Datasets:
Delete data/COPA-ca.py
Browse files- data/COPA-ca.py +0 -92
data/COPA-ca.py
DELETED
|
@@ -1,92 +0,0 @@
|
|
| 1 |
-
# Loading script for the COPA-ca dataset.
|
| 2 |
-
import json
|
| 3 |
-
import datasets
|
| 4 |
-
|
| 5 |
-
logger = datasets.logging.get_logger(__name__)
|
| 6 |
-
|
| 7 |
-
_CITATION = ""
|
| 8 |
-
|
| 9 |
-
_DESCRIPTION = """\
|
| 10 |
-
The COPA-ca dataset (Choice of plausible alternatives in Catalan) is a professional translation of the English COPA dataset into Catalan, commissioned by BSC LangTech Unit. The dataset consists of 1000 premises, each given a question and two choices with a label encoding which of the choices is more plausible given the annotator.
|
| 11 |
-
|
| 12 |
-
The dataset is split into 400 training samples, 100 validation samples, and 500 test samples. It includes the following features: 'premise', 'choice1', 'choice2', 'label', 'question', 'changed' (boolean).
|
| 13 |
-
|
| 14 |
-
This work is licensed under a Attribution-ShareAlike 4.0 International License.
|
| 15 |
-
"""
|
| 16 |
-
|
| 17 |
-
_HOMEPAGE = "https://zenodo.org/record/8124398"
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
_URL = "https://huggingface.co/datasets/projecte-aina/copa-ca/resolve/main/"
|
| 21 |
-
_TRAIN_FILE = "copa-ca.train.jsonl"
|
| 22 |
-
_DEV_FILE = "copa-ca.val.jsonl"
|
| 23 |
-
_TEST_FILE = "copa-ca.test.jsonl"
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
class copaCaConfig(datasets.BuilderConfig):
|
| 27 |
-
""" Builder config for the COPA-ca dataset """
|
| 28 |
-
|
| 29 |
-
def __init__(self, **kwargs):
|
| 30 |
-
"""BuilderConfig for COPA-ca.
|
| 31 |
-
Args:
|
| 32 |
-
**kwargs: keyword arguments forwarded to super.
|
| 33 |
-
"""
|
| 34 |
-
super(copaCaConfig, self).__init__(**kwargs)
|
| 35 |
-
|
| 36 |
-
class copaCa(datasets.GeneratorBasedBuilder):
|
| 37 |
-
""" COPA-ca Dataset """
|
| 38 |
-
|
| 39 |
-
BUILDER_CONFIGS = [
|
| 40 |
-
copaCaConfig(
|
| 41 |
-
name="copa-ca",
|
| 42 |
-
version=datasets.Version("1.0.1"),
|
| 43 |
-
description="COPA-ca dataset",
|
| 44 |
-
),
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
def _info(self):
|
| 48 |
-
return datasets.DatasetInfo(
|
| 49 |
-
description=_DESCRIPTION,
|
| 50 |
-
features=datasets.Features(
|
| 51 |
-
{
|
| 52 |
-
"premise": datasets.Value("string"),
|
| 53 |
-
"choice1": datasets.Value("string"),
|
| 54 |
-
"choice2": datasets.Value("string"),
|
| 55 |
-
"question": datasets.Value("string"),
|
| 56 |
-
'label': datasets.features.ClassLabel(names=['1', '2']),
|
| 57 |
-
"idx": datasets.Value("int64"),
|
| 58 |
-
"changed": datasets.Value("bool"),
|
| 59 |
-
}
|
| 60 |
-
),
|
| 61 |
-
homepage=_HOMEPAGE,
|
| 62 |
-
citation=_CITATION,
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
def _split_generators(self, dl_manager):
|
| 66 |
-
"""Returns SplitGenerators."""
|
| 67 |
-
urls_to_download = {
|
| 68 |
-
"train": f"{_URL}{_TRAIN_FILE}",
|
| 69 |
-
"dev": f"{_URL}{_DEV_FILE}",
|
| 70 |
-
"test": f"{_URL}{_TEST_FILE}",
|
| 71 |
-
}
|
| 72 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 73 |
-
|
| 74 |
-
return [
|
| 75 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
| 76 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
| 77 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
| 78 |
-
]
|
| 79 |
-
|
| 80 |
-
def _generate_examples(self, filepath):
|
| 81 |
-
with open(filepath, encoding='utf-8') as f:
|
| 82 |
-
for i, line in enumerate(f):
|
| 83 |
-
data = json.loads(line)
|
| 84 |
-
yield i, {
|
| 85 |
-
'premise': data['premise'],
|
| 86 |
-
'choice1': data['choice1'],
|
| 87 |
-
'choice2': data['choice2'],
|
| 88 |
-
'question': data['question'],
|
| 89 |
-
'label': str(data['label']),
|
| 90 |
-
'idx': data['idx'],
|
| 91 |
-
'changed': data['changed']
|
| 92 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|