.sum((mean_raters - grand_mean)**2) SSE = np.sum((y - mean_targets - mean_raters + grand_mean)**2) dfR, dfC = n - 1, k - 1 dfE = (n - 1) * (k - 1) MSR = SSR / dfR if dfR > 0 else np.nan MSC = SSC / dfC if dfC > 0 else np.nan MSE = SSE / dfE if dfE > 0 else np.nan numerator = MSR - MSE denominator = MSR + (MSC - MSE) / n icc2k = numerator / denominator if denominator != 0 else np.nan return icc2k, MSR, MSC, MSE def bootstrap_icc2k(y, n_boot=5000, seed=42): """Bootstrap ICC(2,k) confidence intervals.""" rng = np.random.default_rng(seed) n, _ = y.shape boots = [] for _ in range(n_boot): idx = rng.integers(0, n, size=n) icc, _, _, _ = icc2k_absolute(y[idx, :]) boots.append(icc) boots = np.asarray(boots) lo, hi = np.nanpercentile(boots, [2.5, 97.5]) return float(np.nanmean(boots)), float(lo), float(hi), boots def format_pm(mean, sd, decimals=1): """Format mean ± SD.""" if np.isnan(mean) or np.isnan(sd): return "NA" f = f"{{:.{decimals}f}} ± {{:.{decimals}f}}" return f.format(mean, sd) def detect_cobb_series(df: pd.DataFrame) -> pd.Series: """Detect Cobb angle column in test data.""" cobb_cols = [c for c in df.columns if "cobb" in str(c).lower()] if cobb_cols: s = pd.to_numeric(df[cobb_cols[0]], errors="coerce") # type: ignore return s num_cols = df.select_dtypes(include=[np.number]).columns.tolist() if not num_cols: raise ValueError("No numeric columns found for Cobb angles.") return df[num_cols[0]] def fmt(x, dec=1): return f"{x:.{dec}f}" def create_test_cobb_summary(csv_path, outdir=".", decimals=1): """Create summary statistics for test dataset with single-observer Cobb angles.""" csv_path = Path(csv_path) outdir = Path(outdir) outdir.mkdir(parents=True, exist_ok=True) if not csv_path.exists(): print(f"[ERROR] CSV not found: {csv_path}") return df = pd.read_csv(csv_path) try: s = detect_cobb_series(df) except Exception as e: print(f"[ERROR] {e}") print(f"Columns seen: {list(df.columns)}") return x = pd.to_numeric(s, errors="coerce").dropna().to_numpy() # type: ignore n = x.size if n == 0: print("[ERROR] No valid numeric Cobb values found.") return mean = float(np.mean(x)) # type: ignore sd = float(np.std(x, ddof=1)) if n > 1 else float("nan") # type: ignore median = float(np.median(x)) q1, q3 = [float(np.percentile(x, p)) for p in (25, 75)] iqr = q3 - q1 xmin = float(np.min(x)) xmax = float(np.max(x)) print("\n=== Single-Observer Thoracic Cobb Summary (Test Set) ===") print(f"n = {n}") print(f"Mean ± SD: {fmt(mean, decimals)} ± {fmt(sd, decimals)} deg") print(f"Median [IQR]: {fmt(median, decimals)} [{fmt(q1, decimals)}–{fmt(q3, decimals)}] deg") print(f"Range: {fmt(xmin, decimals)}–{fmt(xmax, decimals)} deg") print("=========================================================") out_csv = outdir / "test_cobb_summary.csv" pd.DataFrame([{ "n": n, "mean": mean, "sd": sd, "median": median, "q1": q1, "q3": q3, "iqr": iqr, "min": xmin, "max": xmax }]).to_csv(out_csv, index=False) print(f"[OK] Saved: {out_csv}") return mean, sd, median, q1, q3, iqr, xmin, xmax, n def calculate_icc_2_1(data): """Calculate ICC(2,1).""" n_subjects, n_raters = data.shape subject_means = np.mean(data, axis=1) rater_means = np.mean(data, axis=0) grand_mean = np.mean(data) SS_between_subjects = n_raters * np.sum((subject_means - grand_mean) ** 2) SS_between_raters = n_subjects * np.sum((rater_means - grand_mean) ** 2) SS_error = 0 for i in range(n_subjects): for j in range(n_raters): SS_error += (data[i, j] - subject_means[i] - rater_means[j] + grand_mean) ** 2 MS_between_subjects = SS_between_subjects / (n_subjects - 1) MS_between_raters = SS_between_raters / (n_raters - 1) MS_error = SS_error / ((n_subjects - 1) * (n_raters - 1)) icc_numerator = MS_between_subjects - MS_error icc_denominator = MS_between_subjects + (n_raters - 1) * MS_error icc_value = icc_numerator / icc_denominator f_stat = MS_between_subjects / MS_error df1 = n_subjects - 1 df2 = (n_subjects - 1) * (n_raters - 1) p_value = 1 - f.cdf(f_stat, df1, df2) alpha = 0.05 f_lower = f_stat / f.ppf(1 - alpha/2, df1, df2) f_upper = f_stat * f.ppf(1 - alpha/2, df1, df2) ci_lower = max(0, (f_lower - 1) / (f_lower + n_raters - 1)) ci_upper = min(1, (f_upper - 1) / (f_upper + n_raters - 1)) return icc_value, f_stat, p_value, (ci_lower, ci_upper) def create_comprehensive_summary(csv_path, outdir=".", decimals=1, n_boot=5000): """Create summary statistics including bootstrap ICC.""" csv_path = Path(csv_path) outdir = Path(outdir) outdir.mkdir(parents=True, exist_ok=True) if not csv_path.exists(): print(f"[ERROR] CSV not found: {csv_path}") return df = pd.read_csv(csv_path, sep='\t', header=None) # type: ignore raters = list(range(df.shape[1])) y = df.to_numpy(float) n, k = y.shape rater_means = np.nanmean(y, axis=0) rater_sds = np.nanstd(y, axis=0, ddof=1) per_case_sd = np.nanstd(y, axis=1, ddof=1) across_mean = float(np.nanmean(per_case_sd)) across_sd = float(np.nanstd(per_case_sd, ddof=1)) grand_mean = float(np.nanmean(y)) icc2k, MSR, MSC, MSE = icc2k_absolute(y) _, lo, hi, boots = bootstrap_icc2k(y, n_boot=n_boot) print("\n=== Five-Observer Thoracic Cobb Summary (Development Set) ===") print(f"Detected raters (k={k}): {raters}") for i, (m, s) in enumerate(zip(rater_means, rater_sds)): print(f"Rater {i+1:>8d}: {m:.{decimals}f} ± {s:.{decimals}f} deg") print(f"Across-rater SD (per-case): mean ± SD = {across_mean:.{decimals}f} ± {across_sd:.{decimals}f} deg") print(f"Grand mean across all ratings: {grand_mean:.{decimals}f} deg") print(f"ICC(2,k) absolute agreement (bootstrap 95% CI): {icc2k:.3f} [{lo:.3f}, {hi:.3f}]") print("==============================================================") rows = [] for i, (m, s) in enumerate(zip(rater_means, rater_sds)): rows.append({"measure": "rater_mean_sd", "rater": f"Rater_{i+1}", "mean": m, "sd": s}) rows.append({"measure": "across_rater_sd_mean", "rater": "NA", "mean": across_mean, "sd": across_sd}) rows.append({"measure": "grand_mean", "rater": "NA", "mean": grand_mean, "sd": np.nan}) rows.append({"measure": "icc2k", "rater": "NA", "mean": icc2k, "sd": np.nan}) rows.append({"measure": "icc2k_ci_lo", "rater": "NA", "mean": lo, "sd": np.nan}) rows.append({"measure": "icc2k_ci_hi", "rater": "NA", "mean": hi, "sd": np.nan}) pd.DataFrame(rows).to_csv(outdir / "dev_cobb_summary.csv", index=False) print(f"[OK] Saved summaries in {outdir.resolve()}") return icc2k, lo, hi def create_sagittal_icc_plot(): """Create ICC plot for sagittal measurements only""" csv_files = { '../cobb_angles/dev_cobb.csv': 'Sagittal Thoracic' } results = {} for filename, display_name in csv_files.items(): try: df = pd.read_csv(filename, sep='\t', header=None) # type: ignore data = df.values print(f"\n{display_name} Data Shape: {data.shape}") print(f"Data preview:\n{data[:5]}") icc_value, f_stat, p_value, ci = calculate_icc_2_1(data) results[display_name] = { 'icc': icc_value, 