|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ MASC Dataset""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import csv | 
					
						
						|  | import os | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | from datasets.utils.py_utils import size_str | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @INPROCEEDINGS{10022652, | 
					
						
						|  | author={Al-Fetyani, Mohammad and Al-Barham, Muhammad and Abandah, Gheith and Alsharkawi, Adham and Dawas, Maha}, | 
					
						
						|  | booktitle={2022 IEEE Spoken Language Technology Workshop (SLT)}, | 
					
						
						|  | title={MASC: Massive Arabic Speech Corpus}, | 
					
						
						|  | year={2023}, | 
					
						
						|  | volume={}, | 
					
						
						|  | number={}, | 
					
						
						|  | pages={1006-1013}, | 
					
						
						|  | doi={10.1109/SLT54892.2023.10022652}} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | MASC is a dataset that contains 1,000 hours of speech sampled at 16 kHz and crawled from over 700 YouTube channels. The dataset is multi-regional, multi-genre, and multi-dialect intended to advance the research and development of Arabic speech technology with a special emphasis on Arabic speech recognition. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://ieee-dataport.org/open-access/masc-massive-arabic-speech-corpus" | 
					
						
						|  | _LICENSE = "https://creativecommons.org/licenses/by/4.0/" | 
					
						
						|  | _BASE_URL = "https://huggingface.co/datasets/pain/MASC/resolve/main/" | 
					
						
						|  | _AUDIO_URL1 = _BASE_URL + "audio/{split}/{split}_{shard_idx}.tar.gz" | 
					
						
						|  | _AUDIO_URL2 = _BASE_URL + "audio/{split}/{split}_{shard_idx}.tar.xz" | 
					
						
						|  | _TRANSCRIPT_URL = _BASE_URL + "transcript/{split}/{split}.csv" | 
					
						
						|  |  | 
					
						
						|  | class MASC(datasets.GeneratorBasedBuilder): | 
					
						
						|  |  | 
					
						
						|  | VERSION = datasets.Version("1.0.0") | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  |  | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "video_id": datasets.Value("string"), | 
					
						
						|  | "start": datasets.Value("float64"), | 
					
						
						|  | "end": datasets.Value("float64"), | 
					
						
						|  | "duration": datasets.Value("float64"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "file_path": datasets.Value("string"), | 
					
						
						|  | "audio": datasets.features.Audio(sampling_rate=16_000), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | version=self.config.version, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  |  | 
					
						
						|  | n_shards = {"train": 8,"dev": 1, "test": 1} | 
					
						
						|  | audio_urls = {} | 
					
						
						|  | splits = ("train", "dev", "test") | 
					
						
						|  |  | 
					
						
						|  | for split in splits: | 
					
						
						|  | audio_urls[split] = [ | 
					
						
						|  | _AUDIO_URL2.format(split=split, shard_idx="{:02d}".format(i+1)) if split=="train" else _AUDIO_URL1.format(split=split, shard_idx="{:02d}".format(i+1)) for i in range(n_shards[split]) | 
					
						
						|  | ] | 
					
						
						|  | archive_paths = dl_manager.download(audio_urls) | 
					
						
						|  | local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} | 
					
						
						|  |  | 
					
						
						|  | meta_urls = {split: _TRANSCRIPT_URL.format(split=split) for split in splits} | 
					
						
						|  |  | 
					
						
						|  | meta_paths = dl_manager.download(meta_urls) | 
					
						
						|  |  | 
					
						
						|  | split_generators = [] | 
					
						
						|  | split_names = { | 
					
						
						|  | "train": datasets.Split.TRAIN, | 
					
						
						|  | "dev": datasets.Split.VALIDATION, | 
					
						
						|  | "test": datasets.Split.TEST, | 
					
						
						|  | } | 
					
						
						|  | for split in splits: | 
					
						
						|  | split_generators.append( | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=split_names.get(split, split), | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "local_extracted_archive_paths": local_extracted_archive_paths.get(split), | 
					
						
						|  | "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], | 
					
						
						|  | "meta_path": meta_paths[split], | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return split_generators | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): | 
					
						
						|  | data_fields = list(self._info().features.keys()) | 
					
						
						|  | metadata = {} | 
					
						
						|  | with open(meta_path, encoding="utf-8") as f: | 
					
						
						|  | reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE) | 
					
						
						|  | for row in reader: | 
					
						
						|  | if not row["file_path"].endswith(".wav"): | 
					
						
						|  | row["file_path"] += ".wav" | 
					
						
						|  | for field in data_fields: | 
					
						
						|  | if field not in row: | 
					
						
						|  | row[field] = "" | 
					
						
						|  | metadata[row["file_path"]] = row | 
					
						
						|  |  | 
					
						
						|  | for i, audio_archive in enumerate(archives): | 
					
						
						|  | for filename, file in audio_archive: | 
					
						
						|  | _, filename = os.path.split(filename) | 
					
						
						|  | if filename in metadata: | 
					
						
						|  | result = dict(metadata[filename]) | 
					
						
						|  |  | 
					
						
						|  | path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | result["audio"] = {"path": path, "bytes": file.read()} | 
					
						
						|  | except ReadError as e: | 
					
						
						|  |  | 
					
						
						|  | print("An error occurred while reading the data:", str(e)) | 
					
						
						|  | continiue | 
					
						
						|  |  | 
					
						
						|  | result["file_path"] = path if local_extracted_archive_paths else filename | 
					
						
						|  | yield path, result |