| repo
				 stringlengths 7 55 | path
				 stringlengths 4 127 | func_name
				 stringlengths 1 88 | original_string
				 stringlengths 75 19.8k | language
				 stringclasses 1
				value | code
				 stringlengths 75 19.8k | code_tokens
				 list | docstring
				 stringlengths 3 17.3k | docstring_tokens
				 list | sha
				 stringlengths 40 40 | url
				 stringlengths 87 242 | partition
				 stringclasses 1
				value | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 
	smdabdoub/phylotoast | 
	phylotoast/util.py | 
	split_phylogeny | 
	def split_phylogeny(p, level="s"):
    """
    Return either the full or truncated version of a QIIME-formatted taxonomy string.
    :type p: str
    :param p: A QIIME-formatted taxonomy string: k__Foo; p__Bar; ...
    :type level: str
    :param level: The different level of identification are kingdom (k), phylum (p),
                  class (c),order (o), family (f), genus (g) and species (s). If level is
                  not provided, the default level of identification is species.
    :rtype: str
    :return: A QIIME-formatted taxonomy string up to the classification given
            by param level.
    """
    level = level+"__"
    result = p.split(level)
    return result[0]+level+result[1].split(";")[0] | 
	python | 
	def split_phylogeny(p, level="s"):
    """
    Return either the full or truncated version of a QIIME-formatted taxonomy string.
    :type p: str
    :param p: A QIIME-formatted taxonomy string: k__Foo; p__Bar; ...
    :type level: str
    :param level: The different level of identification are kingdom (k), phylum (p),
                  class (c),order (o), family (f), genus (g) and species (s). If level is
                  not provided, the default level of identification is species.
    :rtype: str
    :return: A QIIME-formatted taxonomy string up to the classification given
            by param level.
    """
    level = level+"__"
    result = p.split(level)
    return result[0]+level+result[1].split(";")[0] | 
	[
  "def",
  "split_phylogeny",
  "(",
  "p",
  ",",
  "level",
  "=",
  "\"s\"",
  ")",
  ":",
  "level",
  "=",
  "level",
  "+",
  "\"__\"",
  "result",
  "=",
  "p",
  ".",
  "split",
  "(",
  "level",
  ")",
  "return",
  "result",
  "[",
  "0",
  "]",
  "+",
  "level",
  "+",
  "result",
  "[",
  "1",
  "]",
  ".",
  "split",
  "(",
  "\";\"",
  ")",
  "[",
  "0",
  "]"
] | 
	Return either the full or truncated version of a QIIME-formatted taxonomy string.
    :type p: str
    :param p: A QIIME-formatted taxonomy string: k__Foo; p__Bar; ...
    :type level: str
    :param level: The different level of identification are kingdom (k), phylum (p),
                  class (c),order (o), family (f), genus (g) and species (s). If level is
                  not provided, the default level of identification is species.
    :rtype: str
    :return: A QIIME-formatted taxonomy string up to the classification given
            by param level. | 
	[
  "Return",
  "either",
  "the",
  "full",
  "or",
  "truncated",
  "version",
  "of",
  "a",
  "QIIME",
  "-",
  "formatted",
  "taxonomy",
  "string",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/util.py#L159-L177 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/util.py | 
	ensure_dir | 
	def ensure_dir(d):
    """
    Check to make sure the supplied directory path does not exist, if so, create it. The
    method catches OSError exceptions and returns a descriptive message instead of
    re-raising the error.
    :type d: str
    :param d: It is the full path to a directory.
    :return: Does not return anything, but creates a directory path if it doesn't exist
             already.
    """
    if not os.path.exists(d):
        try:
            os.makedirs(d)
        except OSError as oe:
            # should not happen with os.makedirs
            # ENOENT: No such file or directory
            if os.errno == errno.ENOENT:
                msg = twdd("""One or more directories in the path ({}) do not exist. If
                           you are specifying a new directory for output, please ensure
                           all other directories in the path currently exist.""")
                return msg.format(d)
            else:
                msg = twdd("""An error occurred trying to create the output directory
                           ({}) with message: {}""")
                return msg.format(d, oe.strerror) | 
	python | 
	def ensure_dir(d):
    """
    Check to make sure the supplied directory path does not exist, if so, create it. The
    method catches OSError exceptions and returns a descriptive message instead of
    re-raising the error.
    :type d: str
    :param d: It is the full path to a directory.
    :return: Does not return anything, but creates a directory path if it doesn't exist
             already.
    """
    if not os.path.exists(d):
        try:
            os.makedirs(d)
        except OSError as oe:
            # should not happen with os.makedirs
            # ENOENT: No such file or directory
            if os.errno == errno.ENOENT:
                msg = twdd("""One or more directories in the path ({}) do not exist. If
                           you are specifying a new directory for output, please ensure
                           all other directories in the path currently exist.""")
                return msg.format(d)
            else:
                msg = twdd("""An error occurred trying to create the output directory
                           ({}) with message: {}""")
                return msg.format(d, oe.strerror) | 
	[
  "def",
  "ensure_dir",
  "(",
  "d",
  ")",
  ":",
  "if",
  "not",
  "os",
  ".",
  "path",
  ".",
  "exists",
  "(",
  "d",
  ")",
  ":",
  "try",
  ":",
  "os",
  ".",
  "makedirs",
  "(",
  "d",
  ")",
  "except",
  "OSError",
  "as",
  "oe",
  ":",
  "# should not happen with os.makedirs",
  "# ENOENT: No such file or directory",
  "if",
  "os",
  ".",
  "errno",
  "==",
  "errno",
  ".",
  "ENOENT",
  ":",
  "msg",
  "=",
  "twdd",
  "(",
  "\"\"\"One or more directories in the path ({}) do not exist. If\n                           you are specifying a new directory for output, please ensure\n                           all other directories in the path currently exist.\"\"\"",
  ")",
  "return",
  "msg",
  ".",
  "format",
  "(",
  "d",
  ")",
  "else",
  ":",
  "msg",
  "=",
  "twdd",
  "(",
  "\"\"\"An error occurred trying to create the output directory\n                           ({}) with message: {}\"\"\"",
  ")",
  "return",
  "msg",
  ".",
  "format",
  "(",
  "d",
  ",",
  "oe",
  ".",
  "strerror",
  ")"
] | 
	Check to make sure the supplied directory path does not exist, if so, create it. The
    method catches OSError exceptions and returns a descriptive message instead of
    re-raising the error.
    :type d: str
    :param d: It is the full path to a directory.
    :return: Does not return anything, but creates a directory path if it doesn't exist
             already. | 
	[
  "Check",
  "to",
  "make",
  "sure",
  "the",
  "supplied",
  "directory",
  "path",
  "does",
  "not",
  "exist",
  "if",
  "so",
  "create",
  "it",
  ".",
  "The",
  "method",
  "catches",
  "OSError",
  "exceptions",
  "and",
  "returns",
  "a",
  "descriptive",
  "message",
  "instead",
  "of",
  "re",
  "-",
  "raising",
  "the",
  "error",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/util.py#L180-L206 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/util.py | 
	file_handle | 
	def file_handle(fnh, mode="rU"):
    """
    Takes either a file path or an open file handle, checks validity and returns an open
    file handle or raises an appropriate Exception.
    :type fnh: str
    :param fnh: It is the full path to a file, or open file handle
    :type mode: str
    :param mode: The way in which this file will be used, for example to read or write or
                 both. By default, file will be opened in rU mode.
    :return: Returns an opened file for appropriate usage.
    """
    handle = None
    if isinstance(fnh, file):
        if fnh.closed:
            raise ValueError("Input file is closed.")
        handle = fnh
    elif isinstance(fnh, str):
        handle = open(fnh, mode)
    return handle | 
	python | 
	def file_handle(fnh, mode="rU"):
    """
    Takes either a file path or an open file handle, checks validity and returns an open
    file handle or raises an appropriate Exception.
    :type fnh: str
    :param fnh: It is the full path to a file, or open file handle
    :type mode: str
    :param mode: The way in which this file will be used, for example to read or write or
                 both. By default, file will be opened in rU mode.
    :return: Returns an opened file for appropriate usage.
    """
    handle = None
    if isinstance(fnh, file):
        if fnh.closed:
            raise ValueError("Input file is closed.")
        handle = fnh
    elif isinstance(fnh, str):
        handle = open(fnh, mode)
    return handle | 
	[
  "def",
  "file_handle",
  "(",
  "fnh",
  ",",
  "mode",
  "=",
  "\"rU\"",
  ")",
  ":",
  "handle",
  "=",
  "None",
  "if",
  "isinstance",
  "(",
  "fnh",
  ",",
  "file",
  ")",
  ":",
  "if",
  "fnh",
  ".",
  "closed",
  ":",
  "raise",
  "ValueError",
  "(",
  "\"Input file is closed.\"",
  ")",
  "handle",
  "=",
  "fnh",
  "elif",
  "isinstance",
  "(",
  "fnh",
  ",",
  "str",
  ")",
  ":",
  "handle",
  "=",
  "open",
  "(",
  "fnh",
  ",",
  "mode",
  ")",
  "return",
  "handle"
] | 
	Takes either a file path or an open file handle, checks validity and returns an open
    file handle or raises an appropriate Exception.
    :type fnh: str
    :param fnh: It is the full path to a file, or open file handle
    :type mode: str
    :param mode: The way in which this file will be used, for example to read or write or
                 both. By default, file will be opened in rU mode.
    :return: Returns an opened file for appropriate usage. | 
	[
  "Takes",
  "either",
  "a",
  "file",
  "path",
  "or",
  "an",
  "open",
  "file",
  "handle",
  "checks",
  "validity",
  "and",
  "returns",
  "an",
  "open",
  "file",
  "handle",
  "or",
  "raises",
  "an",
  "appropriate",
  "Exception",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/util.py#L209-L231 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/util.py | 
	gather_categories | 
	def gather_categories(imap, header, categories=None):
    """
    Find the user specified categories in the map and create a dictionary to contain the
    relevant data for each type within the categories. Multiple categories will have their
    types combined such that each possible combination will have its own entry in the
    dictionary.
    :type imap: dict
    :param imap: The input mapping file data keyed by SampleID
    :type header: list
    :param header: The header line from the input mapping file. This will be searched for
                   the user-specified categories
    :type categories: list
    :param categories: The list of user-specified category column name from mapping file
    :rtype: dict
    :return: A sorted dictionary keyed on the combinations of all the types found within
             the user-specified categories. Each entry will contain an empty DataCategory
             namedtuple. If no categories are specified, a single entry with the key
             'default' will be returned
    """
    # If no categories provided, return all SampleIDs
    if categories is None:
        return {"default": DataCategory(set(imap.keys()), {})}
    cat_ids = [header.index(cat)
               for cat in categories if cat in header and "=" not in cat]
    table = OrderedDict()
    conditions = defaultdict(set)
    for i, cat in enumerate(categories):
        if "=" in cat and cat.split("=")[0] in header:
            cat_name = header[header.index(cat.split("=")[0])]
            conditions[cat_name].add(cat.split("=")[1])
    # If invalid categories or conditions identified, return all SampleIDs
    if not cat_ids and not conditions:
        return {"default": DataCategory(set(imap.keys()), {})}
    #If only category column given, return column-wise SampleIDs
    if cat_ids and not conditions:
        for sid, row in imap.items():
            cat_name = "_".join([row[cid] for cid in cat_ids])
            if cat_name not in table:
                table[cat_name] = DataCategory(set(), {})
            table[cat_name].sids.add(sid)
        return table
    # Collect all condition names
    cond_ids = set()
    for k in conditions:
        try:
            cond_ids.add(header.index(k))
        except ValueError:
            continue
    idx_to_test = set(cat_ids).union(cond_ids)
    # If column name and condition given, return overlapping SampleIDs of column and
    # condition combinations
    for sid, row in imap.items():
        if all([row[header.index(c)] in conditions[c] for c in conditions]):
            key = "_".join([row[idx] for idx in idx_to_test])
            try:
                assert key in table.keys()
            except AssertionError:
                table[key] = DataCategory(set(), {})
            table[key].sids.add(sid)
    try:
        assert len(table) > 0
    except AssertionError:
        return {"default": DataCategory(set(imap.keys()), {})}
    else:
        return table | 
	python | 
	def gather_categories(imap, header, categories=None):
    """
    Find the user specified categories in the map and create a dictionary to contain the
    relevant data for each type within the categories. Multiple categories will have their
    types combined such that each possible combination will have its own entry in the
    dictionary.
    :type imap: dict
    :param imap: The input mapping file data keyed by SampleID
    :type header: list
    :param header: The header line from the input mapping file. This will be searched for
                   the user-specified categories
    :type categories: list
    :param categories: The list of user-specified category column name from mapping file
    :rtype: dict
    :return: A sorted dictionary keyed on the combinations of all the types found within
             the user-specified categories. Each entry will contain an empty DataCategory
             namedtuple. If no categories are specified, a single entry with the key
             'default' will be returned
    """
    # If no categories provided, return all SampleIDs
    if categories is None:
        return {"default": DataCategory(set(imap.keys()), {})}
    cat_ids = [header.index(cat)
               for cat in categories if cat in header and "=" not in cat]
    table = OrderedDict()
    conditions = defaultdict(set)
    for i, cat in enumerate(categories):
        if "=" in cat and cat.split("=")[0] in header:
            cat_name = header[header.index(cat.split("=")[0])]
            conditions[cat_name].add(cat.split("=")[1])
    # If invalid categories or conditions identified, return all SampleIDs
    if not cat_ids and not conditions:
        return {"default": DataCategory(set(imap.keys()), {})}
    #If only category column given, return column-wise SampleIDs
    if cat_ids and not conditions:
        for sid, row in imap.items():
            cat_name = "_".join([row[cid] for cid in cat_ids])
            if cat_name not in table:
                table[cat_name] = DataCategory(set(), {})
            table[cat_name].sids.add(sid)
        return table
    # Collect all condition names
    cond_ids = set()
    for k in conditions:
        try:
            cond_ids.add(header.index(k))
        except ValueError:
            continue
    idx_to_test = set(cat_ids).union(cond_ids)
    # If column name and condition given, return overlapping SampleIDs of column and
    # condition combinations
    for sid, row in imap.items():
        if all([row[header.index(c)] in conditions[c] for c in conditions]):
            key = "_".join([row[idx] for idx in idx_to_test])
            try:
                assert key in table.keys()
            except AssertionError:
                table[key] = DataCategory(set(), {})
            table[key].sids.add(sid)
    try:
        assert len(table) > 0
    except AssertionError:
        return {"default": DataCategory(set(imap.keys()), {})}
    else:
        return table | 
	[
  "def",
  "gather_categories",
  "(",
  "imap",
  ",",
  "header",
  ",",
  "categories",
  "=",
  "None",
  ")",
  ":",
  "# If no categories provided, return all SampleIDs",
  "if",
  "categories",
  "is",
  "None",
  ":",
  "return",
  "{",
  "\"default\"",
  ":",
  "DataCategory",
  "(",
  "set",
  "(",
  "imap",
  ".",
  "keys",
  "(",
  ")",
  ")",
  ",",
  "{",
  "}",
  ")",
  "}",
  "cat_ids",
  "=",
  "[",
  "header",
  ".",
  "index",
  "(",
  "cat",
  ")",
  "for",
  "cat",
  "in",
  "categories",
  "if",
  "cat",
  "in",
  "header",
  "and",
  "\"=\"",
  "not",
  "in",
  "cat",
  "]",
  "table",
  "=",
  "OrderedDict",
  "(",
  ")",
  "conditions",
  "=",
  "defaultdict",
  "(",
  "set",
  ")",
  "for",
  "i",
  ",",
  "cat",
  "in",
  "enumerate",
  "(",
  "categories",
  ")",
  ":",
  "if",
  "\"=\"",
  "in",
  "cat",
  "and",
  "cat",
  ".",
  "split",
  "(",
  "\"=\"",
  ")",
  "[",
  "0",
  "]",
  "in",
  "header",
  ":",
  "cat_name",
  "=",
  "header",
  "[",
  "header",
  ".",
  "index",
  "(",
  "cat",
  ".",
  "split",
  "(",
  "\"=\"",
  ")",
  "[",
  "0",
  "]",
  ")",
  "]",
  "conditions",
  "[",
  "cat_name",
  "]",
  ".",
  "add",
  "(",
  "cat",
  ".",
  "split",
  "(",
  "\"=\"",
  ")",
  "[",
  "1",
  "]",
  ")",
  "# If invalid categories or conditions identified, return all SampleIDs",
  "if",
  "not",
  "cat_ids",
  "and",
  "not",
  "conditions",
  ":",
  "return",
  "{",
  "\"default\"",
  ":",
  "DataCategory",
  "(",
  "set",
  "(",
  "imap",
  ".",
  "keys",
  "(",
  ")",
  ")",
  ",",
  "{",
  "}",
  ")",
  "}",
  "#If only category column given, return column-wise SampleIDs",
  "if",
  "cat_ids",
  "and",
  "not",
  "conditions",
  ":",
  "for",
  "sid",
  ",",
  "row",
  "in",
  "imap",
  ".",
  "items",
  "(",
  ")",
  ":",
  "cat_name",
  "=",
  "\"_\"",
  ".",
  "join",
  "(",
  "[",
  "row",
  "[",
  "cid",
  "]",
  "for",
  "cid",
  "in",
  "cat_ids",
  "]",
  ")",
  "if",
  "cat_name",
  "not",
  "in",
  "table",
  ":",
  "table",
  "[",
  "cat_name",
  "]",
  "=",
  "DataCategory",
  "(",
  "set",
  "(",
  ")",
  ",",
  "{",
  "}",
  ")",
  "table",
  "[",
  "cat_name",
  "]",
  ".",
  "sids",
  ".",
  "add",
  "(",
  "sid",
  ")",
  "return",
  "table",
  "# Collect all condition names",
  "cond_ids",
  "=",
  "set",
  "(",
  ")",
  "for",
  "k",
  "in",
  "conditions",
  ":",
  "try",
  ":",
  "cond_ids",
  ".",
  "add",
  "(",
  "header",
  ".",
  "index",
  "(",
  "k",
  ")",
  ")",
  "except",
  "ValueError",
  ":",
  "continue",
  "idx_to_test",
  "=",
  "set",
  "(",
  "cat_ids",
  ")",
  ".",
  "union",
  "(",
  "cond_ids",
  ")",
  "# If column name and condition given, return overlapping SampleIDs of column and",
  "# condition combinations",
  "for",
  "sid",
  ",",
  "row",
  "in",
  "imap",
  ".",
  "items",
  "(",
  ")",
  ":",
  "if",
  "all",
  "(",
  "[",
  "row",
  "[",
  "header",
  ".",
  "index",
  "(",
  "c",
  ")",
  "]",
  "in",
  "conditions",
  "[",
  "c",
  "]",
  "for",
  "c",
  "in",
  "conditions",
  "]",
  ")",
  ":",
  "key",
  "=",
  "\"_\"",
  ".",
  "join",
  "(",
  "[",
  "row",
  "[",
  "idx",
  "]",
  "for",
  "idx",
  "in",
  "idx_to_test",
  "]",
  ")",
  "try",
  ":",
  "assert",
  "key",
  "in",
  "table",
  ".",
  "keys",
  "(",
  ")",
  "except",
  "AssertionError",
  ":",
  "table",
  "[",
  "key",
  "]",
  "=",
  "DataCategory",
  "(",
  "set",
  "(",
  ")",
  ",",
  "{",
  "}",
  ")",
  "table",
  "[",
  "key",
  "]",
  ".",
  "sids",
  ".",
  "add",
  "(",
  "sid",
  ")",
  "try",
  ":",
  "assert",
  "len",
  "(",
  "table",
  ")",
  ">",
  "0",
  "except",
  "AssertionError",
  ":",
  "return",
  "{",
  "\"default\"",
  ":",
  "DataCategory",
  "(",
  "set",
  "(",
  "imap",
  ".",
  "keys",
  "(",
  ")",
  ")",
  ",",
  "{",
  "}",
  ")",
  "}",
  "else",
  ":",
  "return",
  "table"
] | 
	Find the user specified categories in the map and create a dictionary to contain the
    relevant data for each type within the categories. Multiple categories will have their
    types combined such that each possible combination will have its own entry in the
    dictionary.
