#!/usr/bin/env python3 """ Pearson correlation analysis for muscle fat vs Cobb angles """ import pandas as pd # type: ignore import numpy as np # type: ignore from scipy.stats import pearsonr # type: ignore from pathlib import Path dev_fat_file = "../fatty_data/dev_fat.csv" dev_cobb_file = "../cobb_angles/dev_cobb.csv" dev_output_dir = "../pearson_correlation/dev_cobb_corr" # Model prediction data dev_model_pred_fat_file = "../fatty_data/model_pred_dev.csv" dev_model_pred_output_dir = "../pearson_correlation/dev_model_cobb_corr" test_fat_file = "../fatty_data/test_fat.csv" test_cobb_file = "../cobb_angles/test_cobb.csv" test_output_dir = "../pearson_correlation/test_cobb_corr" muscle_names = [ "psoas", "quadratus_lumborum", "paraspinal", "latissimus_dorsi", "iliacus", "rectus_femoris", "vastus", "rhomboid", "trapezius" ] def load_dev_data(): """Load development dataset (100-120).""" print("Loading development dataset...") fat_df = pd.read_csv(dev_fat_file) print(f"Fatty data loaded: {len(fat_df)} cases") cobb_df = pd.read_csv(dev_cobb_file, sep='\t', header=None) # type: ignore print(f"Cobb data loaded: {len(cobb_df)} cases") fat_df = fat_df[fat_df['case_id'] != 'Mean ± SD'].copy() fat_df = fat_df[pd.to_numeric(fat_df['case_id'], errors='coerce').notna()] # type: ignore fat_df['case_id'] = fat_df['case_id'].astype(int) n_cases = min(len(cobb_df), len(fat_df)) print(f"Using {n_cases} cases for development correlation analysis") cobb_values = cobb_df.iloc[:n_cases].values cobb_aligned = np.mean(cobb_values, axis=1) # type: ignore fat_aligned = fat_df.iloc[:n_cases] print(f"Cobb angles range: {cobb_aligned.min():.1f} to {cobb_aligned.max():.1f}") return cobb_aligned, fat_aligned, n_cases def load_dev_model_pred_data(): """Load development dataset with model predictions (100-120).""" print("Loading development dataset with model predictions...") fat_df = pd.read_csv(dev_model_pred_fat_file) print(f"Model prediction fatty data loaded: {len(fat_df)} cases") cobb_df = pd.read_csv(dev_cobb_file, sep='\t', header=None) # type: ignore print(f"Cobb data loaded: {len(cobb_df)} cases") fat_df = fat_df[fat_df['case_id'] != 'Mean ± SD'].copy() fat_df = fat_df[pd.to_numeric(fat_df['case_id'], errors='coerce').notna()] # type: ignore fat_df['case_id'] = fat_df['case_id'].astype(int) n_cases = min(len(cobb_df), len(fat_df)) print(f"Using {n_cases} cases for model prediction correlation analysis") cobb_values = cobb_df.iloc[:n_cases].values cobb_aligned = np.mean(cobb_values, axis=1) # type: ignore fat_aligned = fat_df.iloc[:n_cases] print(f"Cobb angles range: {cobb_aligned.min():.1f} to {cobb_aligned.max():.1f}") return cobb_aligned, fat_aligned, n_cases def load_test_data(): """Load test dataset (251-500).""" print("Loading test dataset...") fat_df = pd.read_csv(test_fat_file) print(f"Fatty data loaded: {len(fat_df)} cases") cobb_df = pd.read_csv(test_cobb_file, header=None, names=['cobb_angle']) # type: ignore print(f"Cobb data loaded: {len(cobb_df)} cases") fat_df = fat_df[fat_df['case_id'] != 'Mean ± SD'].copy() fat_df = fat_df[pd.to_numeric(fat_df['case_id'], errors='coerce').notna()] # type: ignore fat_df['case_id'] = fat_df['case_id'].astype(int) n_cases = min(len(cobb_df), len(fat_df)) print(f"Using {n_cases} cases for test correlation analysis") cobb_aligned = cobb_df.iloc[:n_cases]['cobb_angle'].values fat_aligned = fat_df.iloc[:n_cases] print(f"Cobb angles range: {cobb_aligned.min():.1f} to {cobb_aligned.max():.1f}") return cobb_aligned, fat_aligned, n_cases def calculate_correlations(cobb_angles, fat_data, dataset_name): """Calculate Pearson correlations between