prpigitcse commited on
Commit
c7899e1
·
verified ·
1 Parent(s): d7e629b

Upload dataset-generator.py

Browse files
Files changed (1) hide show
  1. dataset-generator.py +161 -0
dataset-generator.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import csv
4
+ from io import StringIO
5
+ import time
6
+
7
+ # --- Core Tic-Tac-Toe Logic Functions ---
8
+ def check_win(board):
9
+ """
10
+ Checks if the current player (who just made the last move) has won.
11
+ board: 9-element list where 1=X, -1=O, 0=Empty
12
+ """
13
+ winning_lines = [
14
+ (0, 1, 2), (3, 4, 5), (6, 7, 8), # Rows
15
+ (0, 3, 6), (1, 4, 7), (2, 5, 8), # Columns
16
+ (0, 4, 8), (2, 4, 6) # Diagonals
17
+ ]
18
+
19
+ for line in winning_lines:
20
+ if abs(board[line[0]] + board[line[1]] + board[line[2]]) == 3:
21
+ return True
22
+
23
+ def get_board_str(board):
24
+ """Converts the encoded board to a human-readable string."""
25
+ symbols = { 1: 'X', -1: 'O', 0: '_' }
26
+ return ','.join(symbols[p] for p in board)
27
+
28
+ # --- Symmetry Normalization (for symmetry_id) ---
29
+ def normalize_board(board):
30
+ """
31
+ Finds the canonical (normalized) representation of a board state.
32
+ Used for generating a consistent 'symmetry_id'.
33
+ """
34
+ transformations = [
35
+ (0, 1, 2, 3, 4, 5, 6, 7, 8), # Identity (0 Degree)
36
+ (6, 3, 0, 7, 4, 1, 8, 5, 2), # Roatation (90 Degree)
37
+ (8, 7, 6, 5, 4, 3, 2, 1, 0), # Rotation (180 Degree)
38
+ (2, 5, 8, 1, 4, 7, 0, 3, 6), # Rotation (270 Degree)
39
+ (6, 7, 8, 3, 4, 5, 0, 1, 2), # Vertical Reflection
40
+ (2, 1, 0, 5, 4, 3, 8, 7, 6), # Horizontal Reflection
41
+ (8, 5, 2, 7, 4, 1, 6, 3, 0), # Diagonal reflection (top-left to bottom-right)
42
+ (0, 3, 6, 1, 4, 7, 2, 5, 8) # Diagonal Reflection (top-right to bottom-left)
43
+ ]
44
+
45
+ canonical_board = tuple(board)
46
+
47
+ # Iterate through all transformations to find the lexicographically smallest board tuple
48
+ for transform in transformations:
49
+ transformed_board = tuple(board[i] for i in transform)
50
+ if transformed_board < canonical_board:
51
+ canonical_board = transformed_board
52
+
53
+ return hash(canonical_board)
54
+
55
+
56
+ # Global counter for unique game sequences
57
+ GAME_COUNT = 0
58
+ # Define the field names (header) for the CSV file
59
+ FIELDNAMES = [
60
+ 'game_id', 'step', 'player', 'board_state', 'next_move',
61
+ 'result', 'board_state_str', 'symmetry_id'
62
+ ]
63
+ # File name for the output
64
+ FILE_NAME = 'tic_tac_toe_dataset.csv'
65
+
66
+ def generate_sequences(board, current_player, history, csv_writer):
67
+ """
68
+ Recursively explores the Tic-Tac-Toe game tree.
69
+ board: current board state (numpy array)
70
+ current_player: 1 (X) or -1 (O)
71
+ history: list of (board_state, next_move_index) tuples in the current game
72
+ csv_writer: The writer object to output rows directly to the file
73
+ """
74
+ global GAME_COUNT
75
+
76
+ # Check for terminal state (Win or Draw)
77
+ is_win = check_win(board)
78
+ is_draw = not is_win and np.all(board != 0)
79
+
80
+ if is_win or is_draw:
81
+ # --- Game Ended: Finalize history ---
82
+ GAME_COUNT += 1
83
+
84
+ # Determine the final result
85
+ if is_win:
86
+ # The previous player (who is -current_player) won.
87
+ winner = 'X' if current_player == -1 else 'O'
88
+ result = f'{winner} Win'
89
+ else:
90
+ result = 'Draw'
91
+
92
+ # Write all moves in the history to the CSV file
93
+ for i, (prev_board, move_idx) in enumerate(history):
94
+
95
+ # The player whose turn it was to make this move
96
+ player_char = 'X' if (i + 1) % 2 != 0 else 'O'
97
+
98
+ row = {
99
+ 'game_id': GAME_COUNT,
100
+ 'step': i + 1,
101
+ 'player': player_char,
102
+ 'board_state': [int(x) for x in board.tolist()], # Convert numpy array back to list for CSV
103
+ 'next_move': move_idx,
104
+ 'result': result,
105
+ 'board_state_str': get_board_str(prev_board),
106
+ 'symmetry_id': normalize_board(prev_board)
107
+ }
108
+ csv_writer.writerow(row)
109
+ return
110
+
111
+ empty_spots = np.where(board == 0)[0]
112
+
113
+ for move_index in empty_spots:
114
+ # 1. Prepare data for the current move before it's made
115
+ current_move_data = (board.copy(), move_index)
116
+
117
+ # 2. Make the move
118
+ new_board = board.copy()
119
+ new_board[move_index] = current_player
120
+
121
+ # 3. Recurse with the new state
122
+ generate_sequences(
123
+ board=new_board,
124
+ current_player=-current_player, # Toggle player
125
+ history=history + [current_move_data],
126
+ csv_writer=csv_writer
127
+ )
128
+
129
+ # --- 4. Execution in Jupyter ---
130
+
131
+ # Clear and reset globals for safe re-running
132
+ GAME_COUNT = 0
133
+ CSV_BUFFER = StringIO()
134
+ csv_writer = csv.DictWriter(CSV_BUFFER, fieldnames=FIELDNAMES)
135
+ csv_writer.writeheader()
136
+
137
+ initial_board = np.zeros(9, dtype=int)
138
+ start_time = time.time()
139
+
140
+ print("🚀 Starting dataset generation (this may take a few seconds)...")
141
+
142
+ generate_sequences(
143
+ board=initial_board,
144
+ current_player=1, # X is 1
145
+ history=[],
146
+ csv_writer=csv_writer
147
+ )
148
+
149
+ end_time = time.time()
150
+ print(f"✅ Generation complete in {end_time - start_time:.2f} seconds.")
151
+ print(f"Total distinct game sequences found: **{GAME_COUNT}**")
152
+
153
+ # Get the CSV content from the buffer
154
+ CSV_BUFFER.seek(0)
155
+ df = pd.read_csv(CSV_BUFFER)
156
+
157
+ print(f"Total move entries (rows) generated: **{len(df)}**")
158
+
159
+ # Save the DataFrame to a CSV file for persistence
160
+ df.to_csv('tic_tac_toe_dataset.csv', index=False)
161
+ print("\n💾 Dataset saved to **tic_tac_toe_dataset.csv**")