Datasets:
Tasks:
Automatic Speech Recognition
Formats:
webdataset
Languages:
Catalan
Size:
100K - 1M
Tags:
central
License:
| from collections import defaultdict | |
| import os | |
| import json | |
| import csv | |
| import datasets | |
| _NAME="parlament_parla_v3_asr_a" | |
| _VERSION="1.0.0" | |
| _DESCRIPTION = """ | |
| This is the third version of the ParlamentParla speech corpus for Catalan: a collection of speech recordings with transcriptions intended for Automatic Speech Recognition (ASR) applications. | |
| """ | |
| _CITATION = """ | |
| @misc{bscib32024, | |
| title={ParlamentParla v3 - Speech Corpus of Catalan Parliamentary Sessions}, | |
| author={Baybars, Kulebi}, | |
| publisher={Barcelona Supercomputing Center}, | |
| year={2024}, | |
| url={https://huggingface.co/datasets/projecte-aina/parlament_parla_v3_asr_a}, | |
| } | |
| """ | |
| _HOMEPAGE = "https://huggingface.co/datasets/projecte-aina/parlament_parla_v3_asr_a" | |
| _LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/deed.es" | |
| _BASE_DATA_DIR = "corpus/" | |
| _METADATA_CLEAN_TRAIN_SHORT = os.path.join(_BASE_DATA_DIR,"files","clean_train_parlament_short.csv") | |
| _METADATA_CLEAN_TEST_SHORT = os.path.join(_BASE_DATA_DIR,"files", "clean_test_parlament_short.csv") | |
| _METADATA_CLEAN_DEV_SHORT = os.path.join(_BASE_DATA_DIR,"files", "clean_dev_parlament_short.csv") | |
| _METADATA_OTHER_TRAIN_SHORT = os.path.join(_BASE_DATA_DIR,"files","other_train_parlament_short.csv") | |
| _METADATA_OTHER_TEST_SHORT = os.path.join(_BASE_DATA_DIR,"files", "other_test_parlament_short.csv") | |
| _METADATA_OTHER_DEV_SHORT = os.path.join(_BASE_DATA_DIR,"files", "other_dev_parlament_short.csv") | |
| _TARS_CLEAN_TRAIN_SHORT = os.path.join(_BASE_DATA_DIR,"files","tars_clean_train_short.paths") | |
| _TARS_CLEAN_TEST_SHORT = os.path.join(_BASE_DATA_DIR,"files", "tars_clean_test_short.paths") | |
| _TARS_CLEAN_DEV_SHORT = os.path.join(_BASE_DATA_DIR,"files", "tars_clean_dev_short.paths") | |
| _TARS_OTHER_TRAIN_SHORT = os.path.join(_BASE_DATA_DIR,"files","tars_other_train_short.paths") | |
| _TARS_OTHER_TEST_SHORT = os.path.join(_BASE_DATA_DIR,"files", "tars_other_test_short.paths") | |
| _TARS_OTHER_DEV_SHORT = os.path.join(_BASE_DATA_DIR,"files", "tars_other_dev_short.paths") | |
| _METADATA_CLEAN_TRAIN_LONG = os.path.join(_BASE_DATA_DIR,"files","clean_train_parlament_long.csv") | |
| _METADATA_CLEAN_TEST_LONG = os.path.join(_BASE_DATA_DIR,"files", "clean_test_parlament_long.csv") | |
| _METADATA_CLEAN_DEV_LONG = os.path.join(_BASE_DATA_DIR,"files", "clean_dev_parlament_long.csv") | |
| _METADATA_OTHER_TRAIN_LONG = os.path.join(_BASE_DATA_DIR,"files","other_train_parlament_long.csv") | |
| _METADATA_OTHER_TEST_LONG = os.path.join(_BASE_DATA_DIR,"files", "other_test_parlament_long.csv") | |
| _METADATA_OTHER_DEV_LONG = os.path.join(_BASE_DATA_DIR,"files", "other_dev_parlament_long.csv") | |
| _TARS_CLEAN_TRAIN_LONG = os.path.join(_BASE_DATA_DIR,"files","tars_clean_train_long.paths") | |
| _TARS_CLEAN_TEST_LONG = os.path.join(_BASE_DATA_DIR,"files", "tars_clean_test_long.paths") | |
| _TARS_CLEAN_DEV_LONG = os.path.join(_BASE_DATA_DIR,"files", "tars_clean_dev_long.paths") | |
| _TARS_OTHER_TRAIN_LONG = os.path.join(_BASE_DATA_DIR,"files","tars_other_train_long.paths") | |
| _TARS_OTHER_TEST_LONG = os.path.join(_BASE_DATA_DIR,"files", "tars_other_test_long.paths") | |
| _TARS_OTHER_DEV_LONG = os.path.join(_BASE_DATA_DIR,"files", "tars_other_dev_long.paths") | |
| class ParlamentASRConfig(datasets.BuilderConfig): | |
| """BuilderConfig for Parlament ASR""" | |
| def __init__(self, name, **kwargs): | |
| name=_NAME | |
| super().__init__(name=name, **kwargs) | |
| class ParlamentASR(datasets.GeneratorBasedBuilder): | |
| """Parlament ASR""" | |
| VERSION = datasets.Version(_VERSION) | |
| BUILDER_CONFIGS = [ | |
| ParlamentASRConfig( | |
| name=_NAME, | |
| version=datasets.Version(_VERSION), | |
| ) | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "identifier": datasets.Value("string"), | |
| "audio": datasets.Audio(sampling_rate=16000), | |
| "segment_path": datasets.Value("string"), | |
| "text": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| metadata_clean_train_short=dl_manager.download_and_extract(_METADATA_CLEAN_TRAIN_SHORT) | |
| metadata_clean_test_short=dl_manager.download_and_extract(_METADATA_CLEAN_TEST_SHORT) | |
| metadata_clean_dev_short=dl_manager.download_and_extract(_METADATA_CLEAN_DEV_SHORT) | |