    :type imap: dict
    :param imap: The input mapping file data keyed by SampleID
    :type header: list
    :param header: The header line from the input mapping file. This will be searched for
                   the user-specified categories
    :type categories: list
    :param categories: The list of user-specified category column name from mapping file
    :rtype: dict
    :return: A sorted dictionary keyed on the combinations of all the types found within
             the user-specified categories. Each entry will contain an empty DataCategory
             namedtuple. If no categories are specified, a single entry with the key
             'default' will be returned | 
	[
  "Find",
  "the",
  "user",
  "specified",
  "categories",
  "in",
  "the",
  "map",
  "and",
  "create",
  "a",
  "dictionary",
  "to",
  "contain",
  "the",
  "relevant",
  "data",
  "for",
  "each",
  "type",
  "within",
  "the",
  "categories",
  ".",
  "Multiple",
  "categories",
  "will",
  "have",
  "their",
  "types",
  "combined",
  "such",
  "that",
  "each",
  "possible",
  "combination",
  "will",
  "have",
  "its",
  "own",
  "entry",
  "in",
  "the",
  "dictionary",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/util.py#L238-L309 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/util.py | 
	parse_unifrac | 
	def parse_unifrac(unifracFN):
    """
    Parses the unifrac results file into a dictionary
    :type unifracFN: str
    :param unifracFN: The path to the unifrac results file
    :rtype: dict
    :return: A dictionary with keys: 'pcd' (principle coordinates data) which is a
             dictionary of the data keyed by sample ID, 'eigvals' (eigenvalues), and
             'varexp' (variation explained)
    """
    with open(unifracFN, "rU") as uF:
        first = uF.next().split("\t")
        lines = [line.strip() for line in uF]
    unifrac = {"pcd": OrderedDict(), "eigvals": [], "varexp": []}
    if first[0] == "pc vector number":
        return parse_unifrac_v1_8(unifrac, lines)
    elif first[0] == "Eigvals":
        return parse_unifrac_v1_9(unifrac, lines)
    else:
        raise ValueError("File format not supported/recognized. Please check input "
                         "unifrac file.") | 
	python | 
	def parse_unifrac(unifracFN):
    """
    Parses the unifrac results file into a dictionary
    :type unifracFN: str
    :param unifracFN: The path to the unifrac results file
    :rtype: dict
    :return: A dictionary with keys: 'pcd' (principle coordinates data) which is a
             dictionary of the data keyed by sample ID, 'eigvals' (eigenvalues), and
             'varexp' (variation explained)
    """
    with open(unifracFN, "rU") as uF:
        first = uF.next().split("\t")
        lines = [line.strip() for line in uF]
    unifrac = {"pcd": OrderedDict(), "eigvals": [], "varexp": []}
    if first[0] == "pc vector number":
        return parse_unifrac_v1_8(unifrac, lines)
    elif first[0] == "Eigvals":
        return parse_unifrac_v1_9(unifrac, lines)
    else:
        raise ValueError("File format not supported/recognized. Please check input "
                         "unifrac file.") | 
	[
  "def",
  "parse_unifrac",
  "(",
  "unifracFN",
  ")",
  ":",
  "with",
  "open",
  "(",
  "unifracFN",
  ",",
  "\"rU\"",
  ")",
  "as",
  "uF",
  ":",
  "first",
  "=",
  "uF",
  ".",
  "next",
  "(",
  ")",
  ".",
  "split",
  "(",
  "\"\\t\"",
  ")",
  "lines",
  "=",
  "[",
  "line",
  ".",
  "strip",
  "(",
  ")",
  "for",
  "line",
  "in",
  "uF",
  "]",
  "unifrac",
  "=",
  "{",
  "\"pcd\"",
  ":",
  "OrderedDict",
  "(",
  ")",
  ",",
  "\"eigvals\"",
  ":",
  "[",
  "]",
  ",",
  "\"varexp\"",
  ":",
  "[",
  "]",
  "}",
  "if",
  "first",
  "[",
  "0",
  "]",
  "==",
  "\"pc vector number\"",
  ":",
  "return",
  "parse_unifrac_v1_8",
  "(",
  "unifrac",
  ",",
  "lines",
  ")",
  "elif",
  "first",
  "[",
  "0",
  "]",
  "==",
  "\"Eigvals\"",
  ":",
  "return",
  "parse_unifrac_v1_9",
  "(",
  "unifrac",
  ",",
  "lines",
  ")",
  "else",
  ":",
  "raise",
  "ValueError",
  "(",
  "\"File format not supported/recognized. Please check input \"",
  "\"unifrac file.\"",
  ")"
] | 
	Parses the unifrac results file into a dictionary
    :type unifracFN: str
    :param unifracFN: The path to the unifrac results file
    :rtype: dict
    :return: A dictionary with keys: 'pcd' (principle coordinates data) which is a
             dictionary of the data keyed by sample ID, 'eigvals' (eigenvalues), and
             'varexp' (variation explained) | 
	[
  "Parses",
  "the",
  "unifrac",
  "results",
  "file",
  "into",
  "a",
  "dictionary"
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/util.py#L311-L334 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/util.py | 
	parse_unifrac_v1_8 | 
	def parse_unifrac_v1_8(unifrac, file_data):
    """
    Function to parse data from older version of unifrac file obtained from Qiime version
    1.8 and earlier.
    :type unifrac: dict
    :param unifracFN: The path to the unifrac results file
    :type file_data: list
    :param file_data: Unifrac data lines after stripping whitespace characters.
    """
    for line in file_data:
        if line == "":
            break
        line = line.split("\t")
        unifrac["pcd"][line[0]] = [float(e) for e in line[1:]]
    unifrac["eigvals"] = [float(entry) for entry in file_data[-2].split("\t")[1:]]
    unifrac["varexp"] = [float(entry) for entry in file_data[-1].split("\t")[1:]]
    return unifrac | 
	python | 
	def parse_unifrac_v1_8(unifrac, file_data):
    """
    Function to parse data from older version of unifrac file obtained from Qiime version
    1.8 and earlier.
    :type unifrac: dict
    :param unifracFN: The path to the unifrac results file
    :type file_data: list
    :param file_data: Unifrac data lines after stripping whitespace characters.
    """
    for line in file_data:
        if line == "":
            break
        line = line.split("\t")
        unifrac["pcd"][line[0]] = [float(e) for e in line[1:]]
    unifrac["eigvals"] = [float(entry) for entry in file_data[-2].split("\t")[1:]]
    unifrac["varexp"] = [float(entry) for entry in file_data[-1].split("\t")[1:]]
    return unifrac | 
	[
  "def",
  "parse_unifrac_v1_8",
  "(",
  "unifrac",
  ",",
  "file_data",
  ")",
  ":",
  "for",
  "line",
  "in",
  "file_data",
  ":",
  "if",
  "line",
  "==",
  "\"\"",
  ":",
  "break",
  "line",
  "=",
  "line",
  ".",
  "split",
  "(",
  "\"\\t\"",
  ")",
  "unifrac",
  "[",
  "\"pcd\"",
  "]",
  "[",
  "line",
  "[",
  "0",
  "]",
  "]",
  "=",
  "[",
  "float",
  "(",
  "e",
  ")",
  "for",
  "e",
  "in",
  "line",
  "[",
  "1",
  ":",
  "]",
  "]",
  "unifrac",
  "[",
  "\"eigvals\"",
  "]",
  "=",
  "[",
  "float",
  "(",
  "entry",
  ")",
  "for",
  "entry",
  "in",
  "file_data",
  "[",
  "-",
  "2",
  "]",
  ".",
  "split",
  "(",
  "\"\\t\"",
  ")",
  "[",
  "1",
  ":",
  "]",
  "]",
  "unifrac",
  "[",
  "\"varexp\"",
  "]",
  "=",
  "[",
  "float",
  "(",
  "entry",
  ")",
  "for",
  "entry",
  "in",
  "file_data",
  "[",
  "-",
  "1",
  "]",
  ".",
  "split",
  "(",
  "\"\\t\"",
  ")",
  "[",
  "1",
  ":",
  "]",
  "]",
  "return",
  "unifrac"
] | 
	Function to parse data from older version of unifrac file obtained from Qiime version
    1.8 and earlier.
    :type unifrac: dict
    :param unifracFN: The path to the unifrac results file
    :type file_data: list
    :param file_data: Unifrac data lines after stripping whitespace characters. | 
	[
  "Function",
  "to",
  "parse",
  "data",
  "from",
  "older",
  "version",
  "of",
  "unifrac",
  "file",
  "obtained",
  "from",
  "Qiime",
  "version",
  "1",
  ".",
  "8",
  "and",
  "earlier",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/util.py#L337-L356 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/util.py | 
	parse_unifrac_v1_9 | 
	def parse_unifrac_v1_9(unifrac, file_data):
    """
    Function to parse data from newer version of unifrac file obtained from Qiime version
    1.9 and later.
    :type unifracFN: str
    :param unifracFN: The path to the unifrac results file
    :type file_data: list
    :param file_data: Unifrac data lines after stripping whitespace characters.
    """
    unifrac["eigvals"] = [float(entry) for entry in file_data[0].split("\t")]
    unifrac["varexp"] = [float(entry)*100 for entry in file_data[3].split("\t")]
    for line in file_data[8:]:
        if line == "":
            break
        line = line.split("\t")
        unifrac["pcd"][line[0]] = [float(e) for e in line[1:]]
    return unifrac | 
	python | 
	def parse_unifrac_v1_9(unifrac, file_data):
    """
    Function to parse data from newer version of unifrac file obtained from Qiime version
    1.9 and later.
    :type unifracFN: str
    :param unifracFN: The path to the unifrac results file
    :type file_data: list
    :param file_data: Unifrac data lines after stripping whitespace characters.
    """
    unifrac["eigvals"] = [float(entry) for entry in file_data[0].split("\t")]
    unifrac["varexp"] = [float(entry)*100 for entry in file_data[3].split("\t")]
    for line in file_data[8:]:
        if line == "":
            break
        line = line.split("\t")
        unifrac["pcd"][line[0]] = [float(e) for e in line[1:]]
    return unifrac | 
	[
  "def",
  "parse_unifrac_v1_9",
  "(",
  "unifrac",
  ",",
  "file_data",
  ")",
  ":",
  "unifrac",
  "[",
  "\"eigvals\"",
  "]",
  "=",
  "[",
  "float",
  "(",
  "entry",
  ")",
  "for",
  "entry",
  "in",
  "file_data",
  "[",
  "0",
  "]",
  ".",
  "split",
  "(",
  "\"\\t\"",
  ")",
  "]",
  "unifrac",
  "[",
  "\"varexp\"",
  "]",
  "=",
  "[",
  "float",
  "(",
  "entry",
  ")",
  "*",
  "100",
  "for",
  "entry",
  "in",
  "file_data",
  "[",
  "3",
  "]",
  ".",
  "split",
  "(",
  "\"\\t\"",
  ")",
  "]",
  "for",
  "line",
  "in",
  "file_data",
  "[",
  "8",
  ":",
  "]",
  ":",
  "if",
  "line",
  "==",
  "\"\"",
  ":",
  "break",
  "line",
  "=",
  "line",
  ".",
  "split",
  "(",
  "\"\\t\"",
  ")",
  "unifrac",
  "[",
  "\"pcd\"",
  "]",
  "[",
  "line",
  "[",
  "0",
  "]",
  "]",
  "=",
  "[",
  "float",
  "(",
  "e",
  ")",
  "for",
  "e",
  "in",
  "line",
  "[",
  "1",
  ":",
  "]",
  "]",
  "return",
  "unifrac"
] | 
	Function to parse data from newer version of unifrac file obtained from Qiime version
    1.9 and later.
    :type unifracFN: str
    :param unifracFN: The path to the unifrac results file
    :type file_data: list
    :param file_data: Unifrac data lines after stripping whitespace characters. | 
	[
  "Function",
  "to",
  "parse",
  "data",
  "from",
  "newer",
  "version",
  "of",
  "unifrac",
  "file",
  "obtained",
  "from",
  "Qiime",
  "version",
  "1",
  ".",
  "9",
  "and",
  "later",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/util.py#L359-L378 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/util.py | 
	color_mapping | 
	def color_mapping(sample_map, header, group_column, color_column=None):
    """
    Determine color-category mapping. If color_column was specified, then map the category
    names to color values. Otherwise, use the palettable colors to automatically generate
    a set of colors for the group values.
    :type sample_map: dict
    :param unifracFN: Map associating each line of the mapping file with the appropriate
                      sample ID (each value of the map also contains the sample ID)
    :type header: tuple
    :param A tuple of header line for mapping file
    :type group_column: str
    :param group_column: String denoting the column name for sample groups.
    :type color_column: str
    :param color_column: String denoting the column name for sample colors.
    :type return: dict
    :param return: {SampleID: Color}
    """
    group_colors = OrderedDict()
    group_gather = gather_categories(sample_map, header, [group_column])
    if color_column is not None:
        color_gather = gather_categories(sample_map, header, [color_column])
        # match sample IDs between color_gather and group_gather
        for group in group_gather:
            for color in color_gather:
                # allow incomplete assignment of colors, if group sids overlap at
                # all with the color sids, consider it a match
                if group_gather[group].sids.intersection(color_gather[color].sids):
                    group_colors[group] = color
    else:
        bcolors = itertools.cycle(Set3_12.hex_colors)
        for group in group_gather:
            group_colors[group] = bcolors.next()
    return group_colors | 
	python | 
	def color_mapping(sample_map, header, group_column, color_column=None):
    """
    Determine color-category mapping. If color_column was specified, then map the category
    names to color values. Otherwise, use the palettable colors to automatically generate
    a set of colors for the group values.