'f_stat': f_stat, 'p_value': p_value, 'ci_lower': ci[0], 'ci_upper': ci[1], 'n_subjects': data.shape[0], 'n_raters': data.shape[1] } print(f"{display_name}: ICC = {icc_value:.4f}, CI = [{ci[0]:.3f}, {ci[1]:.3f}]") print(f"F-statistic = {f_stat:.4f}, p-value = {p_value:.4f}") except Exception as e: print(f"Error processing {filename}: {e}") continue if not results: print("No data processed successfully.") return fig1, ax1 = plt.subplots(1, 1, figsize=(4, 8)) # type: ignore names = list(results.keys()) icc_values = [results[name]['icc'] for name in names] ci_lowers = [results[name]['ci_lower'] for name in names] ci_uppers = [results[name]['ci_upper'] for name in names] colors = ['#2E86AB', '#A23B72'] bars = ax1.bar(names, icc_values, color=colors, alpha=0.8, width=0.3, edgecolor='black', linewidth=1) ax1.errorbar(names, icc_values, yerr=[np.array(icc_values) - np.array(ci_lowers), np.array(ci_uppers) - np.array(icc_values)], fmt='none', color='red', capsize=5, capthick=2) for i, (bar, value) in enumerate(zip(bars, icc_values)): ax1.text(bar.get_x() + bar.get_width()/2, value + 0.02, f'{value:.3f}', ha='center', va='bottom', fontweight='bold', fontsize=12) ax1.set_ylabel('ICC Value', fontsize=12, fontweight='bold') ax1.set_title('Intraclass Correlation Coefficients\nSagittal Thoracic Measurements', fontsize=14, fontweight='bold') ax1.set_ylim(0, 1.1) ax1.grid(True, alpha=0.3, linestyle='--') ax1.set_axisbelow(True) ax1.tick_params(axis='x', rotation=0) plt.tight_layout() plt.show() fig2, ax2 = plt.subplots(1, 1, figsize=(4, 8)) # type: ignore ax2.axis('off') table_data = [] for name in names: result = results[name] table_data.append([ name, f"{result['icc']:.4f}", f"[{result['ci_lower']:.3f}, {result['ci_upper']:.3f}]", f"{result['p_value']:.4f}", f"{result['n_subjects']}x{result['n_raters']}" ]) table = ax2.table(cellText=table_data, colLabels=['Measurement Type', 'ICC(2,1)', '95% CI', 'p-value', 'Dimensions'], cellLoc='center', loc='center', bbox=[0, 0, 1, 1]) table.auto_set_font_size(False) table.set_fontsize(10) table.scale(1, 2) for i in range(len(table_data[0])): table[(0, i)].set_facecolor('#4CAF50') table[(0, i)].set_text_props(weight='bold', color='white') for i in range(1, len(table_data) + 1): for j in range(len(table_data[0])): table[(i, j)].set_facecolor('#F5F5F5' if i % 2 == 0 else 'white') ax2.set_title('ICC Analysis Results - Sagittal Thoracic', fontsize=14, fontweight='bold', pad=20) plt.tight_layout() plt.show() if results: fig3, ax3 = plt.subplots(1, 1, figsize=(6, 6)) # type: ignore first_name = list(results.keys())[0] for filename, display_name in csv_files.items(): if display_name == first_name: df = pd.read_csv(filename, sep='\t', header=None) # type: ignore data = df.values break if data.shape[1] >= 2: means = np.mean(data, axis=1) # type: ignore differences = [] for i in range(data.shape[0]): subject_ratings = data[i, :] subject_mean = np.mean(subject_ratings) # type: ignore mean_abs_diff = np.mean(np.abs(subject_ratings - subject_mean)) # type: ignore differences.append(mean_abs_diff) differences = np.array(differences) mean_diff = np.mean(differences) # type: ignore std_diff = np.std(differences) # type: ignore upper_limit = mean_diff + 1.96 * std_diff lower_limit = mean_diff - 1.96 * std_diff