| metadata_other_train_short=dl_manager.download_and_extract(_METADATA_OTHER_TRAIN_SHORT) | |
| metadata_other_test_short=dl_manager.download_and_extract(_METADATA_OTHER_TEST_SHORT) | |
| metadata_other_dev_short=dl_manager.download_and_extract(_METADATA_OTHER_DEV_SHORT) | |
| tars_clean_train_short=dl_manager.download_and_extract(_TARS_CLEAN_TRAIN_SHORT) | |
| tars_clean_test_short=dl_manager.download_and_extract(_TARS_CLEAN_TEST_SHORT) | |
| tars_clean_dev_short=dl_manager.download_and_extract(_TARS_CLEAN_DEV_SHORT) | |
| tars_other_train_short=dl_manager.download_and_extract(_TARS_OTHER_TRAIN_SHORT) | |
| tars_other_test_short=dl_manager.download_and_extract(_TARS_OTHER_TEST_SHORT) | |
| tars_other_dev_short=dl_manager.download_and_extract(_TARS_OTHER_DEV_SHORT) | |
| metadata_clean_train_long=dl_manager.download_and_extract(_METADATA_CLEAN_TRAIN_LONG) | |
| metadata_clean_test_long=dl_manager.download_and_extract(_METADATA_CLEAN_TEST_LONG) | |
| metadata_clean_dev_long=dl_manager.download_and_extract(_METADATA_CLEAN_DEV_LONG) | |
| metadata_other_train_long=dl_manager.download_and_extract(_METADATA_OTHER_TRAIN_LONG) | |
| metadata_other_test_long=dl_manager.download_and_extract(_METADATA_OTHER_TEST_LONG) | |
| metadata_other_dev_long=dl_manager.download_and_extract(_METADATA_OTHER_DEV_LONG) | |
| tars_clean_train_long=dl_manager.download_and_extract(_TARS_CLEAN_TRAIN_LONG) | |
| tars_clean_test_long=dl_manager.download_and_extract(_TARS_CLEAN_TEST_LONG) | |
| tars_clean_dev_long=dl_manager.download_and_extract(_TARS_CLEAN_DEV_LONG) | |
| tars_other_train_long=dl_manager.download_and_extract(_TARS_OTHER_TRAIN_LONG) | |
| tars_other_test_long=dl_manager.download_and_extract(_TARS_OTHER_TEST_LONG) | |
| tars_other_dev_long=dl_manager.download_and_extract(_TARS_OTHER_DEV_LONG) | |
| hash_tar_files=defaultdict(dict) | |
| with open(tars_clean_train_short,'r') as f: | |
| hash_tar_files['clean_train_short']=[path.replace('\n','') for path in f] | |
| with open(tars_clean_test_short,'r') as f: | |
| hash_tar_files['clean_test_short']=[path.replace('\n','') for path in f] | |
| with open(tars_clean_dev_short,'r') as f: | |
| hash_tar_files['clean_dev_short']=[path.replace('\n','') for path in f] | |
| with open(tars_other_train_short,'r') as f: | |
| hash_tar_files['other_train_short']=[path.replace('\n','') for path in f] | |
| with open(tars_other_test_short,'r') as f: | |
| hash_tar_files['other_test_short']=[path.replace('\n','') for path in f] | |
| with open(tars_other_dev_short,'r') as f: | |
| hash_tar_files['other_dev_short']=[path.replace('\n','') for path in f] | |
| with open(tars_clean_train_long,'r') as f: | |
| hash_tar_files['clean_train_long']=[path.replace('\n','') for path in f] | |
| with open(tars_clean_test_long,'r') as f: | |
| hash_tar_files['clean_test_long']=[path.replace('\n','') for path in f] | |
| with open(tars_clean_dev_long,'r') as f: | |
| hash_tar_files['clean_dev_long']=[path.replace('\n','') for path in f] | |
| with open(tars_other_train_long,'r') as f: | |
| hash_tar_files['other_train_long']=[path.replace('\n','') for path in f] | |
| with open(tars_other_test_long,'r') as f: | |
| hash_tar_files['other_test_long']=[path.replace('\n','') for path in f] | |
| with open(tars_other_dev_long,'r') as f: | |
| hash_tar_files['other_dev_long']=[path.replace('\n','') for path in f] | |
| hash_meta_paths={"clean_train_short":metadata_clean_train_short, | |
| "clean_test_short":metadata_clean_test_short, | |
| "clean_dev_short":metadata_clean_dev_short, | |
| "other_train_short":metadata_other_train_short, | |
| "other_test_short":metadata_other_test_short, | |
| "other_dev_short":metadata_other_dev_short, | |
| "clean_train_long":metadata_clean_train_long, | |
| "clean_test_long":metadata_clean_test_long, | |
| "clean_dev_long":metadata_clean_dev_long, | |
| "other_train_long":metadata_other_train_long, | |
| "other_test_long":metadata_other_test_long, | |
| "other_dev_long":metadata_other_dev_long} | |
| audio_paths = dl_manager.download(hash_tar_files) | |
| splits=["clean_train_short","clean_test_short","clean_dev_short","other_train_short","other_test_short","other_dev_short","clean_train_long","clean_test_long","clean_dev_long","other_train_long","other_test_long","other_dev_long"] | |
| local_extracted_audio_paths = ( | |
| dl_manager.extract(audio_paths) if not dl_manager.is_streaming else | |
| { | |