    :type sample_map: dict
    :param unifracFN: Map associating each line of the mapping file with the appropriate
                      sample ID (each value of the map also contains the sample ID)
    :type header: tuple
    :param A tuple of header line for mapping file
    :type group_column: str
    :param group_column: String denoting the column name for sample groups.
    :type color_column: str
    :param color_column: String denoting the column name for sample colors.
    :type return: dict
    :param return: {SampleID: Color}
    """
    group_colors = OrderedDict()
    group_gather = gather_categories(sample_map, header, [group_column])
    if color_column is not None:
        color_gather = gather_categories(sample_map, header, [color_column])
        # match sample IDs between color_gather and group_gather
        for group in group_gather:
            for color in color_gather:
                # allow incomplete assignment of colors, if group sids overlap at
                # all with the color sids, consider it a match
                if group_gather[group].sids.intersection(color_gather[color].sids):
                    group_colors[group] = color
    else:
        bcolors = itertools.cycle(Set3_12.hex_colors)
        for group in group_gather:
            group_colors[group] = bcolors.next()
    return group_colors | 
	[
  "def",
  "color_mapping",
  "(",
  "sample_map",
  ",",
  "header",
  ",",
  "group_column",
  ",",
  "color_column",
  "=",
  "None",
  ")",
  ":",
  "group_colors",
  "=",
  "OrderedDict",
  "(",
  ")",
  "group_gather",
  "=",
  "gather_categories",
  "(",
  "sample_map",
  ",",
  "header",
  ",",
  "[",
  "group_column",
  "]",
  ")",
  "if",
  "color_column",
  "is",
  "not",
  "None",
  ":",
  "color_gather",
  "=",
  "gather_categories",
  "(",
  "sample_map",
  ",",
  "header",
  ",",
  "[",
  "color_column",
  "]",
  ")",
  "# match sample IDs between color_gather and group_gather",
  "for",
  "group",
  "in",
  "group_gather",
  ":",
  "for",
  "color",
  "in",
  "color_gather",
  ":",
  "# allow incomplete assignment of colors, if group sids overlap at",
  "# all with the color sids, consider it a match",
  "if",
  "group_gather",
  "[",
  "group",
  "]",
  ".",
  "sids",
  ".",
  "intersection",
  "(",
  "color_gather",
  "[",
  "color",
  "]",
  ".",
  "sids",
  ")",
  ":",
  "group_colors",
  "[",
  "group",
  "]",
  "=",
  "color",
  "else",
  ":",
  "bcolors",
  "=",
  "itertools",
  ".",
  "cycle",
  "(",
  "Set3_12",
  ".",
  "hex_colors",
  ")",
  "for",
  "group",
  "in",
  "group_gather",
  ":",
  "group_colors",
  "[",
  "group",
  "]",
  "=",
  "bcolors",
  ".",
  "next",
  "(",
  ")",
  "return",
  "group_colors"
] | 
	Determine color-category mapping. If color_column was specified, then map the category
    names to color values. Otherwise, use the palettable colors to automatically generate
    a set of colors for the group values.
    :type sample_map: dict
    :param unifracFN: Map associating each line of the mapping file with the appropriate
                      sample ID (each value of the map also contains the sample ID)
    :type header: tuple
    :param A tuple of header line for mapping file
    :type group_column: str
    :param group_column: String denoting the column name for sample groups.
    :type color_column: str
    :param color_column: String denoting the column name for sample colors.
    :type return: dict
    :param return: {SampleID: Color} | 
	[
  "Determine",
  "color",
  "-",
  "category",
  "mapping",
  ".",
  "If",
  "color_column",
  "was",
  "specified",
  "then",
  "map",
  "the",
  "category",
  "names",
  "to",
  "color",
  "values",
  ".",
  "Otherwise",
  "use",
  "the",
  "palettable",
  "colors",
  "to",
  "automatically",
  "generate",
  "a",
  "set",
  "of",
  "colors",
  "for",
  "the",
  "group",
  "values",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/util.py#L380-L419 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/shuffle_genome.py | 
	rev_c | 
	def rev_c(read):
    """
    return reverse completment of read
    """
    rc = []
    rc_nucs = {'A':'T', 'T':'A', 'G':'C', 'C':'G', 'N':'N'}
    for base in read:
        rc.extend(rc_nucs[base.upper()])
    return rc[::-1] | 
	python | 
	def rev_c(read):
    """
    return reverse completment of read
    """
    rc = []
    rc_nucs = {'A':'T', 'T':'A', 'G':'C', 'C':'G', 'N':'N'}
    for base in read:
        rc.extend(rc_nucs[base.upper()])
    return rc[::-1] | 
	[
  "def",
  "rev_c",
  "(",
  "read",
  ")",
  ":",
  "rc",
  "=",
  "[",
  "]",
  "rc_nucs",
  "=",
  "{",
  "'A'",
  ":",
  "'T'",
  ",",
  "'T'",
  ":",
  "'A'",
  ",",
  "'G'",
  ":",
  "'C'",
  ",",
  "'C'",
  ":",
  "'G'",
  ",",
  "'N'",
  ":",
  "'N'",
  "}",
  "for",
  "base",
  "in",
  "read",
  ":",
  "rc",
  ".",
  "extend",
  "(",
  "rc_nucs",
  "[",
  "base",
  ".",
  "upper",
  "(",
  ")",
  "]",
  ")",
  "return",
  "rc",
  "[",
  ":",
  ":",
  "-",
  "1",
  "]"
] | 
	return reverse completment of read | 
	[
  "return",
  "reverse",
  "completment",
  "of",
  "read"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/shuffle_genome.py#L27-L35 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/shuffle_genome.py | 
	shuffle_genome | 
	def shuffle_genome(genome, cat, fraction = float(100), plot = True, \
        alpha = 0.1, beta = 100000, \
        min_length = 1000, max_length = 200000):
    """
    randomly shuffle genome
    """
    header = '>randomized_%s' % (genome.name)
    sequence = list(''.join([i[1] for i in parse_fasta(genome)]))
    length = len(sequence)
    shuffled = []
    # break genome into pieces
    while sequence is not False:
        s = int(random.gammavariate(alpha, beta))
        if s <= min_length or s >= max_length:
            continue
        if len(sequence) < s:
            seq = sequence[0:]
        else:
            seq = sequence[0:s]
        sequence = sequence[s:]
#        if bool(random.getrandbits(1)) is True:
#            seq = rev_c(seq)
#            print('fragment length: %s reverse complement: True' % ('{:,}'.format(s)), file=sys.stderr)
#        else:
#            print('fragment length: %s reverse complement: False' % ('{:,}'.format(s)), file=sys.stderr)
        shuffled.append(''.join(seq))
        if sequence == []:
            break
    # shuffle pieces
    random.shuffle(shuffled)
    # subset fragments
    if fraction == float(100):
        subset = shuffled
    else:
        max_pieces = int(length * fraction/100)
        subset, total = [], 0
        for fragment in shuffled:
            length = len(fragment)
            if total + length <= max_pieces:
                subset.append(fragment)
                total += length
            else:
                diff = max_pieces - total
                subset.append(fragment[0:diff])
                break
    # combine sequences, if requested
    if cat is True:
        yield [header, ''.join(subset)]
    else:
        for i, seq in enumerate(subset):
            yield ['%s fragment:%s' % (header, i), seq] | 
	python | 
	def shuffle_genome(genome, cat, fraction = float(100), plot = True, \
        alpha = 0.1, beta = 100000, \
        min_length = 1000, max_length = 200000):
    """
    randomly shuffle genome
    """
    header = '>randomized_%s' % (genome.name)
    sequence = list(''.join([i[1] for i in parse_fasta(genome)]))
    length = len(sequence)
    shuffled = []
    # break genome into pieces
    while sequence is not False:
        s = int(random.gammavariate(alpha, beta))
        if s <= min_length or s >= max_length:
            continue
        if len(sequence) < s:
            seq = sequence[0:]
        else:
            seq = sequence[0:s]
        sequence = sequence[s:]
#        if bool(random.getrandbits(1)) is True:
#            seq = rev_c(seq)
#            print('fragment length: %s reverse complement: True' % ('{:,}'.format(s)), file=sys.stderr)
#        else:
#            print('fragment length: %s reverse complement: False' % ('{:,}'.format(s)), file=sys.stderr)
        shuffled.append(''.join(seq))
        if sequence == []:
            break
    # shuffle pieces
    random.shuffle(shuffled)
    # subset fragments
    if fraction == float(100):
        subset = shuffled
    else:
        max_pieces = int(length * fraction/100)
        subset, total = [], 0
        for fragment in shuffled:
            length = len(fragment)
            if total + length <= max_pieces:
                subset.append(fragment)
                total += length
            else:
                diff = max_pieces - total
                subset.append(fragment[0:diff])
                break
    # combine sequences, if requested
    if cat is True:
        yield [header, ''.join(subset)]
    else:
        for i, seq in enumerate(subset):
            yield ['%s fragment:%s' % (header, i), seq] | 
	[
  "def",
  "shuffle_genome",
  "(",
  "genome",
  ",",
  "cat",
  ",",
  "fraction",
  "=",
  "float",
  "(",
  "100",
  ")",
  ",",
  "plot",
  "=",
  "True",
  ",",
  "alpha",
  "=",
  "0.1",
  ",",
  "beta",
  "=",
  "100000",
  ",",
  "min_length",
  "=",
  "1000",
  ",",
  "max_length",
  "=",
  "200000",
  ")",
  ":",
  "header",
  "=",
  "'>randomized_%s'",
  "%",
  "(",
  "genome",
  ".",
  "name",
  ")",
  "sequence",
  "=",
  "list",
  "(",
  "''",
  ".",
  "join",
  "(",
  "[",
  "i",
  "[",
  "1",
  "]",
  "for",
  "i",
  "in",
  "parse_fasta",
  "(",
  "genome",
  ")",
  "]",
  ")",
  ")",
  "length",
  "=",
  "len",
  "(",
  "sequence",
  ")",
  "shuffled",
  "=",
  "[",
  "]",
  "# break genome into pieces",
  "while",
  "sequence",
  "is",
  "not",
  "False",
  ":",
  "s",
  "=",
  "int",
  "(",
  "random",
  ".",
  "gammavariate",
  "(",
  "alpha",
  ",",
  "beta",
  ")",
  ")",
  "if",
  "s",
  "<=",
  "min_length",
  "or",
  "s",
  ">=",
  "max_length",
  ":",
  "continue",
  "if",
  "len",
  "(",
  "sequence",
  ")",
  "<",
  "s",
  ":",
  "seq",
  "=",
  "sequence",
  "[",
  "0",
  ":",
  "]",
  "else",
  ":",
  "seq",
  "=",
  "sequence",
  "[",
  "0",
  ":",
  "s",
  "]",
  "sequence",
  "=",
  "sequence",
  "[",
  "s",
  ":",
  "]",
  "#        if bool(random.getrandbits(1)) is True:",
  "#            seq = rev_c(seq)",
  "#            print('fragment length: %s reverse complement: True' % ('{:,}'.format(s)), file=sys.stderr)",
  "#        else:",
  "#            print('fragment length: %s reverse complement: False' % ('{:,}'.format(s)), file=sys.stderr)",
  "shuffled",
  ".",
  "append",
  "(",
  "''",
  ".",
  "join",
  "(",
  "seq",
  ")",
  ")",
  "if",
  "sequence",
  "==",
  "[",
  "]",
  ":",
  "break",
  "# shuffle pieces",
  "random",
  ".",
  "shuffle",
  "(",
  "shuffled",
  ")",
  "# subset fragments",
  "if",
  "fraction",
  "==",
  "float",
  "(",
  "100",
  ")",
  ":",
  "subset",
  "=",
  "shuffled",
  "else",
  ":",
  "max_pieces",
  "=",
  "int",
  "(",
  "length",
  "*",
  "fraction",
  "/",
  "100",
  ")",
  "subset",
  ",",
  "total",
  "=",
  "[",
  "]",
  ",",
  "0",
  "for",
  "fragment",
  "in",
  "shuffled",
  ":",
  "length",
  "=",
  "len",
  "(",
  "fragment",
  ")",
  "if",
  "total",
  "+",
  "length",
  "<=",
  "max_pieces",
  ":",
  "subset",
  ".",
  "append",
  "(",
  "fragment",
  ")",
  "total",
  "+=",
  "length",
  "else",
  ":",
  "diff",
  "=",
  "max_pieces",
  "-",
  "total",
  "subset",
  ".",
  "append",
  "(",
  "fragment",
  "[",
  "0",
  ":",
  "diff",
  "]",
  ")",
  "break",
  "# combine sequences, if requested",
  "if",
  "cat",
  "is",
  "True",
  ":",
  "yield",
  "[",
  "header",
  ",",
  "''",
  ".",
  "join",
  "(",
  "subset",
  ")",
  "]",
  "else",
  ":",
  "for",
  "i",
  ",",
  "seq",
  "in",
  "enumerate",
  "(",
  "subset",
  ")",
  ":",
  "yield",
  "[",
  "'%s fragment:%s'",
  "%",
  "(",
  "header",
  ",",
  "i",
  ")",
  ",",
  "seq",
  "]"
] | 
	randomly shuffle genome | 
	[
  "randomly",
  "shuffle",
  "genome"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/shuffle_genome.py#L37-L87 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/regression.py | 
	MultiVarLinReg._prune | 
	def _prune(self, fit, p_max):
        """
        If the fit contains statistically insignificant parameters, remove them.
        Returns a pruned fit where all parameters have p-values of the t-statistic below p_max
        Parameters
        ----------
        fit: fm.ols fit object
            Can contain insignificant parameters
        p_max : float
            Maximum allowed probability of the t-statistic
        Returns
        -------
        fit: fm.ols fit object
            Won't contain any insignificant parameters
        """
        def remove_from_model_desc(x, model_desc):
            """
            Return a model_desc without x
            """
            rhs_termlist = []
            for t in model_desc.rhs_termlist:
                if not t.factors:
                    # intercept, add anyway
                    rhs_termlist.append(t)
                elif not x == t.factors[0]._varname:
                    # this is not the term with x
                    rhs_termlist.append(t)
            md = ModelDesc(model_desc.lhs_termlist, rhs_termlist)
            return md
        corrected_model_desc = ModelDesc(fit.model.formula.lhs_termlist[:], fit.model.formula.rhs_termlist[:])
        pars_to_prune = fit.pvalues.where(fit.pvalues > p_max).dropna().index.tolist()
        try:
            pars_to_prune.remove('Intercept')
        except:
            pass
        while pars_to_prune:
            corrected_model_desc = remove_from_model_desc(pars_to_prune[0], corrected_model_desc)
            fit = fm.ols(corrected_model_desc, data=self.df).fit()
            pars_to_prune = fit.pvalues.where(fit.pvalues > p_max).dropna().index.tolist()
            try:
                pars_to_prune.remove('Intercept')
            except:
                pass
        return fit | 
	python | 
	def _prune(self, fit, p_max):
        """
        If the fit contains statistically insignificant parameters, remove them.