ax3.scatter(means, differences, alpha=0.7, s=50, color='#2E86AB') ax3.axhline(y=mean_diff, color='red', linestyle='-', linewidth=2) ax3.axhline(y=upper_limit, color='red', linestyle='--', linewidth=1) ax3.axhline(y=lower_limit, color='red', linestyle='--', linewidth=1) ax3.set_xlabel('Mean Thoracic Cobb Angle of All Five Raters (deg)', fontsize=12, fontweight='bold') ax3.set_ylabel('Mean Absolute Difference from Average', fontsize=12, fontweight='bold') ax3.set_title('Inter-Rater Variability Plot\nSagittal Thoracic', fontsize=14, fontweight='bold') ax3.grid(True, alpha=0.3, linestyle='--') ax3.text(0.05, 0.95, f'Limits of Agreement:\n{lower_limit:.2f} to {upper_limit:.2f}', transform=ax3.transAxes, fontsize=10, verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.8)) plt.tight_layout() plt.savefig('../ICC_results/sagittal_inter_rater_variability.png', dpi=300, bbox_inches='tight', # type: ignore facecolor='white', edgecolor='none') plt.show() bland_altman_values = {} if results: first_name = list(results.keys())[0] for filename, display_name in csv_files.items(): if display_name == first_name: df = pd.read_csv(filename, sep='\t', header=None) # type: ignore data = df.values break if data.shape[1] >= 2: means = np.mean(data, axis=1) # type: ignore differences = [] for i in range(data.shape[0]): subject_ratings = data[i, :] subject_mean = np.mean(subject_ratings) # type: ignore mean_abs_diff = np.mean(np.abs(subject_ratings - subject_mean)) # type: ignore differences.append(mean_abs_diff) differences = np.array(differences) mean_diff = np.mean(differences) # type: ignore std_diff = np.std(differences) # type: ignore upper_limit = mean_diff + 1.96 * std_diff lower_limit = mean_diff - 1.96 * std_diff bland_altman_values = { 'Mean_Difference': round(mean_diff, 2), 'Upper_Limit': round(upper_limit, 2), 'Lower_Limit': round(lower_limit, 2), 'Std_Difference': round(std_diff, 2) } results_df = pd.DataFrame([ { 'Measurement_Type': name, 'ICC_2_1': round(results[name]['icc'], 2), 'CI_Lower': round(results[name]['ci_lower'], 2), 'CI_Upper': round(results[name]['ci_upper'], 2), 'F_Statistic': round(results[name]['f_stat'], 2), 'P_Value': round(results[name]['p_value'], 2), 'N_Subjects': results[name]['n_subjects'], 'N_Raters': results[name]['n_raters'], 'Bland_Altman_Mean_Diff': bland_altman_values.get('Mean_Difference', ''), 'Bland_Altman_Upper_Limit': bland_altman_values.get('Upper_Limit', ''), 'Bland_Altman_Lower_Limit': bland_altman_values.get('Lower_Limit', ''), 'Bland_Altman_Std_Diff': bland_altman_values.get('Std_Difference', '') } for name in names ]) results_df.to_csv('../ICC_results/sagittal_icc_results.csv', index=False) print(f"\nResults saved to '../ICC_results/sagittal_icc_results.csv'") print(f"Inter-Rater Variability Plot saved as '../ICC_results/sagittal_inter_rater_variability.png'") print(f"\n=== SAGITTAL THORACIC ICC ANALYSIS SUMMARY ===") for name in names: result = results[name] icc = result['icc'] ci_lower = result['ci_lower'] ci_upper = result['ci_upper'] print(f"{name}: ICC = {icc:.4f}") print(f" 95% CI: [{ci_lower:.3f}, {ci_upper:.3f}]") print("\n" + "="*60) print("SUMMARY WITH BOOTSTRAP ICC(2,k)") print("="*60) create_comprehensive_summary( csv_path='../cobb_angles/dev_cobb.csv', outdir='../ICC_results', decimals=1, n_boot=5000 ) print("\n" + "="*60) print("TEST DATASET ANALYSIS (SINGLE-OBSERVER COBB ANGLES)") print("="*60) create_test_cobb_summary( csv_path='../cobb_angles/test_cobb.csv', outdir='../ICC_results', decimals=1 ) if __name__ == "__main__": create_sagittal_icc_plot()