| split:[None] * len(audio_paths[split]) for split in splits | |
| } | |
| ) | |
| return [ | |
| datasets.SplitGenerator( | |
| name="clean_train_short", | |
| gen_kwargs={ | |
| "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["clean_train_short"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["clean_train_short"], | |
| "metadata_paths": hash_meta_paths["clean_train_short"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="clean_test_short", | |
| gen_kwargs={ | |
| "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["clean_test_short"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["clean_test_short"], | |
| "metadata_paths": hash_meta_paths["clean_test_short"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="clean_dev_short", | |
| gen_kwargs={ | |
| "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["clean_dev_short"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["clean_dev_short"], | |
| "metadata_paths": hash_meta_paths["clean_dev_short"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="other_train_short", | |
| gen_kwargs={ | |
| "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["other_train_short"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["other_train_short"], | |
| "metadata_paths": hash_meta_paths["other_train_short"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="other_test_short", | |
| gen_kwargs={ | |
| "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other_test_short"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["other_test_short"], | |
| "metadata_paths": hash_meta_paths["other_test_short"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="other_dev_short", | |
| gen_kwargs={ | |
| "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other_dev_short"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["other_dev_short"], | |
| "metadata_paths": hash_meta_paths["other_dev_short"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="clean_train_long", | |
| gen_kwargs={ | |
| "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["clean_train_long"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["clean_train_long"], | |
| "metadata_paths": hash_meta_paths["clean_train_long"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="clean_test_long", | |
| gen_kwargs={ | |
| "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["clean_test_long"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["clean_test_long"], | |
| "metadata_paths": hash_meta_paths["clean_test_long"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="clean_dev_long", | |
| gen_kwargs={ | |
| "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["clean_dev_long"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["clean_dev_long"], | |
| "metadata_paths": hash_meta_paths["clean_dev_long"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="other_train_long", | |
| gen_kwargs={ | |
| "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["other_train_long"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["other_train_long"], | |
| "metadata_paths": hash_meta_paths["other_train_long"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="other_test_long", | |
| gen_kwargs={ | |
| "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other_test_long"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["other_test_long"], | |
| "metadata_paths": hash_meta_paths["other_test_long"], | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name="other_dev_long", | |
| gen_kwargs={ | |
| "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other_dev_long"]], | |
| "local_extracted_archives_paths": local_extracted_audio_paths["other_dev_long"], | |
| "metadata_paths": hash_meta_paths["other_dev_long"], | |
| } | |
| ), | |
| ] | |
| def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths): | |
| features = ["segment_path","text"] | |
| with open(metadata_paths) as f: | |
| metadata = {x["identifier"]: x for x in csv.DictReader(f, delimiter=",")} | |
| for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths): | |
| for audio_filename, audio_file in audio_archive: | |
| audio_id =os.path.splitext(os.path.basename(audio_filename))[0] | |
| path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename | |
| yield audio_id, { | |
| "identifier": audio_id, | |
| **{feature: metadata[audio_id][feature] for feature in features}, | |
| "audio": {"path": path, "bytes": audio_file.read()}, | |
| } | |