Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
{}
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# Dataset Card for KMNIST
|
| 6 |
+
|
| 7 |
+
<!-- Provide a quick summary of the dataset. -->
|
| 8 |
+
|
| 9 |
+
## Dataset Details
|
| 10 |
+
|
| 11 |
+
### Dataset Description
|
| 12 |
+
|
| 13 |
+
<!-- Provide a longer summary of what this dataset is. -->
|
| 14 |
+
This dataset contains two variants, **Kuzushiji-MNIST** and **Kuzushiji-49**.
|
| 15 |
+
|
| 16 |
+
**Kuzushiji-MNIST** is a drop-in replacement for the MNIST dataset.
|
| 17 |
+
|
| 18 |
+
**Kuzushiji-49**, as the name suggests, has 49 classes, is a much larger, but imbalanced dataset containing 48 Hiragana characters and one Hiragana iteration mark.
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
### Dataset Sources
|
| 22 |
+
|
| 23 |
+
<!-- Provide the basic links for the dataset. -->
|
| 24 |
+
|
| 25 |
+
- **Homepage:** https://github.com/rois-codh/kmnist
|
| 26 |
+
- **Paper:** Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., & Ha, D. (2018). Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718.
|
| 27 |
+
|
| 28 |
+
## Dataset Structure
|
| 29 |
+
|
| 30 |
+
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
|
| 31 |
+
|
| 32 |
+
#### Kuzushiji-MNIST:
|
| 33 |
+
|
| 34 |
+
Total images: 70,000
|
| 35 |
+
|
| 36 |
+
Classes: 10 categories
|
| 37 |
+
|
| 38 |
+
Splits:
|
| 39 |
+
|
| 40 |
+
- **Train:** 60,000 images
|
| 41 |
+
|
| 42 |
+
- **Test:** 10,000 images
|
| 43 |
+
|
| 44 |
+
Image specs: 28×28 pixels, grayscale
|
| 45 |
+
|
| 46 |
+
#### Kuzushiji-49:
|
| 47 |
+
|
| 48 |
+
Total images: 270,912
|
| 49 |
+
|
| 50 |
+
Classes: 49 categories
|
| 51 |
+
|
| 52 |
+
Splits:
|
| 53 |
+
|
| 54 |
+
- **Train:** 232,365 images
|
| 55 |
+
|
| 56 |
+
- **Test:** 38,547 images
|
| 57 |
+
|
| 58 |
+
Image specs: 28×28 pixels, grayscale
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
## Example Usage
|
| 62 |
+
Below is a quick example of how to load this dataset via the Hugging Face Datasets library.
|
| 63 |
+
```
|
| 64 |
+
from datasets import load_dataset
|
| 65 |
+
|
| 66 |
+
# Load the dataset
|
| 67 |
+
dataset = load_dataset("randall-lab/kmnist", name="kmnist", split="train", trust_remote_code=True)
|
| 68 |
+
# dataset = load_dataset("randall-lab/kmnist", name="kmnist", split="test", trust_remote_code=True)
|
| 69 |
+
# dataset = load_dataset("randall-lab/kmnist", name="k49mnist", split="train", trust_remote_code=True)
|
| 70 |
+
# dataset = load_dataset("randall-lab/kmnist", name="k49mnist", split="test", trust_remote_code=True)
|
| 71 |
+
|
| 72 |
+
# Access a sample from the dataset
|
| 73 |
+
example = dataset[0]
|
| 74 |
+
image = example["image"]
|
| 75 |
+
label = example["label"]
|
| 76 |
+
|
| 77 |
+
image.show() # Display the image
|
| 78 |
+
print(f"Label: {label}")
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
## Citation
|
| 82 |
+
|
| 83 |
+
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
|
| 84 |
+
|
| 85 |
+
**BibTeX:**
|
| 86 |
+
|
| 87 |
+
@article{clanuwat2018deep,
|
| 88 |
+
title={Deep learning for classical japanese literature},
|
| 89 |
+
author={Clanuwat, Tarin and Bober-Irizar, Mikel and Kitamoto, Asanobu and Lamb, Alex and Yamamoto, Kazuaki and Ha, David},
|
| 90 |
+
journal={arXiv preprint arXiv:1812.01718},
|
| 91 |
+
year={2018}
|
| 92 |
+
}
|