--- license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: query dtype: string - name: docs sequence: string - name: scores sequence: float64 splits: - name: train num_bytes: 957899062 num_examples: 502939 download_size: 917834227 dataset_size: 957899062 --- # Dataset Card for **MS MARCO Hard Negatives LLM Scores (OpenSearch)** ## Dataset Summary This dataset is derived from the **MS MARCO** train split([Hugging Face](https://huggingface.co/datasets/mteb/msmarco)) and provides **hard-negative mining** annotations to train retrieval systems. For each query from the source split, we retrieve the **top-100 candidate documents** using the [opensearch-project/opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) and attach **re-ranking scores** from bi-encoder teachers and cross-encoder teachers: [opensearch-project/opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1), [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5), [BAAI/bge-en-icl](https://huggingface.co/BAAI/bge-en-icl), [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2), [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise), and [BAAI/bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight). > ⚠️ **Licensing/Usage:** Because this dataset is derived from MS MARCO, please review Microsoft’s terms before using this dataset. ([Microsoft GitHub](https://microsoft.github.io/msmarco/Datasets.html), [GitHub](https://github.com/microsoft/msmarco)) --- ## How to Load ```python import datasets ds = datasets.load_dataset("opensearch-project/msmarco-hard-negatives-llm-scores", split="train") ``` --- ## Training example Related training example: **opensearch-sparse-model-tuning-sample**. ([GitHub](https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample)) To convert the dataset to text-only format for sample repo training: ```python import datasets # 1) Load datasets msmarco_hard_negatives = datasets.load_dataset( "opensearch-project/msmarco-hard-negatives-llm-scores", split="train" ) msmarco_queries = datasets.load_dataset("BeIR/msmarco", "queries")["queries"] msmarco_corpus = datasets.load_dataset("BeIR/msmarco", "corpus")["corpus"] # 2) fix occasional text encoding issues def transform_str(s): try: s = s.encode("latin1").decode("utf-8") return s except Exception: return s msmarco_corpus = msmarco_corpus.map( lambda x: {"text": transform_str(x["text"])}, num_proc=30 ) # 3) Build convenient lookup tables id_to_text = {_id: text for _id, text in zip(msmarco_corpus["_id"], msmarco_corpus["text"])} qid_to_text = {_id: text for _id, text in zip(msmarco_queries["_id"], msmarco_queries["text"])} # 4) Replace IDs with raw texts to get a text-only dataset msmarco_hard_negatives = msmarco_hard_negatives.map( lambda x: { "query": qid_to_text[x["query"]], "docs": [id_to_text[doc] for doc in x["docs"]], }, num_proc=30, ) # 5) Save to disk (directory will contain the text-only view) msmarco_hard_negatives.save_to_disk("data/msmarco_ft_llm_scores") ``` --- ## Citation If you use this dataset, **please cite**: [Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers](https://arxiv.org/abs/2411.04403) ``` @misc{geng2024competitivesearchrelevanceinferencefree, title={Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers}, author={Zhichao Geng and Dongyu Ru and Yang Yang}, year={2024}, eprint={2411.04403}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2411.04403}, } ``` ## Related Papers - [Exploring $\ell_0$ Sparsification for Inference-free Sparse Retrievers ](https://arxiv.org/abs/2504.14839) ## License This project is licensed under the [Apache v2.0 License](https://github.com/opensearch-project/neural-search/blob/main/LICENSE). --- ## Copyright Copyright OpenSearch Contributors. See [NOTICE](https://github.com/opensearch-project/neural-search/blob/main/NOTICE) for details.