#!/usr/bin/env python3 """ Calculate muscle fat percentages from CT images using model predictions """ import os import re from pathlib import Path import numpy as np # type: ignore import pandas as pd # type: ignore import nibabel as nib # type: ignore root_100_120 = Path("../100-120") output_csv_100_120 = Path("../fatty_data/model_pred_dev.csv") fat_hu_thresh = -20 muscle_labels = { 1: "psoas", 2: "quadratus_lumborum", 3: "paraspinal", 4: "latissimus_dorsi", 5: "iliacus", 6: "rectus_femoris", 7: "vastus", 8: "rhomboid", 9: "trapezius", } def load_image_and_label_100_120(case_id: int, root_dir: Path): """Load CT image and model prediction label file for cases 100-120.""" img_path = root_dir / "images_100-120" / f"{case_id}_0000.nii.gz" if not img_path.exists(): return None, None lab_path = root_dir / "label_9_muscles_model_pred" / f"{case_id}.nii.gz" if not lab_path.exists(): return None, None try: img = nib.load(str(img_path)) # type: ignore lab = nib.load(str(lab_path)) # type: ignore return img.get_fdata(), lab.get_fdata() except Exception as e: print(f"Error loading case {case_id}: {e}") return None, None def calculate_fat_percentages(img_arr: np.ndarray, lab_arr: np.ndarray): """Calculate fat percentage (HU <= -20) for all 9 muscle labels.""" fat_mask = img_arr <= fat_hu_thresh fat_percentages = {} for label_id, muscle_name in muscle_labels.items(): muscle_mask = (lab_arr == label_id) total_voxels = int(np.count_nonzero(muscle_mask)) # type: ignore if total_voxels == 0: fat_pct = 0.0 else: fat_voxels = int(np.count_nonzero(fat_mask & muscle_mask)) # type: ignore fat_pct = (fat_voxels / total_voxels) * 100.0 fat_percentages[f"{muscle_name}_fat_pct"] = round(fat_pct, 2) return fat_percentages def save_mean_std_stats(df, fat_cols, output_path): """Save mean ± SD statistics to a separate CSV file.""" stats_data = [] for col in fat_cols: values = df[col].values mean_val = np.mean(values) # type: ignore std_val = np.std(values) # type: ignore stats_data.append({ 'muscle': col.replace('_fat_pct', ''), 'mean': round(mean_val, 2), 'std': round(std_val, 2), 'mean_std': f"{mean_val:.2f} ± {std_val:.2f}" }) stats_df = pd.DataFrame(stats_data) stats_df.to_csv(output_path, index=False) print(f"Mean ± SD statistics saved to: {output_path}") def process_100_120_dataset(): """Process cases 100-120 using model predictions and save to model_pred_dev.csv""" print("="*60) print("PROCESSING CASES 100-120 WITH MODEL PREDICTIONS") print("="*60) rows = [] print("Processing cases 100-120 with model predictions...") for case_id in range(100, 121): img_arr, lab_arr = load_image_and_label_100_120(case_id, root_100_120) if img_arr is not None and lab_arr is not None: fat_percentages = calculate_fat_percentages(img_arr, lab_arr) record = {"case_id": case_id, "dataset": "100-120_model_pred"} record.update(fat_percentages) rows.append(record) print(f"Case {case_id}: {[v for v in fat_percentages.values()][:3]}... %") else: print(f"Case {case_id}: Failed to load") if rows: df = pd.DataFrame(rows) fat_cols = [col for col in df.columns if col.endswith("_fat_pct")] fat_means = df[fat_cols].mean().round(2) fat_stds = df[fat_cols].std().round(2) summary_row = {"case_id": "Mean ± SD"} for col in fat_cols: summary_row[col] = f"{fat_means[col]:.2f} ± {fat_stds[col]:.2f}" summary_df = pd.DataFrame([summary_row]) df_with_summary = pd.concat([df, summary_df], ignore_index=True) # type: ignore output_csv_100_120.parent.mkdir(parents=True, exist_ok=True) df_with_summary.to_csv(output_csv_100_120, index=False) print(f"\nSaved {len(rows)} cases to {output_csv_100_120}") print(f"\nFat Percentage Summary (100-120 Model Predictions):") for col in fat_cols: values = df[col].values mean_val = np.mean(values) # type: ignore std_val = np.std(values) # type: ignore print(f"{col}: {mean_val:.2f} ± {std_val:.2f} %") save_mean_std_stats(df, fat_cols, output_csv_100_120.parent / "model_pred_dev_mean_std.csv") else: print("No data processed for 100-120!") def main(): """Main function to process the development dataset with model predictions.""" print("FATTY PERCENTAGE ANALYSIS - MODEL PREDICTIONS") print("Computing fat percentage (HU <= -20) for 9 muscle labels using model predictions") print("="*60) process_100_120_dataset() print("\n" + "="*60) print("ANALYSIS COMPLETE") print("="*60) print(f"Results saved to:") print(f" - {output_csv_100_120} (cases 100-120 with model predictions)") print(f" - {output_csv_100_120.parent / 'model_pred_dev_mean_std.csv'} (summary statistics)") if __name__ == "__main__": main()