        Returns a pruned fit where all parameters have p-values of the t-statistic below p_max
        Parameters
        ----------
        fit: fm.ols fit object
            Can contain insignificant parameters
        p_max : float
            Maximum allowed probability of the t-statistic
        Returns
        -------
        fit: fm.ols fit object
            Won't contain any insignificant parameters
        """
        def remove_from_model_desc(x, model_desc):
            """
            Return a model_desc without x
            """
            rhs_termlist = []
            for t in model_desc.rhs_termlist:
                if not t.factors:
                    # intercept, add anyway
                    rhs_termlist.append(t)
                elif not x == t.factors[0]._varname:
                    # this is not the term with x
                    rhs_termlist.append(t)
            md = ModelDesc(model_desc.lhs_termlist, rhs_termlist)
            return md
        corrected_model_desc = ModelDesc(fit.model.formula.lhs_termlist[:], fit.model.formula.rhs_termlist[:])
        pars_to_prune = fit.pvalues.where(fit.pvalues > p_max).dropna().index.tolist()
        try:
            pars_to_prune.remove('Intercept')
        except:
            pass
        while pars_to_prune:
            corrected_model_desc = remove_from_model_desc(pars_to_prune[0], corrected_model_desc)
            fit = fm.ols(corrected_model_desc, data=self.df).fit()
            pars_to_prune = fit.pvalues.where(fit.pvalues > p_max).dropna().index.tolist()
            try:
                pars_to_prune.remove('Intercept')
            except:
                pass
        return fit | 
	[
  "def",
  "_prune",
  "(",
  "self",
  ",",
  "fit",
  ",",
  "p_max",
  ")",
  ":",
  "def",
  "remove_from_model_desc",
  "(",
  "x",
  ",",
  "model_desc",
  ")",
  ":",
  "\"\"\"\n            Return a model_desc without x\n            \"\"\"",
  "rhs_termlist",
  "=",
  "[",
  "]",
  "for",
  "t",
  "in",
  "model_desc",
  ".",
  "rhs_termlist",
  ":",
  "if",
  "not",
  "t",
  ".",
  "factors",
  ":",
  "# intercept, add anyway",
  "rhs_termlist",
  ".",
  "append",
  "(",
  "t",
  ")",
  "elif",
  "not",
  "x",
  "==",
  "t",
  ".",
  "factors",
  "[",
  "0",
  "]",
  ".",
  "_varname",
  ":",
  "# this is not the term with x",
  "rhs_termlist",
  ".",
  "append",
  "(",
  "t",
  ")",
  "md",
  "=",
  "ModelDesc",
  "(",
  "model_desc",
  ".",
  "lhs_termlist",
  ",",
  "rhs_termlist",
  ")",
  "return",
  "md",
  "corrected_model_desc",
  "=",
  "ModelDesc",
  "(",
  "fit",
  ".",
  "model",
  ".",
  "formula",
  ".",
  "lhs_termlist",
  "[",
  ":",
  "]",
  ",",
  "fit",
  ".",
  "model",
  ".",
  "formula",
  ".",
  "rhs_termlist",
  "[",
  ":",
  "]",
  ")",
  "pars_to_prune",
  "=",
  "fit",
  ".",
  "pvalues",
  ".",
  "where",
  "(",
  "fit",
  ".",
  "pvalues",
  ">",
  "p_max",
  ")",
  ".",
  "dropna",
  "(",
  ")",
  ".",
  "index",
  ".",
  "tolist",
  "(",
  ")",
  "try",
  ":",
  "pars_to_prune",
  ".",
  "remove",
  "(",
  "'Intercept'",
  ")",
  "except",
  ":",
  "pass",
  "while",
  "pars_to_prune",
  ":",
  "corrected_model_desc",
  "=",
  "remove_from_model_desc",
  "(",
  "pars_to_prune",
  "[",
  "0",
  "]",
  ",",
  "corrected_model_desc",
  ")",
  "fit",
  "=",
  "fm",
  ".",
  "ols",
  "(",
  "corrected_model_desc",
  ",",
  "data",
  "=",
  "self",
  ".",
  "df",
  ")",
  ".",
  "fit",
  "(",
  ")",
  "pars_to_prune",
  "=",
  "fit",
  ".",
  "pvalues",
  ".",
  "where",
  "(",
  "fit",
  ".",
  "pvalues",
  ">",
  "p_max",
  ")",
  ".",
  "dropna",
  "(",
  ")",
  ".",
  "index",
  ".",
  "tolist",
  "(",
  ")",
  "try",
  ":",
  "pars_to_prune",
  ".",
  "remove",
  "(",
  "'Intercept'",
  ")",
  "except",
  ":",
  "pass",
  "return",
  "fit"
] | 
	If the fit contains statistically insignificant parameters, remove them.
        Returns a pruned fit where all parameters have p-values of the t-statistic below p_max
        Parameters
        ----------
        fit: fm.ols fit object
            Can contain insignificant parameters
        p_max : float
            Maximum allowed probability of the t-statistic
        Returns
        -------
        fit: fm.ols fit object
            Won't contain any insignificant parameters | 
	[
  "If",
  "the",
  "fit",
  "contains",
  "statistically",
  "insignificant",
  "parameters",
  "remove",
  "them",
  ".",
  "Returns",
  "a",
  "pruned",
  "fit",
  "where",
  "all",
  "parameters",
  "have",
  "p",
  "-",
  "values",
  "of",
  "the",
  "t",
  "-",
  "statistic",
  "below",
  "p_max"
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/regression.py#L222-L272 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/regression.py | 
	MultiVarLinReg.find_best_rsquared | 
	def find_best_rsquared(list_of_fits):
        """Return the best fit, based on rsquared"""
        res = sorted(list_of_fits, key=lambda x: x.rsquared)
        return res[-1] | 
	python | 
	def find_best_rsquared(list_of_fits):
        """Return the best fit, based on rsquared"""
        res = sorted(list_of_fits, key=lambda x: x.rsquared)
        return res[-1] | 
	[
  "def",
  "find_best_rsquared",
  "(",
  "list_of_fits",
  ")",
  ":",
  "res",
  "=",
  "sorted",
  "(",
  "list_of_fits",
  ",",
  "key",
  "=",
  "lambda",
  "x",
  ":",
  "x",
  ".",
  "rsquared",
  ")",
  "return",
  "res",
  "[",
  "-",
  "1",
  "]"
] | 
	Return the best fit, based on rsquared | 
	[
  "Return",
  "the",
  "best",
  "fit",
  "based",
  "on",
  "rsquared"
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/regression.py#L275-L278 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/regression.py | 
	MultiVarLinReg._predict | 
	def _predict(self, fit, df):
        """
        Return a df with predictions and confidence interval
        Notes
        -----
        The df will contain the following columns:
        - 'predicted': the model output
        - 'interval_u', 'interval_l': upper and lower confidence bounds.
        The result will depend on the following attributes of self:
        confint : float (default=0.95)
            Confidence level for two-sided hypothesis
        allow_negative_predictions : bool (default=True)
            If False, correct negative predictions to zero (typically for energy consumption predictions)
        Parameters
        ----------
        fit : Statsmodels fit
        df : pandas DataFrame or None (default)
            If None, use self.df
        Returns
        -------
        df_res : pandas DataFrame
            Copy of df with additional columns 'predicted', 'interval_u' and 'interval_l'
        """
        # Add model results to data as column 'predictions'
        df_res = df.copy()
        if 'Intercept' in fit.model.exog_names:
            df_res['Intercept'] = 1.0
        df_res['predicted'] = fit.predict(df_res)
        if not self.allow_negative_predictions:
            df_res.loc[df_res['predicted'] < 0, 'predicted'] = 0
        prstd, interval_l, interval_u = wls_prediction_std(fit,
                                                           df_res[fit.model.exog_names],
                                                           alpha=1 - self.confint)
        df_res['interval_l'] = interval_l
        df_res['interval_u'] = interval_u
        if 'Intercept' in df_res:
            df_res.drop(labels=['Intercept'], axis=1, inplace=True)
        return df_res | 
	python | 
	def _predict(self, fit, df):
        """
        Return a df with predictions and confidence interval
        Notes
        -----
        The df will contain the following columns:
        - 'predicted': the model output
        - 'interval_u', 'interval_l': upper and lower confidence bounds.
        The result will depend on the following attributes of self:
        confint : float (default=0.95)
            Confidence level for two-sided hypothesis
        allow_negative_predictions : bool (default=True)
            If False, correct negative predictions to zero (typically for energy consumption predictions)
        Parameters
        ----------
        fit : Statsmodels fit
        df : pandas DataFrame or None (default)
            If None, use self.df
        Returns
        -------
        df_res : pandas DataFrame
            Copy of df with additional columns 'predicted', 'interval_u' and 'interval_l'
        """
        # Add model results to data as column 'predictions'
        df_res = df.copy()
        if 'Intercept' in fit.model.exog_names:
            df_res['Intercept'] = 1.0
        df_res['predicted'] = fit.predict(df_res)
        if not self.allow_negative_predictions:
            df_res.loc[df_res['predicted'] < 0, 'predicted'] = 0
        prstd, interval_l, interval_u = wls_prediction_std(fit,
                                                           df_res[fit.model.exog_names],
                                                           alpha=1 - self.confint)
        df_res['interval_l'] = interval_l
        df_res['interval_u'] = interval_u
        if 'Intercept' in df_res:
            df_res.drop(labels=['Intercept'], axis=1, inplace=True)
        return df_res | 
	[
  "def",
  "_predict",
  "(",
  "self",
  ",",
  "fit",
  ",",
  "df",
  ")",
  ":",
  "# Add model results to data as column 'predictions'",
  "df_res",
  "=",
  "df",
  ".",
  "copy",
  "(",
  ")",
  "if",
  "'Intercept'",
  "in",
  "fit",
  ".",
  "model",
  ".",
  "exog_names",
  ":",
  "df_res",
  "[",
  "'Intercept'",
  "]",
  "=",
  "1.0",
  "df_res",
  "[",
  "'predicted'",
  "]",
  "=",
  "fit",
  ".",
  "predict",
  "(",
  "df_res",
  ")",
  "if",
  "not",
  "self",
  ".",
  "allow_negative_predictions",
  ":",
  "df_res",
  ".",
  "loc",
  "[",
  "df_res",
  "[",
  "'predicted'",
  "]",
  "<",
  "0",
  ",",
  "'predicted'",
  "]",
  "=",
  "0",
  "prstd",
  ",",
  "interval_l",
  ",",
  "interval_u",
  "=",
  "wls_prediction_std",
  "(",
  "fit",
  ",",
  "df_res",
  "[",
  "fit",
  ".",
  "model",
  ".",
  "exog_names",
  "]",
  ",",
  "alpha",
  "=",
  "1",
  "-",
  "self",
  ".",
  "confint",
  ")",
  "df_res",
  "[",
  "'interval_l'",
  "]",
  "=",
  "interval_l",
  "df_res",
  "[",
  "'interval_u'",
  "]",
  "=",
  "interval_u",
  "if",
  "'Intercept'",
  "in",
  "df_res",
  ":",
  "df_res",
  ".",
  "drop",
  "(",
  "labels",
  "=",
  "[",
  "'Intercept'",
  "]",
  ",",
  "axis",
  "=",
  "1",
  ",",
  "inplace",
  "=",
  "True",
  ")",
  "return",
  "df_res"
] | 
	Return a df with predictions and confidence interval
        Notes
        -----
        The df will contain the following columns:
        - 'predicted': the model output
        - 'interval_u', 'interval_l': upper and lower confidence bounds.
        The result will depend on the following attributes of self:
        confint : float (default=0.95)
            Confidence level for two-sided hypothesis
        allow_negative_predictions : bool (default=True)
            If False, correct negative predictions to zero (typically for energy consumption predictions)
        Parameters
        ----------
        fit : Statsmodels fit
        df : pandas DataFrame or None (default)
            If None, use self.df
        Returns
        -------
        df_res : pandas DataFrame
            Copy of df with additional columns 'predicted', 'interval_u' and 'interval_l' | 
	[
  "Return",
  "a",
  "df",
  "with",
  "predictions",
  "and",
  "confidence",
  "interval"
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/regression.py#L292-L338 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/biom_calc.py | 
	relative_abundance | 
	def relative_abundance(biomf, sampleIDs=None):
    """
    Calculate the relative abundance of each OTUID in a Sample.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: list
    :param sampleIDs: A list of sample id's from BIOM format OTU table.
    :rtype: dict
    :return: Returns a keyed on SampleIDs, and the values are dictionaries keyed on
             OTUID's and their values represent the relative abundance of that OTUID in
             that SampleID.
    """
    if sampleIDs is None:
        sampleIDs = biomf.ids()
    else:
        try:
            for sid in sampleIDs:
                assert sid in biomf.ids()
        except AssertionError:
            raise ValueError(
                "\nError while calculating relative abundances: The sampleIDs provided do"
                " not match the sampleIDs in biom file. Please double check the sampleIDs"
                " provided.\n")
    otuIDs = biomf.ids(axis="observation")
    norm_biomf = biomf.norm(inplace=False)
    return {sample: {otuID: norm_biomf.get_value_by_ids(otuID, sample)
                     for otuID in otuIDs} for sample in sampleIDs} | 
	python | 
	def relative_abundance(biomf, sampleIDs=None):
    """
    Calculate the relative abundance of each OTUID in a Sample.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: list
    :param sampleIDs: A list of sample id's from BIOM format OTU table.
    :rtype: dict
    :return: Returns a keyed on SampleIDs, and the values are dictionaries keyed on
             OTUID's and their values represent the relative abundance of that OTUID in
             that SampleID.
    """
    if sampleIDs is None:
        sampleIDs = biomf.ids()
    else:
        try:
            for sid in sampleIDs:
                assert sid in biomf.ids()
        except AssertionError:
            raise ValueError(
                "\nError while calculating relative abundances: The sampleIDs provided do"
                " not match the sampleIDs in biom file. Please double check the sampleIDs"
                " provided.\n")
    otuIDs = biomf.ids(axis="observation")
    norm_biomf = biomf.norm(inplace=False)
    return {sample: {otuID: norm_biomf.get_value_by_ids(otuID, sample)
                     for otuID in otuIDs} for sample in sampleIDs} | 
	[
  "def",
  "relative_abundance",
  "(",
  "biomf",
  ",",
  "sampleIDs",
  "=",
  "None",
  ")",
  ":",
  "if",
  "sampleIDs",
  "is",
  "None",
  ":",
  "sampleIDs",
  "=",
  "biomf",
  ".",
  "ids",
  "(",
  ")",
  "else",
  ":",
  "try",
  ":",
  "for",
  "sid",
  "in",
  "sampleIDs",
  ":",
  "assert",
  "sid",
  "in",
  "biomf",
  ".",
  "ids",
  "(",
  ")",
  "except",
  "AssertionError",
  ":",
  "raise",
  "ValueError",
  "(",
  "\"\\nError while calculating relative abundances: The sampleIDs provided do\"",
  "\" not match the sampleIDs in biom file. Please double check the sampleIDs\"",
  "\" provided.\\n\"",
  ")",
  "otuIDs",
  "=",
  "biomf",
  ".",
  "ids",
  "(",
  "axis",
  "=",
  "\"observation\"",
  ")",
  "norm_biomf",
  "=",
  "biomf",
  ".",
  "norm",
  "(",
  "inplace",
  "=",
  "False",
  ")",
  "return",
  "{",
  "sample",
  ":",
  "{",
  "otuID",
  ":",
  "norm_biomf",
  ".",
  "get_value_by_ids",
  "(",
  "otuID",
  ",",
  "sample",
  ")",
  "for",
  "otuID",
  "in",
  "otuIDs",
  "}",
  "for",
  "sample",
  "in",
  "sampleIDs",
  "}"
] | 
	Calculate the relative abundance of each OTUID in a Sample.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: list
    :param sampleIDs: A list of sample id's from BIOM format OTU table.
    :rtype: dict
    :return: Returns a keyed on SampleIDs, and the values are dictionaries keyed on
             OTUID's and their values represent the relative abundance of that OTUID in
             that SampleID. | 
	[
  "Calculate",
  "the",
  "relative",
  "abundance",
  "of",
  "each",
  "OTUID",
  "in",
  "a",
  "Sample",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/biom_calc.py#L11-L41 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/biom_calc.py | 
	mean_otu_pct_abundance | 
	def mean_otu_pct_abundance(ra, otuIDs):
    """
    Calculate the mean OTU abundance percentage.
    :type ra: Dict
    :param ra: 'ra' refers to a dictionary keyed on SampleIDs, and the values are
               dictionaries keyed on OTUID's and their values represent the relative
               abundance of that OTUID in that SampleID. 'ra' is the output of
               relative_abundance() function.
    :type otuIDs: List
    :param otuIDs: A list of OTUID's for which the percentage abundance needs to be
                   measured.
    :rtype: dict
    :return: A dictionary of OTUID and their percent relative abundance as key/value pair.
    """
    sids = ra.keys()
    otumeans = defaultdict(int)
    for oid in otuIDs:
        otumeans[oid] = sum([ra[sid][oid] for sid in sids
                             if oid in ra[sid]]) / len(sids) * 100
    return otumeans | 
	python | 
	def mean_otu_pct_abundance(ra, otuIDs):
    """
    Calculate the mean OTU abundance percentage.
    :type ra: Dict
    :param ra: 'ra' refers to a dictionary keyed on SampleIDs, and the values are
               dictionaries keyed on OTUID's and their values represent the relative
               abundance of that OTUID in that SampleID. 'ra' is the output of
               relative_abundance() function.
    :type otuIDs: List
    :param otuIDs: A list of OTUID's for which the percentage abundance needs to be
                   measured.
    :rtype: dict
    :return: A dictionary of OTUID and their percent relative abundance as key/value pair.
    """
    sids = ra.keys()
    otumeans = defaultdict(int)
    for oid in otuIDs:
        otumeans[oid] = sum([ra[sid][oid] for sid in sids
                             if oid in ra[sid]]) / len(sids) * 100
    return otumeans | 
	[
  "def",
  "mean_otu_pct_abundance",
  "(",
  "ra",
  ",",
  "otuIDs",
  ")",
  ":",
  "sids",
  "=",
  "ra",
  ".",
  "keys",
  "(",
  ")",
  "otumeans",
  "=",
  "defaultdict",
  "(",
  "int",
  ")",
  "for",
  "oid",
  "in",
  "otuIDs",
  ":",
  "otumeans",
  "[",
  "oid",
  "]",
  "=",
  "sum",
  "(",
  "[",
  "ra",
  "[",
  "sid",
  "]",
  "[",
  "oid",
  "]",
  "for",
  "sid",
  "in",
  "sids",
  "if",
  "oid",
  "in",
  "ra",
  "[",
  "sid",
  "]",
  "]",
  ")",
  "/",
  "len",
  "(",
  "sids",
  ")",
  "*",
  "100",
  "return",
  "otumeans"
] | 
	Calculate the mean OTU abundance percentage.
