Datasets:
Languages:
English
ArXiv:
Tags:
query-by-example-spoken-term-detection
audio-slot-filling
speaker-diarization
automatic-speaker-verification
License:
Update files from the datasets library (from 1.17.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.17.0
superb.py
CHANGED
|
@@ -137,7 +137,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 137 |
features=datasets.Features(
|
| 138 |
{
|
| 139 |
"file": datasets.Value("string"),
|
| 140 |
-
"audio": datasets.
|
| 141 |
"text": datasets.Value("string"),
|
| 142 |
"speaker_id": datasets.Value("int64"),
|
| 143 |
"chapter_id": datasets.Value("int64"),
|
|
@@ -162,7 +162,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 162 |
features=datasets.Features(
|
| 163 |
{
|
| 164 |
"file": datasets.Value("string"),
|
| 165 |
-
"audio": datasets.
|
| 166 |
"label": datasets.ClassLabel(
|
| 167 |
names=[
|
| 168 |
"yes",
|
|
@@ -196,7 +196,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 196 |
features=datasets.Features(
|
| 197 |
{
|
| 198 |
"file": datasets.Value("string"),
|
| 199 |
-
"audio": datasets.
|
| 200 |
"speaker_id": datasets.Value("string"),
|
| 201 |
"text": datasets.Value("string"),
|
| 202 |
"action": datasets.ClassLabel(
|
|
@@ -238,7 +238,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 238 |
features=datasets.Features(
|
| 239 |
{
|
| 240 |
"file": datasets.Value("string"),
|
| 241 |
-
"audio": datasets.
|
| 242 |
# VoxCeleb1 contains 1251 speaker IDs in range ["id10001",..."id11251"]
|
| 243 |
"label": datasets.ClassLabel(names=[f"id{i + 10001}" for i in range(1251)]),
|
| 244 |
}
|
|
@@ -261,7 +261,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 261 |
{
|
| 262 |
"record_id": datasets.Value("string"),
|
| 263 |
"file": datasets.Value("string"),
|
| 264 |
-
"audio": datasets.
|
| 265 |
"start": datasets.Value("int64"),
|
| 266 |
"end": datasets.Value("int64"),
|
| 267 |
"speakers": [
|
|
@@ -289,7 +289,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 289 |
features=datasets.Features(
|
| 290 |
{
|
| 291 |
"file": datasets.Value("string"),
|
| 292 |
-
"audio": datasets.
|
| 293 |
"label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
|
| 294 |
}
|
| 295 |
),
|
|
|
|
| 137 |
features=datasets.Features(
|
| 138 |
{
|
| 139 |
"file": datasets.Value("string"),
|
| 140 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 141 |
"text": datasets.Value("string"),
|
| 142 |
"speaker_id": datasets.Value("int64"),
|
| 143 |
"chapter_id": datasets.Value("int64"),
|
|
|
|
| 162 |
features=datasets.Features(
|
| 163 |
{
|
| 164 |
"file": datasets.Value("string"),
|
| 165 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 166 |
"label": datasets.ClassLabel(
|
| 167 |
names=[
|
| 168 |
"yes",
|
|
|
|
| 196 |
features=datasets.Features(
|
| 197 |
{
|
| 198 |
"file": datasets.Value("string"),
|
| 199 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 200 |
"speaker_id": datasets.Value("string"),
|
| 201 |
"text": datasets.Value("string"),
|
| 202 |
"action": datasets.ClassLabel(
|
|
|
|
| 238 |
features=datasets.Features(
|
| 239 |
{
|
| 240 |
"file": datasets.Value("string"),
|
| 241 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 242 |
# VoxCeleb1 contains 1251 speaker IDs in range ["id10001",..."id11251"]
|
| 243 |
"label": datasets.ClassLabel(names=[f"id{i + 10001}" for i in range(1251)]),
|
| 244 |
}
|
|
|
|
| 261 |
{
|
| 262 |
"record_id": datasets.Value("string"),
|
| 263 |
"file": datasets.Value("string"),
|
| 264 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 265 |
"start": datasets.Value("int64"),
|
| 266 |
"end": datasets.Value("int64"),
|
| 267 |
"speakers": [
|
|
|
|
| 289 |
features=datasets.Features(
|
| 290 |
{
|
| 291 |
"file": datasets.Value("string"),
|
| 292 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 293 |
"label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
|
| 294 |
}
|
| 295 |
),
|