ssolito commited on
Commit
d51a871
·
verified ·
1 Parent(s): e7e73ff

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +220 -3
README.md CHANGED
@@ -1,3 +1,220 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - automatic-speech-recognition
5
+ language:
6
+ - ca
7
+ tags:
8
+ - central
9
+ size_categories:
10
+ - 10K<n<100K
11
+ ---
12
+
13
+ # Dataset Card for ParlamentParla v3 - Speech Corpus of Catalan Parliamentary Sessions
14
+
15
+ A speech corpus composed of Catalan Parliamentary Sessions.The v3 and last version of the corpus includes both clean and other quality segments, divided into short segments (less than 30 seconds) and long segments (more than 30 seconds). The total dataset encompasses 1059h 48m 04s of speech, including 945h 51m 06s for the short segments and 113h 56m 58s for the long segments, with a total of 10.925.943 words.
16
+
17
+
18
+ ## Table of Contents
19
+ - [Dataset Details](#dataset-details)
20
+ - [Dataset Description](#dataset-description)
21
+ - [Dataset Sources](#dataset-sources)
22
+ - [Uses](#uses)
23
+ - [Dataset Structure](#dataset-structure)
24
+ - [Data Instances](#data-instances)
25
+ - [Data Fields](#data-fields)
26
+ - [Data Splits](#data-splits)
27
+ - [Example Usage](#example-usage)
28
+ - [Dataset Creation](#dataset-creation)
29
+ - [Curation Rationale](#curation-rationale)
30
+ - [Source Data](#source-data)
31
+ - [Data Collection and Processing](#data-collection-and-processing)
32
+ - [Who are the Source Data Producers?](#source-data-producers)
33
+ - [Annotations](#annotations)
34
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
35
+ - [Citation](#citation)
36
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
37
+ - [Social Impact of Dataset](#social-impact-of-dataset)
38
+ - [Discussion of Biases](#discussion-of-biases)
39
+ - [Other Known Limitations](#other-known-limitations)
40
+
41
+
42
+ ### Dataset Details
43
+
44
+ ### Dataset Description
45
+ This is the third version of the ParlamentParla speech corpus for Catalan: a collection of speech recordings with transcriptions intended for Automatic Speech Recognition (ASR) applications.
46
+ In recent years, data in Catalan language has increased considerably. With this release we develop the third version of the ParlamentParla speech corpus, which will be very valuable mainly for training and evaluating speech recognition systems.
47
+ We used the content of the Catalan Parlamentary sessions: the audio segments were extracted from recordings the Catalan Parliament ([Parlament de Catalunya](https://www.parlament.cat/)) plenary sessions. Taking advantage of the manual transcriptions, we created high quality audio segments in Catalan along with the aligned transcriptions.
48
+ The extensive time span covered by the sessions, from January 23, 2008, to October 24, 2023, provides a broad range of linguistic phenomena and topics, further enriching the corpus. With 317 sessions in total, the corpus is substantial and should provide ample data for various research and development purposes in speech recognition.
49
+ The final corpus has been extracted March 6, 2024.
50
+
51
+
52
+ - **Curated by:** Language Technologies Unit at the Barcelona Supercomputing Center ([email protected])
53
+ - **Funded by:** This work is funded by the Ministerio para la Transformación Digital y de la Función Pública - Funded by EU – NextGenerationEU within the framework of the [project ILENIA](https://proyectoilenia.es/) with reference 2022/TL22/00215337, 2022/TL22/00215336, 2022/TL22/00215335 y 2022/TL22/00215334
54
+ - **Shared by:** [More Information Needed]
55
+ - **Language(s) (NLP):** ca-ce
56
+ - **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/deed.es)
57
+
58
+
59
+ ### Dataset Sources
60
+
61
+ - **Repository:**
62
+ - **Paper:**
63
+
64
+ ### Uses
65
+
66
+ The purpose of this dataset is mainly for training automatic speech recognition (ASR) models in Catalan.
67
+ The language is limited to the plenary sessions of the parlament used to create the corpus and may not be representative to all domains.
68
+
69
+
70
+ ## Dataset Structure
71
+ ### Data Instances
72
+ Each instance have the following structure:
73
+ ```python
74
+ DatasetDict({
75
+ clean_train: Dataset({
76
+ features: ['identifier','audio','segment_path','text'],
77
+ num_rows: 164416
78
+ })
79
+ ```
80
+
81
+ Each data point is structured as:
82
+
83
+ - Audio ID
84
+ ```python
85
+ >>data['clean_train_short'][0]['identifier']
86
+
87
+ 2753976_90753a8d81888d998484_405.96_411.15999999999997
88
+ ```
89
+
90
+ - Audio
91
+ ```python
92
+ >>data['clean_train_short'][0]['audio']
93
+
94
+ {'path': '/Users/sarahsolito/.cache/huggingface/datasets/downloads/extracted/9f760c175adf0af8127242f9468e48120f7682b20cf5c5813bfe481a108524bf/parlament_parla_v3/corpus/speech/2753976/2753976_90753a8d81888d998484_405.96_411.15999999999997.wav', 'array': array([-1.07421875e-02, -1.33972168e-02, -1.62353516e-02, ...,
95
+ 1.64794922e-03, 3.05175781e-05, -4.02832031e-03]), 'sampling_rate': 16000}
96
+ ```
97
+ - Relative Path
98
+ ```python
99
+ >>data['clean_train_short'][0]['segment_path']
100
+
101
+ data/parlament_parla_v3/output_segment/2753976/2753976_90753a8d81888d998484_405.96_411.15999999999997.wav
102
+ ```
103
+
104
+
105
+ - Transcription
106
+ ```python
107
+ >>data['clean_train_short'][0]['text'])
108
+
109
+ idò jo em tragaré el salmó oh uh no hi pensava
110
+ ```
111
+
112
+ ### Data Fields
113
+
114
+ - "identifier" : (string) &rarr; the unique audio identificator
115
+ - "segment_path": (string) &rarr; the path to the audio
116
+ - "audio": datasets.Audio(sampling_rate=16000) &rarr; the decoded audio array, and the sampling rate.