Cobb angles and fatty percentages.""" print(f"\nCalculating correlations for {dataset_name} dataset...") results = [] for muscle in muscle_names: fat_col = f"{muscle}_fat_pct" if fat_col in fat_data.columns: fat_percentages = pd.to_numeric(fat_data[fat_col], errors='coerce').values # type: ignore valid_indices = ~np.isnan(fat_percentages) # type: ignore if not np.any(valid_indices): print(f"Warning: No valid data for {muscle}") continue cobb_filtered = cobb_angles[valid_indices] fat_filtered = fat_percentages[valid_indices] correlation, p_value = pearsonr(cobb_filtered, fat_filtered) # type: ignore results.append({ 'Muscle': muscle, 'Correlation': round(correlation, 4), 'P_Value': round(p_value, 4), 'N_Cases': len(cobb_filtered) }) print(f"{muscle}: r = {correlation:.4f}, p = {p_value:.4f}") else: print(f"Warning: Column {fat_col} not found in fatty data") return results def save_results(results, output_dir, dataset_name): """Save correlation results to CSV.""" output_dir.mkdir(parents=True, exist_ok=True) results_df = pd.DataFrame(results) output_file = output_dir / "fatty_atrophy_thoracic_correlations.csv" results_df.to_csv(output_file, index=False) print(f"\nResults saved to: {output_file}") print(f"\n=== {dataset_name.upper()} CORRELATION ANALYSIS SUMMARY ===") print(f"Total muscles analyzed: {len(results)}") print(f"Cases used: {results[0]['N_Cases'] if results else 'N/A'}") if results: strongest_positive = max(results, key=lambda x: x['Correlation']) strongest_negative = min(results, key=lambda x: x['Correlation']) print(f"\nStrongest positive correlation: {strongest_positive['Muscle']} (r = {strongest_positive['Correlation']})") print(f"Strongest negative correlation: {strongest_negative['Muscle']} (r = {strongest_negative['Correlation']})") significant = [r for r in results if r['P_Value'] < 0.05] print(f"Significant correlations (p < 0.05): {len(significant)}/{len(results)}") def main(): """Main function to run correlation analysis for both datasets.""" print("=== PEARSON CORRELATION ANALYSIS ===") print("Cobb angles vs Fatty percentages") print("="*50) try: print("\n" + "="*50) print("DEVELOPMENT DATASET ANALYSIS (100-120) - MANUAL LABELS") print("="*50) cobb_dev, fat_dev, n_dev = load_dev_data() results_dev = calculate_correlations(cobb_dev, fat_dev, "Development") save_results(results_dev, Path(dev_output_dir), "Development") print("\n" + "="*50) print("DEVELOPMENT DATASET ANALYSIS (100-120) - MODEL PREDICTIONS") print("="*50) cobb_dev_model, fat_dev_model, n_dev_model = load_dev_model_pred_data() results_dev_model = calculate_correlations(cobb_dev_model, fat_dev_model, "Development Model Predictions") save_results(results_dev_model, Path(dev_model_pred_output_dir), "Development Model Predictions") print("\n" + "="*50) print("TEST DATASET ANALYSIS (251-500)") print("="*50) cobb_test, fat_test, n_test = load_test_data() results_test = calculate_correlations(cobb_test, fat_test, "Test") save_results(results_test, Path(test_output_dir), "Test") print("\n" + "="*50) print("ANALYSIS COMPLETE") print("="*50) print(f"Development dataset (manual): {n_dev} cases analyzed") print(f"Development dataset (model): {n_dev_model} cases analyzed") print(f"Test dataset: {n_test} cases analyzed") print(f"Results saved to:") print(f" - {dev_output_dir}/fatty_atrophy_thoracic_correlations.csv") print(f" - {dev_model_pred_output_dir}/fatty_atrophy_thoracic_correlations.csv") print(f" - {test_output_dir}/fatty_atrophy_thoracic_correlations.csv") except Exception as e: print(f"Error during analysis: {e}") return False return True if __name__ == "__main__": main()