    :type ra: Dict
    :param ra: 'ra' refers to a dictionary keyed on SampleIDs, and the values are
               dictionaries keyed on OTUID's and their values represent the relative
               abundance of that OTUID in that SampleID. 'ra' is the output of
               relative_abundance() function.
    :type otuIDs: List
    :param otuIDs: A list of OTUID's for which the percentage abundance needs to be
                   measured.
    :rtype: dict
    :return: A dictionary of OTUID and their percent relative abundance as key/value pair. | 
	[
  "Calculate",
  "the",
  "mean",
  "OTU",
  "abundance",
  "percentage",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/biom_calc.py#L44-L67 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/biom_calc.py | 
	MRA | 
	def MRA(biomf, sampleIDs=None, transform=None):
    """
    Calculate the mean relative abundance percentage.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: list
    :param sampleIDs: A list of sample id's from BIOM format OTU table.
    :param transform: Mathematical function which is used to transform smax to another
                      format. By default, the function has been set to None.
    :rtype: dict
    :return: A dictionary keyed on OTUID's and their mean relative abundance for a given
             number of sampleIDs.
    """
    ra = relative_abundance(biomf, sampleIDs)
    if transform is not None:
        ra = {sample: {otuID: transform(abd) for otuID, abd in ra[sample].items()}
              for sample in ra.keys()}
    otuIDs = biomf.ids(axis="observation")
    return mean_otu_pct_abundance(ra, otuIDs) | 
	python | 
	def MRA(biomf, sampleIDs=None, transform=None):
    """
    Calculate the mean relative abundance percentage.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: list
    :param sampleIDs: A list of sample id's from BIOM format OTU table.
    :param transform: Mathematical function which is used to transform smax to another
                      format. By default, the function has been set to None.
    :rtype: dict
    :return: A dictionary keyed on OTUID's and their mean relative abundance for a given
             number of sampleIDs.
    """
    ra = relative_abundance(biomf, sampleIDs)
    if transform is not None:
        ra = {sample: {otuID: transform(abd) for otuID, abd in ra[sample].items()}
              for sample in ra.keys()}
    otuIDs = biomf.ids(axis="observation")
    return mean_otu_pct_abundance(ra, otuIDs) | 
	[
  "def",
  "MRA",
  "(",
  "biomf",
  ",",
  "sampleIDs",
  "=",
  "None",
  ",",
  "transform",
  "=",
  "None",
  ")",
  ":",
  "ra",
  "=",
  "relative_abundance",
  "(",
  "biomf",
  ",",
  "sampleIDs",
  ")",
  "if",
  "transform",
  "is",
  "not",
  "None",
  ":",
  "ra",
  "=",
  "{",
  "sample",
  ":",
  "{",
  "otuID",
  ":",
  "transform",
  "(",
  "abd",
  ")",
  "for",
  "otuID",
  ",",
  "abd",
  "in",
  "ra",
  "[",
  "sample",
  "]",
  ".",
  "items",
  "(",
  ")",
  "}",
  "for",
  "sample",
  "in",
  "ra",
  ".",
  "keys",
  "(",
  ")",
  "}",
  "otuIDs",
  "=",
  "biomf",
  ".",
  "ids",
  "(",
  "axis",
  "=",
  "\"observation\"",
  ")",
  "return",
  "mean_otu_pct_abundance",
  "(",
  "ra",
  ",",
  "otuIDs",
  ")"
] | 
	Calculate the mean relative abundance percentage.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: list
    :param sampleIDs: A list of sample id's from BIOM format OTU table.
    :param transform: Mathematical function which is used to transform smax to another
                      format. By default, the function has been set to None.
    :rtype: dict
    :return: A dictionary keyed on OTUID's and their mean relative abundance for a given
             number of sampleIDs. | 
	[
  "Calculate",
  "the",
  "mean",
  "relative",
  "abundance",
  "percentage",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/biom_calc.py#L70-L92 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/biom_calc.py | 
	raw_abundance | 
	def raw_abundance(biomf, sampleIDs=None, sample_abd=True):
    """
    Calculate the total number of sequences in each OTU or SampleID.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: List
    :param sampleIDs: A list of column id's from BIOM format OTU table. By default, the
                      list has been set to None.
    :type sample_abd: Boolean
    :param sample_abd: A boolean operator to provide output for OTUID's or SampleID's. By
                       default, the output will be provided for SampleID's.
    :rtype: dict
    :return: Returns a dictionary keyed on either OTUID's or SampleIDs and their
             respective abundance as values.
    """
    results = defaultdict(int)
    if sampleIDs is None:
        sampleIDs = biomf.ids()
    else:
        try:
            for sid in sampleIDs:
                assert sid in biomf.ids()
        except AssertionError:
            raise ValueError(
                "\nError while calculating raw total abundances: The sampleIDs provided "
                "do not match the sampleIDs in biom file. Please double check the "
                "sampleIDs provided.\n")
    otuIDs = biomf.ids(axis="observation")
    for sampleID in sampleIDs:
        for otuID in otuIDs:
            abd = biomf.get_value_by_ids(otuID, sampleID)
            if sample_abd:
                results[sampleID] += abd
            else:
                results[otuID] += abd
    return results | 
	python | 
	def raw_abundance(biomf, sampleIDs=None, sample_abd=True):
    """
    Calculate the total number of sequences in each OTU or SampleID.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: List
    :param sampleIDs: A list of column id's from BIOM format OTU table. By default, the
                      list has been set to None.
    :type sample_abd: Boolean
    :param sample_abd: A boolean operator to provide output for OTUID's or SampleID's. By
                       default, the output will be provided for SampleID's.
    :rtype: dict
    :return: Returns a dictionary keyed on either OTUID's or SampleIDs and their
             respective abundance as values.
    """
    results = defaultdict(int)
    if sampleIDs is None:
        sampleIDs = biomf.ids()
    else:
        try:
            for sid in sampleIDs:
                assert sid in biomf.ids()
        except AssertionError:
            raise ValueError(
                "\nError while calculating raw total abundances: The sampleIDs provided "
                "do not match the sampleIDs in biom file. Please double check the "
                "sampleIDs provided.\n")
    otuIDs = biomf.ids(axis="observation")
    for sampleID in sampleIDs:
        for otuID in otuIDs:
            abd = biomf.get_value_by_ids(otuID, sampleID)
            if sample_abd:
                results[sampleID] += abd
            else:
                results[otuID] += abd
    return results | 
	[
  "def",
  "raw_abundance",
  "(",
  "biomf",
  ",",
  "sampleIDs",
  "=",
  "None",
  ",",
  "sample_abd",
  "=",
  "True",
  ")",
  ":",
  "results",
  "=",
  "defaultdict",
  "(",
  "int",
  ")",
  "if",
  "sampleIDs",
  "is",
  "None",
  ":",
  "sampleIDs",
  "=",
  "biomf",
  ".",
  "ids",
  "(",
  ")",
  "else",
  ":",
  "try",
  ":",
  "for",
  "sid",
  "in",
  "sampleIDs",
  ":",
  "assert",
  "sid",
  "in",
  "biomf",
  ".",
  "ids",
  "(",
  ")",
  "except",
  "AssertionError",
  ":",
  "raise",
  "ValueError",
  "(",
  "\"\\nError while calculating raw total abundances: The sampleIDs provided \"",
  "\"do not match the sampleIDs in biom file. Please double check the \"",
  "\"sampleIDs provided.\\n\"",
  ")",
  "otuIDs",
  "=",
  "biomf",
  ".",
  "ids",
  "(",
  "axis",
  "=",
  "\"observation\"",
  ")",
  "for",
  "sampleID",
  "in",
  "sampleIDs",
  ":",
  "for",
  "otuID",
  "in",
  "otuIDs",
  ":",
  "abd",
  "=",
  "biomf",
  ".",
  "get_value_by_ids",
  "(",
  "otuID",
  ",",
  "sampleID",
  ")",
  "if",
  "sample_abd",
  ":",
  "results",
  "[",
  "sampleID",
  "]",
  "+=",
  "abd",
  "else",
  ":",
  "results",
  "[",
  "otuID",
  "]",
  "+=",
  "abd",
  "return",
  "results"
] | 
	Calculate the total number of sequences in each OTU or SampleID.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :type sampleIDs: List
    :param sampleIDs: A list of column id's from BIOM format OTU table. By default, the
                      list has been set to None.
    :type sample_abd: Boolean
    :param sample_abd: A boolean operator to provide output for OTUID's or SampleID's. By
                       default, the output will be provided for SampleID's.
    :rtype: dict
    :return: Returns a dictionary keyed on either OTUID's or SampleIDs and their
             respective abundance as values. | 
	[
  "Calculate",
  "the",
  "total",
  "number",
  "of",
  "sequences",
  "in",
  "each",
  "OTU",
  "or",
  "SampleID",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/biom_calc.py#L95-L135 | 
	train | 
| 
	smdabdoub/phylotoast | 
	phylotoast/biom_calc.py | 
	transform_raw_abundance | 
	def transform_raw_abundance(biomf, fn=math.log10, sampleIDs=None, sample_abd=True):
    """
    Function to transform the total abundance calculation for each sample ID to another
    format based on user given transformation function.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :param fn: Mathematical function which is used to transform smax to another format.
               By default, the function has been given as base 10 logarithm.
    :rtype: dict
    :return: Returns a dictionary similar to output of raw_abundance function but with
             the abundance values modified by the mathematical operation. By default, the
             operation performed on the abundances is base 10 logarithm.
    """
    totals = raw_abundance(biomf, sampleIDs, sample_abd)
    return {sid: fn(abd) for sid, abd in totals.items()} | 
	python | 
	def transform_raw_abundance(biomf, fn=math.log10, sampleIDs=None, sample_abd=True):
    """
    Function to transform the total abundance calculation for each sample ID to another
    format based on user given transformation function.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :param fn: Mathematical function which is used to transform smax to another format.
               By default, the function has been given as base 10 logarithm.
    :rtype: dict
    :return: Returns a dictionary similar to output of raw_abundance function but with
             the abundance values modified by the mathematical operation. By default, the
             operation performed on the abundances is base 10 logarithm.
    """
    totals = raw_abundance(biomf, sampleIDs, sample_abd)
    return {sid: fn(abd) for sid, abd in totals.items()} | 
	[
  "def",
  "transform_raw_abundance",
  "(",
  "biomf",
  ",",
  "fn",
  "=",
  "math",
  ".",
  "log10",
  ",",
  "sampleIDs",
  "=",
  "None",
  ",",
  "sample_abd",
  "=",
  "True",
  ")",
  ":",
  "totals",
  "=",
  "raw_abundance",
  "(",
  "biomf",
  ",",
  "sampleIDs",
  ",",
  "sample_abd",
  ")",
  "return",
  "{",
  "sid",
  ":",
  "fn",
  "(",
  "abd",
  ")",
  "for",
  "sid",
  ",",
  "abd",
  "in",
  "totals",
  ".",
  "items",
  "(",
  ")",
  "}"
] | 
	Function to transform the total abundance calculation for each sample ID to another
    format based on user given transformation function.
    :type biomf: A BIOM file.
    :param biomf: OTU table format.
    :param fn: Mathematical function which is used to transform smax to another format.
               By default, the function has been given as base 10 logarithm.
    :rtype: dict
    :return: Returns a dictionary similar to output of raw_abundance function but with
             the abundance values modified by the mathematical operation. By default, the
             operation performed on the abundances is base 10 logarithm. | 
	[
  "Function",
  "to",
  "transform",
  "the",
  "total",
  "abundance",
  "calculation",
  "for",
  "each",
  "sample",
  "ID",
  "to",
  "another",
  "format",
  "based",
  "on",
  "user",
  "given",
  "transformation",
  "function",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/phylotoast/biom_calc.py#L138-L155 | 
	train | 
| 
	smdabdoub/phylotoast | 
	bin/diversity.py | 
	print_MannWhitneyU | 
	def print_MannWhitneyU(div_calc):
    """
    Compute the Mann-Whitney U test for unequal group sample sizes.
    """
    try:
        x = div_calc.values()[0].values()
        y = div_calc.values()[1].values()
    except:
        return "Error setting up input arrays for Mann-Whitney U Test. Skipping "\
               "significance testing."
    T, p = stats.mannwhitneyu(x, y)
    print "\nMann-Whitney U test statistic:", T
    print "Two-tailed p-value: {}".format(2 * p) | 
	python | 
	def print_MannWhitneyU(div_calc):
    """
    Compute the Mann-Whitney U test for unequal group sample sizes.
    """
    try:
        x = div_calc.values()[0].values()
        y = div_calc.values()[1].values()
    except:
        return "Error setting up input arrays for Mann-Whitney U Test. Skipping "\
               "significance testing."
    T, p = stats.mannwhitneyu(x, y)
    print "\nMann-Whitney U test statistic:", T
    print "Two-tailed p-value: {}".format(2 * p) | 
	[
  "def",
  "print_MannWhitneyU",
  "(",
  "div_calc",
  ")",
  ":",
  "try",
  ":",
  "x",
  "=",
  "div_calc",
  ".",
  "values",
  "(",
  ")",
  "[",
  "0",
  "]",
  ".",
  "values",
  "(",
  ")",
  "y",
  "=",
  "div_calc",
  ".",
  "values",
  "(",
  ")",
  "[",
  "1",
  "]",
  ".",
  "values",
  "(",
  ")",
  "except",
  ":",
  "return",
  "\"Error setting up input arrays for Mann-Whitney U Test. Skipping \"",
  "\"significance testing.\"",
  "T",
  ",",
  "p",
  "=",
  "stats",
  ".",
  "mannwhitneyu",
  "(",
  "x",
  ",",
  "y",
  ")",
  "print",
  "\"\\nMann-Whitney U test statistic:\"",
  ",",
  "T",
  "print",
  "\"Two-tailed p-value: {}\"",
  ".",
  "format",
  "(",
  "2",
  "*",
  "p",
  ")"
] | 
	Compute the Mann-Whitney U test for unequal group sample sizes. | 
	[
  "Compute",
  "the",
  "Mann",
  "-",
  "Whitney",
  "U",
  "test",
  "for",
  "unequal",
  "group",
  "sample",
  "sizes",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/diversity.py#L54-L66 | 
	train | 
| 
	smdabdoub/phylotoast | 
	bin/diversity.py | 
	print_KruskalWallisH | 
	def print_KruskalWallisH(div_calc):
    """
    Compute the Kruskal-Wallis H-test for independent samples. A typical rule is that
    each group must have at least 5 measurements.
    """
    calc = defaultdict(list)
    try:
        for k1, v1 in div_calc.iteritems():
            for k2, v2 in v1.iteritems():
                calc[k1].append(v2)
    except:
        return "Error setting up input arrays for Kruskal-Wallis H-Test. Skipping "\
               "significance testing."
    h, p = stats.kruskal(*calc.values())
    print "\nKruskal-Wallis H-test statistic for {} groups: {}".format(str(len(div_calc)), h)
    print "p-value: {}".format(p) | 
	python | 
	def print_KruskalWallisH(div_calc):
    """
    Compute the Kruskal-Wallis H-test for independent samples. A typical rule is that
    each group must have at least 5 measurements.
