""" This script loads sanitized molecular fingerprint data, runs H2O AutoML to predict Ki values (nM) for serotonin receptor ligands, and saves the test set predictions. Expected input file: fingerprints_with_ki.csv Output: h2o_test_predictions.csv """ import h2o import pandas as pd from h2o.automl import H2OAutoML # Initialize H2O cluster h2o.init(max_mem_size="8G") # Load fingerprinted dataset (must be in same directory or provide full path) df = pd.read_csv("fingerprints_with_ki.csv") # Convert to H2OFrame df_h2o = h2o.H2OFrame(df) # Ensure target column is numeric df_h2o["Ki_nM"] = df_h2o["Ki_nM"].asnumeric() # Split into training and test sets train, test = df_h2o.split_frame(ratios=[0.8], seed=42) # Define predictors and response x = df_h2o.columns[:-1] # all fingerprint columns y = "Ki_nM" # Run AutoML aml = H2OAutoML( max_models=20, max_runtime_secs=600, seed=1, sort_metric="RMSE" ) aml.train(x=x, y=y, training_frame=train) # Evaluate model perf = aml.leader.model_performance(test_data=test) print("\n✅ Test Set Performance:") print("R² Score:", perf.r2()) print("RMSE:", perf.rmse()) # Save predictions preds = aml.leader.predict(test) h2o.export_file(preds, path="h2o_test_predictions.csv", force=True)