from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split, Value, Features import datasets import csv class FiveHTKiPrediction(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return DatasetInfo( description="Curated dataset of serotonin receptor Ki values from PDSP Ki Database.", features=Features({ "smiles": Value("string"), "ki": Value("float"), "receptor": Value("string"), "source": Value("string"), }), supervised_keys=None, ) def _split_generators(self, dl_manager): data_path = dl_manager.download_and_extract("data/KiDatabase.csv") return [SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepath": data_path})] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f) for idx, row in enumerate(reader): try: yield idx, { "smiles": row["SMILES"].strip(), "ki": float(row["ki Val"]) if row["ki Val"] else None, "receptor": row["Name"].strip(), "source": row["source"].strip(), } except Exception: continue