117
+ - "text": (string) &rarr; clean version of the transcription
118
+
119
+
120
+ ### Data Splits
121
+ The dataset consists of a train, dev and test splits. The stat details are as follows:
122
+
123
+
124
+ | Subcorpus | Duration |
125
+ |------------------ |-----------|
126
+ | other_test_short | 13:42:44 |
127
+ | other_dev_short | 13:13:45 |
128
+ | other_train_short | 507:27:34 |
129
+ |*other total_short*| 534:24:03 |
130
+ | clean_test_short | 10:44:19 |
131
+ | clean_dev_short | 10:23:30 |
132
+ | clean_train_short | 390:19:12 |
133
+ |*clean total_short*| 411:27:03 |
134
+ |*Total* | 945:51:06 |
135
+
136
+ | Subcorpus | Duration |
137
+ |-------------------|-----------|
138
+ | other_test_long | 01:41:29 |
139
+ | other_dev_long | 01:51:30 |
140
+ | other_train_long | 72:35:10 |
141
+ |*other total_long* | 76:08:10 |
142
+ | clean_test_long | 00:50:15 |
143
+ | clean_dev_long | 00:46:44 |
144
+ | clean_train_long | 36:11:46 |
145
+ |*clean total_long* | 37:48:47 |
146
+ |*Total* | 113:56:58 |
147
+
148
+ :04
149
+
150
+ ### Example Usage
151
+
152
+
153
+ To load a specific split ,for example, the training split do:
154
+
155
+ ```python
156
+ from datasets import load_dataset
157
+ data = load_dataset("projecte-aina/parlament_parla_v3_asr_a",split="clean_train_short")
158
+ ```
159
+
160
+ ## Dataset Creation
161
+
162
+ ### Curation Rationale
163
+
164
+ The directory called "speech" contains all the speech files of the corpus. The files in the speech directory are divided into the "clean" and the "other" directories.
165
+
166
+ ### Source Data
167
+
168
+ The content belongs to the Catalan Parliament and the data is
169
+ released conforming their [terms of use](https://www.parlament.cat/pcat/serveis-parlament/avis-legal/).
170
+
171
+
172
+
173
+ ### Data Collection and Processing
174
+
175
+ The dataset's transcriptions are released in a clean version.
176
+ The clean versions have been normalized at an orthographic level in lower-case.
177
+ The normalization process was performed removing punctuation marks and characters that are not present in the Catalan alphabet.
178
+ Number expansion was also perfomed.
179
+
180
+ In order to obtain a corpus of the highest possible quality, we also apply automatic language detection processes to each segment to prevent code-switching, and evaluate the quality of the transcriptions to eliminate both low quality segments and those that are not in Catalan.
181
+
182
+
183
+ ### Who are the source data producers?
184
+
185
+ The content belongs to the Catalan Parliament and the data is released conforming their [terms
186
+ of use](https://www.parlament.cat/pcat/serveis-parlament/avis-legal/).
187
+
188
+ ### Annotations
189
+
190
+ The dataset doesn't contain any additional annotation.
191
+
192
+
193
+ ### Personal and Sensitive Information
194
+
195
+ The dataset consists of Catalan parliamentary speeches and their transcription. The dataset contains no personal information except for speech, which is considered personal data.
196
+ Consequently, the speakers' voices in this corpus have been subjected to anonymization treatment in compliance with applicable regulations, such as the General Data Protection Regulation (GDPR) in the European Union. You agree to not attempt to determine the identity of speakers in this dataset.
197
+
198
+ ### Citation
199
+ ```
200
+ @misc{bscib32024,
201
+ title={ParlamentParla v3 - Speech Corpus of Catalan Parliamentary Sessions},
202
+ author={Baybars, Kulebi},
203
+ publisher={Barcelona Supercomputing Center},
204
+ year={2024},
205
+ url={},
206
+ }
207
+ ```
208
+
209
+ ## Considerations for Using the Data
210
+ ### Social Impact of Dataset
211
+
212
+ ParlamentParla_v3 is a source of speech data that will be valuable in development of speech technologies for Catalan language and its varieties.
213
+
214
+ ### Discussion of Biases
215
+
216
+ No specific bias mitigation strategies were applied to this dataset. Inherent biases may exist within the data.
217
+
218
+ ### Other Known Limitations
219
+
220
+ Speakers, their gender and age are not identified and one or more speakers could be speaking in the same recording. For these reasons, we don't know the total number of speakers in the corpus and their gender/age.