    """
    calc = defaultdict(list)
    try:
        for k1, v1 in div_calc.iteritems():
            for k2, v2 in v1.iteritems():
                calc[k1].append(v2)
    except:
        return "Error setting up input arrays for Kruskal-Wallis H-Test. Skipping "\
               "significance testing."
    h, p = stats.kruskal(*calc.values())
    print "\nKruskal-Wallis H-test statistic for {} groups: {}".format(str(len(div_calc)), h)
    print "p-value: {}".format(p) | 
	[
  "def",
  "print_KruskalWallisH",
  "(",
  "div_calc",
  ")",
  ":",
  "calc",
  "=",
  "defaultdict",
  "(",
  "list",
  ")",
  "try",
  ":",
  "for",
  "k1",
  ",",
  "v1",
  "in",
  "div_calc",
  ".",
  "iteritems",
  "(",
  ")",
  ":",
  "for",
  "k2",
  ",",
  "v2",
  "in",
  "v1",
  ".",
  "iteritems",
  "(",
  ")",
  ":",
  "calc",
  "[",
  "k1",
  "]",
  ".",
  "append",
  "(",
  "v2",
  ")",
  "except",
  ":",
  "return",
  "\"Error setting up input arrays for Kruskal-Wallis H-Test. Skipping \"",
  "\"significance testing.\"",
  "h",
  ",",
  "p",
  "=",
  "stats",
  ".",
  "kruskal",
  "(",
  "*",
  "calc",
  ".",
  "values",
  "(",
  ")",
  ")",
  "print",
  "\"\\nKruskal-Wallis H-test statistic for {} groups: {}\"",
  ".",
  "format",
  "(",
  "str",
  "(",
  "len",
  "(",
  "div_calc",
  ")",
  ")",
  ",",
  "h",
  ")",
  "print",
  "\"p-value: {}\"",
  ".",
  "format",
  "(",
  "p",
  ")"
] | 
	Compute the Kruskal-Wallis H-test for independent samples. A typical rule is that
    each group must have at least 5 measurements. | 
	[
  "Compute",
  "the",
  "Kruskal",
  "-",
  "Wallis",
  "H",
  "-",
  "test",
  "for",
  "independent",
  "samples",
  ".",
  "A",
  "typical",
  "rule",
  "is",
  "that",
  "each",
  "group",
  "must",
  "have",
  "at",
  "least",
  "5",
  "measurements",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/diversity.py#L69-L84 | 
	train | 
| 
	smdabdoub/phylotoast | 
	bin/diversity.py | 
	handle_program_options | 
	def handle_program_options():
    """Parses the given options passed in at the command line."""
    parser = argparse.ArgumentParser(description="Calculate the alpha diversity\
                                     of a set of samples using one or more \
                                     metrics and output a kernal density \
                                     estimator-smoothed histogram of the \
                                     results.")
    parser.add_argument("-m", "--map_file",
                        help="QIIME mapping file.")
    parser.add_argument("-i", "--biom_fp",
                        help="Path to the BIOM table")
    parser.add_argument("-c", "--category",
                        help="Specific category from the mapping file.")
    parser.add_argument("-d", "--diversity", default=["shannon"], nargs="+",
                        help="The alpha diversity metric. Default \
                             value is 'shannon', which will calculate the Shannon\
                             entropy. Multiple metrics can be specified (space separated).\
                             The full list of metrics is available at:\
                             http://scikit-bio.org/docs/latest/generated/skbio.diversity.alpha.html.\
                             Beta diversity metrics will be supported in the future.")
    parser.add_argument("--x_label", default=[None], nargs="+",
                        help="The name of the diversity metric to be displayed on the\
                        plot as the X-axis label. If multiple metrics are specified,\
                        then multiple entries for the X-axis label should be given.")
    parser.add_argument("--color_by",
                        help="A column name in the mapping file containing\
                              hexadecimal (#FF0000) color values that will\
                              be used to color the groups. Each sample ID must\
                              have a color entry.")
    parser.add_argument("--plot_title", default="",
                        help="A descriptive title that will appear at the top \
                        of the output plot. Surround with quotes if there are\
                        spaces in the title.")
    parser.add_argument("-o", "--output_dir", default=".",
                        help="The directory plots will be saved to.")
    parser.add_argument("--image_type", default="png",
                        help="The type of image to save: png, svg, pdf, eps, etc...")
    parser.add_argument("--save_calculations",
                        help="Path and name of text file to store the calculated "
                        "diversity metrics.")
    parser.add_argument("--suppress_stats", action="store_true", help="Do not display "
                        "significance testing results which are shown by default.")
    parser.add_argument("--show_available_metrics", action="store_true",
                        help="Supply this parameter to see which alpha diversity metrics "
                             " are available for usage. No calculations will be performed"
                             " if this parameter is provided.")
    return parser.parse_args() | 
	python | 
	def handle_program_options():
    """Parses the given options passed in at the command line."""
    parser = argparse.ArgumentParser(description="Calculate the alpha diversity\
                                     of a set of samples using one or more \
                                     metrics and output a kernal density \
                                     estimator-smoothed histogram of the \
                                     results.")
    parser.add_argument("-m", "--map_file",
                        help="QIIME mapping file.")
    parser.add_argument("-i", "--biom_fp",
                        help="Path to the BIOM table")
    parser.add_argument("-c", "--category",
                        help="Specific category from the mapping file.")
    parser.add_argument("-d", "--diversity", default=["shannon"], nargs="+",
                        help="The alpha diversity metric. Default \
                             value is 'shannon', which will calculate the Shannon\
                             entropy. Multiple metrics can be specified (space separated).\
                             The full list of metrics is available at:\
                             http://scikit-bio.org/docs/latest/generated/skbio.diversity.alpha.html.\
                             Beta diversity metrics will be supported in the future.")
    parser.add_argument("--x_label", default=[None], nargs="+",
                        help="The name of the diversity metric to be displayed on the\
                        plot as the X-axis label. If multiple metrics are specified,\
                        then multiple entries for the X-axis label should be given.")
    parser.add_argument("--color_by",
                        help="A column name in the mapping file containing\
                              hexadecimal (#FF0000) color values that will\
                              be used to color the groups. Each sample ID must\
                              have a color entry.")
    parser.add_argument("--plot_title", default="",
                        help="A descriptive title that will appear at the top \
                        of the output plot. Surround with quotes if there are\
                        spaces in the title.")
    parser.add_argument("-o", "--output_dir", default=".",
                        help="The directory plots will be saved to.")
    parser.add_argument("--image_type", default="png",
                        help="The type of image to save: png, svg, pdf, eps, etc...")
    parser.add_argument("--save_calculations",
                        help="Path and name of text file to store the calculated "
                        "diversity metrics.")
    parser.add_argument("--suppress_stats", action="store_true", help="Do not display "
                        "significance testing results which are shown by default.")
    parser.add_argument("--show_available_metrics", action="store_true",
                        help="Supply this parameter to see which alpha diversity metrics "
                             " are available for usage. No calculations will be performed"
                             " if this parameter is provided.")
    return parser.parse_args() | 
	[
  "def",
  "handle_program_options",
  "(",
  ")",
  ":",
  "parser",
  "=",
  "argparse",
  ".",
  "ArgumentParser",
  "(",
  "description",
  "=",
  "\"Calculate the alpha diversity\\\n                                     of a set of samples using one or more \\\n                                     metrics and output a kernal density \\\n                                     estimator-smoothed histogram of the \\\n                                     results.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"-m\"",
  ",",
  "\"--map_file\"",
  ",",
  "help",
  "=",
  "\"QIIME mapping file.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"-i\"",
  ",",
  "\"--biom_fp\"",
  ",",
  "help",
  "=",
  "\"Path to the BIOM table\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"-c\"",
  ",",
  "\"--category\"",
  ",",
  "help",
  "=",
  "\"Specific category from the mapping file.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"-d\"",
  ",",
  "\"--diversity\"",
  ",",
  "default",
  "=",
  "[",
  "\"shannon\"",
  "]",
  ",",
  "nargs",
  "=",
  "\"+\"",
  ",",
  "help",
  "=",
  "\"The alpha diversity metric. Default \\\n                             value is 'shannon', which will calculate the Shannon\\\n                             entropy. Multiple metrics can be specified (space separated).\\\n                             The full list of metrics is available at:\\\n                             http://scikit-bio.org/docs/latest/generated/skbio.diversity.alpha.html.\\\n                             Beta diversity metrics will be supported in the future.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"--x_label\"",
  ",",
  "default",
  "=",
  "[",
  "None",
  "]",
  ",",
  "nargs",
  "=",
  "\"+\"",
  ",",
  "help",
  "=",
  "\"The name of the diversity metric to be displayed on the\\\n                        plot as the X-axis label. If multiple metrics are specified,\\\n                        then multiple entries for the X-axis label should be given.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"--color_by\"",
  ",",
  "help",
  "=",
  "\"A column name in the mapping file containing\\\n                              hexadecimal (#FF0000) color values that will\\\n                              be used to color the groups. Each sample ID must\\\n                              have a color entry.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"--plot_title\"",
  ",",
  "default",
  "=",
  "\"\"",
  ",",
  "help",
  "=",
  "\"A descriptive title that will appear at the top \\\n                        of the output plot. Surround with quotes if there are\\\n                        spaces in the title.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"-o\"",
  ",",
  "\"--output_dir\"",
  ",",
  "default",
  "=",
  "\".\"",
  ",",
  "help",
  "=",
  "\"The directory plots will be saved to.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"--image_type\"",
  ",",
  "default",
  "=",
  "\"png\"",
  ",",
  "help",
  "=",
  "\"The type of image to save: png, svg, pdf, eps, etc...\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"--save_calculations\"",
  ",",
  "help",
  "=",
  "\"Path and name of text file to store the calculated \"",
  "\"diversity metrics.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"--suppress_stats\"",
  ",",
  "action",
  "=",
  "\"store_true\"",
  ",",
  "help",
  "=",
  "\"Do not display \"",
  "\"significance testing results which are shown by default.\"",
  ")",
  "parser",
  ".",
  "add_argument",
  "(",
  "\"--show_available_metrics\"",
  ",",
  "action",
  "=",
  "\"store_true\"",
  ",",
  "help",
  "=",
  "\"Supply this parameter to see which alpha diversity metrics \"",
  "\" are available for usage. No calculations will be performed\"",
  "\" if this parameter is provided.\"",
  ")",
  "return",
  "parser",
  ".",
  "parse_args",
  "(",
  ")"
] | 
	Parses the given options passed in at the command line. | 
	[
  "Parses",
  "the",
  "given",
  "options",
  "passed",
  "in",
  "at",
  "the",
  "command",
  "line",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/diversity.py#L122-L168 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/search.py | 
	blastdb | 
	def blastdb(fasta, maxfile = 10000000):
    """
    make blast db
    """
    db = fasta.rsplit('.', 1)[0]
    type = check_type(fasta)
    if type == 'nucl':
        type = ['nhr', type]
    else:
        type = ['phr', type]
    if os.path.exists('%s.%s' % (db, type[0])) is False \
            and os.path.exists('%s.00.%s' % (db, type[0])) is False:
        print('# ... making blastdb for: %s' % (fasta), file=sys.stderr)
        os.system('makeblastdb \
                -in %s -out %s -dbtype %s -max_file_sz %s >> log.txt' \
                % (fasta, db, type[1], maxfile))
    else:
        print('# ... database found for: %s' % (fasta), file=sys.stderr)
    return db | 
	python | 
	def blastdb(fasta, maxfile = 10000000):
    """
    make blast db
    """
    db = fasta.rsplit('.', 1)[0]
    type = check_type(fasta)
    if type == 'nucl':
        type = ['nhr', type]
    else:
        type = ['phr', type]
    if os.path.exists('%s.%s' % (db, type[0])) is False \
            and os.path.exists('%s.00.%s' % (db, type[0])) is False:
        print('# ... making blastdb for: %s' % (fasta), file=sys.stderr)
        os.system('makeblastdb \
                -in %s -out %s -dbtype %s -max_file_sz %s >> log.txt' \
                % (fasta, db, type[1], maxfile))
    else:
        print('# ... database found for: %s' % (fasta), file=sys.stderr)
    return db | 
	[
  "def",
  "blastdb",
  "(",
  "fasta",
  ",",
  "maxfile",
  "=",
  "10000000",
  ")",
  ":",
  "db",
  "=",
  "fasta",
  ".",
  "rsplit",
  "(",
  "'.'",
  ",",
  "1",
  ")",
  "[",
  "0",
  "]",
  "type",
  "=",
  "check_type",
  "(",
  "fasta",
  ")",
  "if",
  "type",
  "==",
  "'nucl'",
  ":",
  "type",
  "=",
  "[",
  "'nhr'",
  ",",
  "type",
  "]",
  "else",
  ":",
  "type",
  "=",
  "[",
  "'phr'",
  ",",
  "type",
  "]",
  "if",
  "os",
  ".",
  "path",
  ".",
  "exists",
  "(",
  "'%s.%s'",
  "%",
  "(",
  "db",
  ",",
  "type",
  "[",
  "0",
  "]",
  ")",
  ")",
  "is",
  "False",
  "and",
  "os",
  ".",
  "path",
  ".",
  "exists",
  "(",
  "'%s.00.%s'",
  "%",
  "(",
  "db",
  ",",
  "type",
  "[",
  "0",
  "]",
  ")",
  ")",
  "is",
  "False",
  ":",
  "print",
  "(",
  "'# ... making blastdb for: %s'",
  "%",
  "(",
  "fasta",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "os",
  ".",
  "system",
  "(",
  "'makeblastdb \\\n                -in %s -out %s -dbtype %s -max_file_sz %s >> log.txt'",
  "%",
  "(",
  "fasta",
  ",",
  "db",
  ",",
  "type",
  "[",
  "1",
  "]",
  ",",
  "maxfile",
  ")",
  ")",
  "else",
  ":",
  "print",
  "(",
  "'# ... database found for: %s'",
  "%",
  "(",
  "fasta",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "return",
  "db"
] | 
	make blast db | 
	[
  "make",
  "blast",
  "db"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/search.py#L28-L46 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/search.py | 
	usearchdb | 
	def usearchdb(fasta, alignment = 'local', usearch_loc = 'usearch'):
    """
    make usearch db
    """
    if '.udb' in fasta:
        print('# ... database found: %s' % (fasta), file=sys.stderr)
        return fasta
    type = check_type(fasta)
    db = '%s.%s.udb' % (fasta.rsplit('.', 1)[0], type)
    if os.path.exists(db) is False:
        print('# ... making usearch db for: %s' % (fasta), file=sys.stderr)
        if alignment == 'local':
            os.system('%s -makeudb_ublast %s -output %s >> log.txt' % (usearch_loc, fasta, db))
        elif alignment == 'global':
            os.system('%s -makeudb_usearch %s -output %s >> log.txt' % (usearch_loc, fasta, db))
    else:
        print('# ... database found for: %s' % (fasta), file=sys.stderr)
    return db | 
	python | 
	def usearchdb(fasta, alignment = 'local', usearch_loc = 'usearch'):
    """
    make usearch db
    """
    if '.udb' in fasta:
        print('# ... database found: %s' % (fasta), file=sys.stderr)
        return fasta
    type = check_type(fasta)
    db = '%s.%s.udb' % (fasta.rsplit('.', 1)[0], type)
    if os.path.exists(db) is False:
        print('# ... making usearch db for: %s' % (fasta), file=sys.stderr)
        if alignment == 'local':
            os.system('%s -makeudb_ublast %s -output %s >> log.txt' % (usearch_loc, fasta, db))
        elif alignment == 'global':
            os.system('%s -makeudb_usearch %s -output %s >> log.txt' % (usearch_loc, fasta, db))
    else:
        print('# ... database found for: %s' % (fasta), file=sys.stderr)
    return db | 
	[
  "def",
  "usearchdb",
  "(",
  "fasta",
  ",",
  "alignment",
  "=",
  "'local'",
  ",",
  "usearch_loc",
  "=",
  "'usearch'",
  ")",
  ":",
  "if",
  "'.udb'",
  "in",
  "fasta",
  ":",
  "print",
  "(",
  "'# ... database found: %s'",
  "%",
  "(",
  "fasta",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "return",
  "fasta",
  "type",
  "=",
  "check_type",
  "(",
  "fasta",
  ")",
  "db",
  "=",
  "'%s.%s.udb'",
  "%",
  "(",
  "fasta",
  ".",
  "rsplit",
  "(",
  "'.'",
  ",",
  "1",
  ")",
  "[",
  "0",
  "]",
  ",",
  "type",
  ")",
  "if",
  "os",
  ".",
  "path",
  ".",
  "exists",
  "(",
  "db",
  ")",
  "is",
  "False",
  ":",
  "print",
  "(",
  "'# ... making usearch db for: %s'",
  "%",
  "(",
  "fasta",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "if",
  "alignment",
  "==",
  "'local'",
  ":",
  "os",
  ".",
  "system",
  "(",
  "'%s -makeudb_ublast %s -output %s >> log.txt'",
  "%",
  "(",
  "usearch_loc",
  ",",
  "fasta",
  ",",
  "db",
  ")",
  ")",
  "elif",
  "alignment",
  "==",
  "'global'",
  ":",
  "os",
  ".",
  "system",
  "(",
  "'%s -makeudb_usearch %s -output %s >> log.txt'",
  "%",
  "(",
  "usearch_loc",
  ",",
  "fasta",
  ",",
  "db",
  ")",
  ")",
  "else",
  ":",
  "print",
  "(",
  "'# ... database found for: %s'",
  "%",
  "(",
  "fasta",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "return",
  "db"
] | 
	make usearch db | 
	[
  "make",
  "usearch",
  "db"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/search.py#L68-L85 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/control.py | 
	_pp | 
	def _pp(dict_data):
    """Pretty print."""
    for key, val in dict_data.items():
        # pylint: disable=superfluous-parens
        print('{0:<11}: {1}'.format(key, val)) | 
	python | 
	def _pp(dict_data):
    """Pretty print."""
    for key, val in dict_data.items():
        # pylint: disable=superfluous-parens
        print('{0:<11}: {1}'.format(key, val)) | 
	[
  "def",
  "_pp",
  "(",
  "dict_data",
  ")",
  ":",
  "for",
  "key",
  ",",
  "val",
  "in",
  "dict_data",
  ".",
  "items",
  "(",
  ")",
  ":",
  "# pylint: disable=superfluous-parens",
  "print",
  "(",
  "'{0:<11}: {1}'",
  ".",
  "format",
  "(",
  "key",
  ",",
  "val",
  ")",
  ")"
] | 
	Pretty print. | 
	[
  "Pretty",
  "print",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/control.py#L11-L15 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/control.py | 
	print_licences | 
	def print_licences(params, metadata):
    """Print licenses.
    :param argparse.Namespace params: parameter
    :param bootstrap_py.classifier.Classifiers metadata: package metadata
    """
    if hasattr(params, 'licenses'):
        if params.licenses:
            _pp(metadata.licenses_desc())
        sys.exit(0) | 
	python | 
	def print_licences(params, metadata):
    """Print licenses.
    :param argparse.Namespace params: parameter
    :param bootstrap_py.classifier.Classifiers metadata: package metadata
    """
    if hasattr(params, 'licenses'):
        if params.licenses:
            _pp(metadata.licenses_desc())
        sys.exit(0) | 
	[
  "def",
  "print_licences",
  "(",
  "params",
  ",",
  "metadata",
  ")",
  ":",
  "if",
  "hasattr",
  "(",
  "params",
  ",",
  "'licenses'",
  ")",
  ":",
  "if",
  "params",
  ".",
  "licenses",
  ":",
  "_pp",
  "(",
  "metadata",
  ".",
  "licenses_desc",
  "(",
  ")",
  ")",
  "sys",
  ".",
  "exit",
  "(",
  "0",
  ")"
] | 
	Print licenses.
    :param argparse.Namespace params: parameter
    :param bootstrap_py.classifier.Classifiers metadata: package metadata | 
	[
  "Print",
  "licenses",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/control.py#L27-L36 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/control.py | 
	check_repository_existence | 
	def check_repository_existence(params):
    """Check repository existence.
    :param argparse.Namespace params: parameters
    """
    repodir = os.path.join(params.outdir, params.name)
    if os.path.isdir(repodir):
        raise Conflict(
            'Package repository "{0}" has already exists.'.format(repodir)) | 
	python | 
	def check_repository_existence(params):
    """Check repository existence.
    :param argparse.Namespace params: parameters
    """
    repodir = os.path.join(params.outdir, params.name)
    if os.path.isdir(repodir):
        raise Conflict(
            'Package repository "{0}" has already exists.'.format(repodir)) | 
	[
  "def",
  "check_repository_existence",
  "(",
  "params",
  ")",
  ":",
  "repodir",
  "=",
  "os",
  ".",
  "path",
  ".",
  "join",
  "(",
  "params",
  ".",
  "outdir",
  ",",
  "params",
  ".",
  "name",
  ")",
  "if",
  "os",
  ".",
  "path",
  ".",
  "isdir",
  "(",
  "repodir",
  ")",
  ":",
  "raise",
  "Conflict",
  "(",
  "'Package repository \"{0}\" has already exists.'",
  ".",
  "format",
  "(",
  "repodir",
  ")",
  ")"
] | 
	Check repository existence.
    :param argparse.Namespace params: parameters | 
	[
  "Check",
  "repository",
  "existence",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/control.py#L39-L47 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/control.py | 
	generate_package | 
	def generate_package(params):
    """Generate package repository.
    :param argparse.Namespace params: parameters
    """
    pkg_data = package.PackageData(params)
    pkg_tree = package.PackageTree(pkg_data)
    pkg_tree.generate()
    pkg_tree.move()
    VCS(os.path.join(pkg_tree.outdir, pkg_tree.name), pkg_tree.pkg_data) | 
	python | 
	def generate_package(params):
    """Generate package repository.
    :param argparse.Namespace params: parameters
    """
    pkg_data = package.PackageData(params)
    pkg_tree = package.PackageTree(pkg_data)
    pkg_tree.generate()
    pkg_tree.move()
    VCS(os.path.join(pkg_tree.outdir, pkg_tree.name), pkg_tree.pkg_data) | 
	[
  "def",
  "generate_package",
  "(",
  "params",
  ")",
  ":",
  "pkg_data",
  "=",
  "package",
  ".",
  "PackageData",
  "(",
  "params",
  ")",
  "pkg_tree",
  "=",
  "package",
  ".",
  "PackageTree",
  "(",
  "pkg_data",
  ")",
  "pkg_tree",
  ".",
  "generate",
  "(",
  ")",
  "pkg_tree",
  ".",
  "move",
  "(",
  ")",
  "VCS",
  "(",
  "os",
  ".",
  "path",
  ".",
  "join",
  "(",
  "pkg_tree",
  ".",
  "outdir",
  ",",
  "pkg_tree",
  ".",
  "name",
  ")",
  ",",
  "pkg_tree",
  ".",
  "pkg_data",
  ")"
] | 
	Generate package repository.
    :param argparse.Namespace params: parameters | 
	[
  "Generate",
  "package",
  "repository",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/control.py#L59-L68 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/sam2fastq.py | 
	print_single | 
	def print_single(line, rev):
    """
    print single reads to stderr
    """
    if rev is True:
        seq = rc(['', line[9]])[1]
        qual = line[10][::-1]
    else:
        seq = line[9]
        qual = line[10]
    fq = ['@%s' % line[0], seq, '+%s' % line[0], qual]
    print('\n'.join(fq), file = sys.stderr) | 
	python | 
	def print_single(line, rev):
    """
    print single reads to stderr
    """
    if rev is True:
        seq = rc(['', line[9]])[1]
        qual = line[10][::-1]
    else:
        seq = line[9]
        qual = line[10]
    fq = ['@%s' % line[0], seq, '+%s' % line[0], qual]
    print('\n'.join(fq), file = sys.stderr) | 
	[
  "def",
  "print_single",
  "(",
  "line",
  ",",
  "rev",
  ")",
  ":",
  "if",
  "rev",
  "is",
  "True",
  ":",
  "seq",
  "=",
  "rc",
  "(",
  "[",
  "''",
  ",",
  "line",
  "[",
  "9",
  "]",
  "]",
  ")",
  "[",
  "1",
  "]",
  "qual",
  "=",
  "line",
  "[",
  "10",
  "]",
  "[",
  ":",
  ":",
  "-",
  "1",
  "]",
  "else",
  ":",
  "seq",
  "=",
  "line",
  "[",
  "9",
  "]",
  "qual",
  "=",
  "line",
  "[",
  "10",
  "]",
  "fq",
  "=",
  "[",
  "'@%s'",
  "%",
  "line",
  "[",
  "0",
  "]",
  ",",
  "seq",
  ",",
  "'+%s'",
  "%",
  "line",
  "[",
  "0",
  "]",
  ",",
  "qual",
  "]",
  "print",
  "(",
  "'\\n'",
  ".",
  "join",
  "(",
  "fq",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")"
] | 
	print single reads to stderr | 
	[
  "print",
  "single",
  "reads",
  "to",
  "stderr"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/sam2fastq.py#L13-L24 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/sam2fastq.py | 
	sam2fastq | 
	def sam2fastq(sam, singles = False, force = False):
    """
    convert sam to fastq
    """
    L, R = None, None
    for line in sam:
        if line.startswith('@') is True:
            continue
        line = line.strip().split()
        bit = [True if i == '1' else False \
                for i in bin(int(line[1])).split('b')[1][::-1]]
        while len(bit) < 8:
            bit.append(False)
        pair, proper, na, nap, rev, mrev, left, right = bit
        # make sure read is paired
        if pair is False:
            if singles is True:
                print_single(line, rev)
            continue
        # check if sequence is reverse-complemented
        if rev is True:
            seq = rc(['', line[9]])[1]
            qual = line[10][::-1]
        else:
            seq = line[9]
            qual = line[10]
        # check if read is forward or reverse, return when both have been found
        if left is True:
            if L is not None and force is False:
                print('sam file is not sorted', file = sys.stderr)
                print('\te.g.: %s' % (line[0]), file = sys.stderr)
                exit()
            if L is not None:
                L = None
                continue
            L = ['@%s' % line[0], seq, '+%s' % line[0], qual]
            if R is not None:
                yield L
                yield R
                L, R = None, None
        if right is True:
            if R is not None and force is False:
                print('sam file is not sorted', file = sys.stderr)
                print('\te.g.: %s' % (line[0]), file = sys.stderr)
                exit()
            if R is not None:
                R = None
                continue
            R = ['@%s' % line[0], seq, '+%s' % line[0], qual]
            if L is not None:
                yield L
                yield R
                L, R = None, None | 
	python | 
	def sam2fastq(sam, singles = False, force = False):
    """
    convert sam to fastq
    """
    L, R = None, None
    for line in sam:
        if line.startswith('@') is True:
            continue
        line = line.strip().split()
        bit = [True if i == '1' else False \
                for i in bin(int(line[1])).split('b')[1][::-1]]
        while len(bit) < 8:
            bit.append(False)
        pair, proper, na, nap, rev, mrev, left, right = bit
        # make sure read is paired
        if pair is False:
            if singles is True:
                print_single(line, rev)
            continue
        # check if sequence is reverse-complemented
        if rev is True:
            seq = rc(['', line[9]])[1]
            qual = line[10][::-1]
        else:
            seq = line[9]
            qual = line[10]
        # check if read is forward or reverse, return when both have been found
        if left is True:
            if L is not None and force is False:
                print('sam file is not sorted', file = sys.stderr)
                print('\te.g.: %s' % (line[0]), file = sys.stderr)
                exit()
            if L is not None:
                L = None
                continue
            L = ['@%s' % line[0], seq, '+%s' % line[0], qual]
            if R is not None:
                yield L
                yield R
                L, R = None, None
        if right is True:
            if R is not None and force is False:
                print('sam file is not sorted', file = sys.stderr)
                print('\te.g.: %s' % (line[0]), file = sys.stderr)
                exit()
            if R is not None:
                R = None
                continue
            R = ['@%s' % line[0], seq, '+%s' % line[0], qual]
            if L is not None:
                yield L
                yield R
                L, R = None, None | 
	[
  "def",
  "sam2fastq",
  "(",
  "sam",
  ",",
  "singles",
  "=",
  "False",
  ",",
  "force",
  "=",
  "False",
  ")",
  ":",
  "L",
  ",",
  "R",
  "=",
  "None",
  ",",
  "None",
  "for",
  "line",
  "in",
  "sam",
  ":",
  "if",
  "line",
  ".",
  "startswith",
  "(",
  "'@'",
  ")",
  "is",
  "True",
  ":",
  "continue",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  ")",
  "bit",
  "=",
  "[",
  "True",
  "if",
  "i",
  "==",
  "'1'",
  "else",
  "False",
  "for",
  "i",
  "in",
  "bin",
  "(",
  "int",
  "(",
  "line",
  "[",
  "1",
  "]",
  ")",
  ")",
  ".",
  "split",
  "(",
  "'b'",
  ")",
  "[",
  "1",
  "]",
  "[",
  ":",
  ":",
  "-",
  "1",
  "]",
  "]",
  "while",
  "len",
  "(",
  "bit",
  ")",
  "<",
  "8",
  ":",
  "bit",
  ".",
  "append",
  "(",
  "False",
  ")",
  "pair",
  ",",
  "proper",
  ",",
  "na",
  ",",
  "nap",
  ",",
  "rev",
  ",",
  "mrev",
  ",",
  "left",
  ",",
  "right",
  "=",
  "bit",
  "# make sure read is paired",
  "if",
  "pair",
  "is",
  "False",
  ":",
  "if",
  "singles",
  "is",
  "True",
  ":",
  "print_single",
  "(",
  "line",
  ",",
  "rev",
  ")",
  "continue",
  "# check if sequence is reverse-complemented",
  "if",
  "rev",
  "is",
  "True",
  ":",
  "seq",
  "=",
  "rc",
  "(",
  "[",
  "''",
  ",",
  "line",
  "[",
  "9",
  "]",
  "]",
  ")",
  "[",
  "1",
  "]",
  "qual",
  "=",
  "line",
  "[",
  "10",
  "]",
  "[",
  ":",
  ":",
  "-",
  "1",
  "]",
  "else",
  ":",
  "seq",
  "=",
  "line",
  "[",
  "9",
  "]",
  "qual",
  "=",
  "line",
  "[",
  "10",
  "]",
  "# check if read is forward or reverse, return when both have been found",
  "if",
  "left",
  "is",
  "True",
  ":",
  "if",
  "L",
  "is",
  "not",
  "None",
  "and",
  "force",
  "is",
  "False",
  ":",
  "print",
  "(",
  "'sam file is not sorted'",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "print",
  "(",
  "'\\te.g.: %s'",
  "%",
  "(",
  "line",
  "[",
  "0",
  "]",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "exit",
  "(",
  ")",
  "if",
  "L",
  "is",
  "not",
  "None",
  ":",
  "L",
  "=",
  "None",
  "continue",
  "L",
  "=",
  "[",
  "'@%s'",
  "%",
  "line",
  "[",
  "0",
  "]",
  ",",
  "seq",
  ",",
  "'+%s'",
  "%",
  "line",
  "[",
  "0",
  "]",
  ",",
  "qual",
  "]",
  "if",
  "R",
  "is",
  "not",
  "None",
  ":",
  "yield",
  "L",
  "yield",
  "R",
  "L",
  ",",
  "R",
  "=",
  "None",
  ",",
  "None",
  "if",
  "right",
  "is",
  "True",
  ":",
  "if",
  "R",
  "is",
  "not",
  "None",
  "and",
  "force",
  "is",
  "False",
  ":",
  "print",
  "(",
  "'sam file is not sorted'",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "print",
  "(",
  "'\\te.g.: %s'",
  "%",
  "(",
  "line",
  "[",
  "0",
  "]",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "exit",
  "(",
  ")",
  "if",
  "R",
  "is",
  "not",
  "None",
  ":",
  "R",
  "=",
  "None",
  "continue",
  "R",
  "=",
  "[",
  "'@%s'",
  "%",
  "line",
  "[",
  "0",
  "]",
  ",",
  "seq",
  ",",
  "'+%s'",
  "%",
  "line",
  "[",
  "0",
  "]",
  ",",
  "qual",
  "]",
  "if",
  "L",
  "is",
  "not",
  "None",
  ":",
  "yield",
  "L",
  "yield",
  "R",
  "L",
  ",",
  "R",
  "=",
  "None",
  ",",
  "None"
] | 
	convert sam to fastq | 
	[
  "convert",
  "sam",
  "to",
  "fastq"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/sam2fastq.py#L26-L78 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/subset_sam.py | 
	sort_sam | 
	def sort_sam(sam, sort):
    """
    sort sam file
    """
    tempdir = '%s/' % (os.path.abspath(sam).rsplit('/', 1)[0])
    if sort is True:
        mapping = '%s.sorted.sam' % (sam.rsplit('.', 1)[0])
        if sam != '-':
            if os.path.exists(mapping) is False:
                os.system("\
                    sort -k1 --buffer-size=%sG -T %s -o %s %s\
                    " % (sbuffer, tempdir, mapping, sam)) 
        else:
            mapping = 'stdin-sam.sorted.sam'
            p = Popen("sort -k1 --buffer-size=%sG -T %s -o %s" \
                    % (sbuffer, tempdir, mapping), stdin = sys.stdin, shell = True) 
            p.communicate()
        mapping = open(mapping)
    else:
        if sam == '-':
            mapping = sys.stdin
        else:
            mapping = open(sam)
    return mapping | 
	python | 
	def sort_sam(sam, sort):
    """
    sort sam file
    """
    tempdir = '%s/' % (os.path.abspath(sam).rsplit('/', 1)[0])
    if sort is True:
        mapping = '%s.sorted.sam' % (sam.rsplit('.', 1)[0])
        if sam != '-':
            if os.path.exists(mapping) is False:
                os.system("\
                    sort -k1 --buffer-size=%sG -T %s -o %s %s\
                    " % (sbuffer, tempdir, mapping, sam)) 
        else:
            mapping = 'stdin-sam.sorted.sam'
            p = Popen("sort -k1 --buffer-size=%sG -T %s -o %s" \
                    % (sbuffer, tempdir, mapping), stdin = sys.stdin, shell = True) 
            p.communicate()
        mapping = open(mapping)
    else:
        if sam == '-':
            mapping = sys.stdin
        else:
            mapping = open(sam)
    return mapping | 
	[
  "def",
  "sort_sam",
  "(",
  "sam",
  ",",
  "sort",
  ")",
  ":",
  "tempdir",
  "=",
  "'%s/'",
  "%",
  "(",
  "os",
  ".",
  "path",
  ".",
  "abspath",
  "(",
  "sam",
  ")",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "0",
  "]",
  ")",
  "if",
  "sort",
  "is",
  "True",
  ":",
  "mapping",
  "=",
  "'%s.sorted.sam'",
  "%",
  "(",
  "sam",
  ".",
  "rsplit",
  "(",
  "'.'",
  ",",
  "1",
  ")",
  "[",
  "0",
  "]",
  ")",
  "if",
  "sam",
  "!=",
  "'-'",
  ":",
  "if",
  "os",
  ".",
  "path",
  ".",
  "exists",
  "(",
  "mapping",
  ")",
  "is",
  "False",
  ":",
  "os",
  ".",
  "system",
  "(",
  "\"\\\n                    sort -k1 --buffer-size=%sG -T %s -o %s %s\\\n                    \"",
  "%",
  "(",
  "sbuffer",
  ",",
  "tempdir",
  ",",
  "mapping",
  ",",
  "sam",
  ")",
  ")",
  "else",
  ":",
  "mapping",
  "=",
  "'stdin-sam.sorted.sam'",
  "p",
  "=",
  "Popen",
  "(",
  "\"sort -k1 --buffer-size=%sG -T %s -o %s\"",
  "%",
  "(",
  "sbuffer",
  ",",
  "tempdir",
  ",",
  "mapping",
  ")",
  ",",
  "stdin",
  "=",
  "sys",
  ".",
  "stdin",
  ",",
  "shell",
  "=",
  "True",
  ")",
  "p",
  ".",
  "communicate",
  "(",
  ")",
  "mapping",
  "=",
  "open",
  "(",
  "mapping",
  ")",
  "else",
  ":",
  "if",
  "sam",
  "==",
  "'-'",
  ":",
  "mapping",
  "=",
  "sys",
  ".",
  "stdin",
  "else",
  ":",
  "mapping",
  "=",
  "open",
  "(",
  "sam",
  ")",
  "return",
  "mapping"
] | 
	sort sam file | 
	[
  "sort",
  "sam",
  "file"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/subset_sam.py#L14-L37 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/subset_sam.py | 
	sub_sam | 
	def sub_sam(sam, percent, sort = True, sbuffer = False):
    """
    randomly subset sam file
    """
    mapping = sort_sam(sam, sort)
    pool = [1 for i in range(0, percent)] + [0 for i in range(0, 100 - percent)]
    c = cycle([1, 2])
    for line in mapping:
        line = line.strip().split()
        if line[0].startswith('@'): # get the sam header
            yield line
            continue
        if int(line[1]) <= 20: # is this from a single read?
            if random.choice(pool) == 1:
                yield line
        else:
            n = next(c)
            if n == 1:
                prev = line
            if n == 2 and random.choice(pool) == 1:
                yield prev
                yield line | 
	python | 
	def sub_sam(sam, percent, sort = True, sbuffer = False):
    """
    randomly subset sam file
    """
    mapping = sort_sam(sam, sort)
    pool = [1 for i in range(0, percent)] + [0 for i in range(0, 100 - percent)]
    c = cycle([1, 2])
    for line in mapping:
        line = line.strip().split()
        if line[0].startswith('@'): # get the sam header
            yield line
            continue
        if int(line[1]) <= 20: # is this from a single read?
            if random.choice(pool) == 1:
                yield line
        else:
            n = next(c)
            if n == 1:
                prev = line
            if n == 2 and random.choice(pool) == 1:
                yield prev
                yield line | 
	[
  "def",
  "sub_sam",
  "(",
  "sam",
  ",",
  "percent",
  ",",
  "sort",
  "=",
  "True",
  ",",
  "sbuffer",
  "=",
  "False",
  ")",
  ":",
  "mapping",
  "=",
  "sort_sam",
  "(",
  "sam",
  ",",
  "sort",
  ")",
  "pool",
  "=",
  "[",
  "1",
  "for",
  "i",
  "in",
  "range",
  "(",
  "0",
  ",",
  "percent",
  ")",
  "]",
  "+",
  "[",
  "0",
  "for",
  "i",
  "in",
  "range",
  "(",
  "0",
  ",",
  "100",
  "-",
  "percent",
  ")",
  "]",
  "c",
  "=",
  "cycle",
  "(",
  "[",
  "1",
  ",",
  "2",
  "]",
  ")",
  "for",
  "line",
  "in",
  "mapping",
  ":",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  ")",
  "if",
  "line",
  "[",
  "0",
  "]",
  ".",
  "startswith",
  "(",
  "'@'",
  ")",
  ":",
  "# get the sam header",
  "yield",
  "line",
  "continue",
  "if",
  "int",
  "(",
  "line",
  "[",
  "1",
  "]",
  ")",
  "<=",
  "20",
  ":",
  "# is this from a single read?",
  "if",
  "random",
  ".",
  "choice",
  "(",
  "pool",
  ")",
  "==",
  "1",
  ":",
  "yield",
  "line",
  "else",
  ":",
  "n",
  "=",
  "next",
  "(",
  "c",
  ")",
  "if",
  "n",
  "==",
  "1",
  ":",
  "prev",
  "=",
  "line",
  "if",
  "n",
  "==",
  "2",
  "and",
  "random",
  ".",
  "choice",
  "(",
  "pool",
  ")",
  "==",
  "1",
  ":",
  "yield",
  "prev",
  "yield",
  "line"
] | 
	randomly subset sam file | 
	[
  "randomly",
  "subset",
  "sam",
  "file"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/subset_sam.py#L39-L60 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/fastq2fasta.py | 
	fq2fa | 
	def fq2fa(fq):
    """
    convert fq to fa
    """
    c = cycle([1, 2, 3, 4])
    for line in fq:
        n = next(c)
        if n == 1:
            seq = ['>%s' % (line.strip().split('@', 1)[1])]
        if n == 2:
            seq.append(line.strip())
            yield seq | 
	python | 
	def fq2fa(fq):
    """
    convert fq to fa
    """
    c = cycle([1, 2, 3, 4])
    for line in fq:
        n = next(c)
        if n == 1:
            seq = ['>%s' % (line.strip().split('@', 1)[1])]
        if n == 2:
            seq.append(line.strip())
            yield seq | 
	[
  "def",
  "fq2fa",
  "(",
  "fq",
  ")",
  ":",
  "c",
  "=",
  "cycle",
  "(",
  "[",
  "1",
  ",",
  "2",
  ",",
  "3",
  ",",
  "4",
  "]",
  ")",
  "for",
  "line",
  "in",
  "fq",
  ":",
  "n",
  "=",
  "next",
  "(",
  "c",
  ")",
  "if",
  "n",
  "==",
  "1",
  ":",
  "seq",
  "=",
  "[",
  "'>%s'",
  "%",
  "(",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  "'@'",
  ",",
  "1",
  ")",
  "[",
  "1",
  "]",
  ")",
  "]",
  "if",
  "n",
  "==",
  "2",
  ":",
  "seq",
  ".",
  "append",
  "(",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ")",
  "yield",
  "seq"
] | 
	convert fq to fa | 
	[
  "convert",
  "fq",
  "to",
  "fa"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/fastq2fasta.py#L11-L22 | 
	train | 
| 
	elbow-jason/Uno-deprecated | 
	uno/decorators.py | 
	change_return_type | 
	def change_return_type(f):
    """
    Converts the returned value of wrapped function to the type of the
    first arg or to the type specified by a kwarg key return_type's value.
    """
    @wraps(f)
    def wrapper(*args, **kwargs):
        if kwargs.has_key('return_type'):
            return_type = kwargs['return_type']
            kwargs.pop('return_type')
            return return_type(f(*args, **kwargs))
        elif len(args) > 0:
            return_type = type(args[0])
            return return_type(f(*args, **kwargs))
        else:
            return f(*args, **kwargs)
    return wrapper | 
	python | 
	def change_return_type(f):
    """
    Converts the returned value of wrapped function to the type of the
    first arg or to the type specified by a kwarg key return_type's value.
    """
    @wraps(f)
    def wrapper(*args, **kwargs):
        if kwargs.has_key('return_type'):
            return_type = kwargs['return_type']
            kwargs.pop('return_type')
            return return_type(f(*args, **kwargs))
        elif len(args) > 0:
            return_type = type(args[0])
            return return_type(f(*args, **kwargs))
        else:
            return f(*args, **kwargs)
    return wrapper | 
	[
  "def",
  "change_return_type",
  "(",
  "f",
  ")",
  ":",
  "@",
  "wraps",
  "(",
  "f",
  ")",
  "def",
  "wrapper",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ":",
  "if",
  "kwargs",
  ".",
  "has_key",
  "(",
  "'return_type'",
  ")",
  ":",
  "return_type",
  "=",
  "kwargs",
  "[",
  "'return_type'",
  "]",
  "kwargs",
  ".",
  "pop",
  "(",
  "'return_type'",
  ")",
  "return",
  "return_type",
  "(",
  "f",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ")",
  "elif",
  "len",
  "(",
  "args",
  ")",
  ">",
  "0",
  ":",
  "return_type",
  "=",
  "type",
  "(",
  "args",
  "[",
  "0",
  "]",
  ")",
  "return",
  "return_type",
  "(",
  "f",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ")",
  "else",
  ":",
  "return",
  "f",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  "return",
  "wrapper"
] | 
	Converts the returned value of wrapped function to the type of the
    first arg or to the type specified by a kwarg key return_type's value. | 
	[
  "Converts",
  "the",
  "returned",
  "value",
  "of",
  "wrapped",
  "function",
  "to",
  "the",
  "type",
  "of",
  "the",
  "first",
  "arg",
  "or",
  "to",
  "the",
  "type",
  "specified",
  "by",
  "a",
  "kwarg",
  "key",
  "return_type",
  "s",
  "value",
  "."
] | 
	4ad07d7b84e5b6e3e2b2c89db69448906f24b4e4 | 
	https://github.com/elbow-jason/Uno-deprecated/blob/4ad07d7b84e5b6e3e2b2c89db69448906f24b4e4/uno/decorators.py#L11-L27 | 
	train | 
| 
	elbow-jason/Uno-deprecated | 
	uno/decorators.py | 
	convert_args_to_sets | 
	def convert_args_to_sets(f):
    """
    Converts all args to 'set' type via self.setify function.
    """
    @wraps(f)
    def wrapper(*args, **kwargs):
        args = (setify(x) for x in args)
        return f(*args, **kwargs)
    return wrapper | 
	python | 
	def convert_args_to_sets(f):
    """
    Converts all args to 'set' type via self.setify function.
    """
    @wraps(f)
    def wrapper(*args, **kwargs):
        args = (setify(x) for x in args)
        return f(*args, **kwargs)
    return wrapper | 
	[
  "def",
  "convert_args_to_sets",
  "(",
  "f",
  ")",
  ":",
  "@",
  "wraps",
  "(",
  "f",
  ")",
  "def",
  "wrapper",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ":",
  "args",
  "=",
  "(",
  "setify",
  "(",
  "x",
  ")",
  "for",
  "x",
  "in",
  "args",
  ")",
  "return",
  "f",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  "return",
  "wrapper"
] | 
	Converts all args to 'set' type via self.setify function. | 
	[
  "Converts",
  "all",
  "args",
  "to",
  "set",
  "type",
  "via",
  "self",
  ".",
  "setify",
  "function",
  "."
] | 
	4ad07d7b84e5b6e3e2b2c89db69448906f24b4e4 | 
	https://github.com/elbow-jason/Uno-deprecated/blob/4ad07d7b84e5b6e3e2b2c89db69448906f24b4e4/uno/decorators.py#L30-L38 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	KBBI._init_entri | 
	def _init_entri(self, laman):
        """Membuat objek-objek entri dari laman yang diambil.
        :param laman: Laman respons yang dikembalikan oleh KBBI daring.
        :type laman: Response
        """
        sup = BeautifulSoup(laman.text, 'html.parser')
        estr = ''
        for label in sup.find('hr').next_siblings:
            if label.name == 'hr':
                self.entri.append(Entri(estr))
                break
            if label.name == 'h2':
                if estr:
                    self.entri.append(Entri(estr))
                estr = ''
            estr += str(label).strip() | 
	python | 
	def _init_entri(self, laman):
        """Membuat objek-objek entri dari laman yang diambil.
        :param laman: Laman respons yang dikembalikan oleh KBBI daring.
        :type laman: Response
        """
        sup = BeautifulSoup(laman.text, 'html.parser')
        estr = ''
        for label in sup.find('hr').next_siblings:
            if label.name == 'hr':
                self.entri.append(Entri(estr))
                break
            if label.name == 'h2':
                if estr:
                    self.entri.append(Entri(estr))
                estr = ''
            estr += str(label).strip() | 
	[
  "def",
  "_init_entri",
  "(",
  "self",
  ",",
  "laman",
  ")",
  ":",
  "sup",
  "=",
  "BeautifulSoup",
  "(",
  "laman",
  ".",
  "text",
  ",",
  "'html.parser'",
  ")",
  "estr",
  "=",
  "''",
  "for",
  "label",
  "in",
  "sup",
  ".",
  "find",
  "(",
  "'hr'",
  ")",
  ".",
  "next_siblings",
  ":",
  "if",
  "label",
  ".",
  "name",
  "==",
  "'hr'",
  ":",
  "self",
  ".",
  "entri",
  ".",
  "append",
  "(",
  "Entri",
  "(",
  "estr",
  ")",
  ")",
  "break",
  "if",
  "label",
  ".",
  "name",
  "==",
  "'h2'",
  ":",
  "if",
  "estr",
  ":",
  "self",
  ".",
  "entri",
  ".",
  "append",
  "(",
  "Entri",
  "(",
  "estr",
  ")",
  ")",
  "estr",
  "=",
  "''",
  "estr",
  "+=",
  "str",
  "(",
  "label",
  ")",
  ".",
  "strip",
  "(",
  ")"
] | 
	Membuat objek-objek entri dari laman yang diambil.
        :param laman: Laman respons yang dikembalikan oleh KBBI daring.
        :type laman: Response | 
	[
  "Membuat",
  "objek",
  "-",
  "objek",
  "entri",
  "dari",
  "laman",
  "yang",
  "diambil",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L46-L63 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	Entri._init_kata_dasar | 
	def _init_kata_dasar(self, dasar):
        """Memproses kata dasar yang ada dalam nama entri.
        :param dasar: ResultSet untuk label HTML dengan class="rootword"
        :type dasar: ResultSet
        """
        for tiap in dasar:
            kata = tiap.find('a')
            dasar_no = kata.find('sup')
            kata = ambil_teks_dalam_label(kata)
            self.kata_dasar.append(
                kata + ' [{}]'.format(dasar_no.text.strip()) if dasar_no else kata
            ) | 
	python | 
	def _init_kata_dasar(self, dasar):
        """Memproses kata dasar yang ada dalam nama entri.
        :param dasar: ResultSet untuk label HTML dengan class="rootword"
        :type dasar: ResultSet
        """
        for tiap in dasar:
            kata = tiap.find('a')
            dasar_no = kata.find('sup')
            kata = ambil_teks_dalam_label(kata)
            self.kata_dasar.append(
                kata + ' [{}]'.format(dasar_no.text.strip()) if dasar_no else kata
            ) | 
	[
  "def",
  "_init_kata_dasar",
  "(",
  "self",
  ",",
  "dasar",
  ")",
  ":",
  "for",
  "tiap",
  "in",
  "dasar",
  ":",
  "kata",
  "=",
  "tiap",
  ".",
  "find",
  "(",
  "'a'",
  ")",
  "dasar_no",
  "=",
  "kata",
  ".",
  "find",
  "(",
  "'sup'",
  ")",
  "kata",
  "=",
  "ambil_teks_dalam_label",
  "(",
  "kata",
  ")",
  "self",
  ".",
  "kata_dasar",
  ".",
  "append",
  "(",
  "kata",
  "+",
  "' [{}]'",
  ".",
  "format",
  "(",
  "dasar_no",
  ".",
  "text",
  ".",
  "strip",
  "(",
  ")",
  ")",
  "if",
  "dasar_no",
  "else",
  "kata",
  ")"
] | 
	Memproses kata dasar yang ada dalam nama entri.
        :param dasar: ResultSet untuk label HTML dengan class="rootword"
        :type dasar: ResultSet | 
	[
  "Memproses",
  "kata",
  "dasar",
  "yang",
  "ada",
  "dalam",
  "nama",
  "entri",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L126-L139 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	Entri.serialisasi | 
	def serialisasi(self):
        """Mengembalikan hasil serialisasi objek Entri ini.
        :returns: Dictionary hasil serialisasi
        :rtype: dict
        """
        return {
            "nama": self.nama,
            "nomor": self.nomor,
            "kata_dasar": self.kata_dasar,
            "pelafalan": self.pelafalan,
            "bentuk_tidak_baku": self.bentuk_tidak_baku,
            "varian": self.varian,
            "makna": [makna.serialisasi() for makna in self.makna]
        } | 
	python | 
	def serialisasi(self):
        """Mengembalikan hasil serialisasi objek Entri ini.
        :returns: Dictionary hasil serialisasi
        :rtype: dict
        """
        return {
            "nama": self.nama,
            "nomor": self.nomor,
            "kata_dasar": self.kata_dasar,
            "pelafalan": self.pelafalan,
            "bentuk_tidak_baku": self.bentuk_tidak_baku,
            "varian": self.varian,
            "makna": [makna.serialisasi() for makna in self.makna]
        } | 
	[
  "def",
  "serialisasi",
  "(",
  "self",
  ")",
  ":",
  "return",
  "{",
  "\"nama\"",
  ":",
  "self",
  ".",
  "nama",
  ",",
  "\"nomor\"",
  ":",
  "self",
  ".",
  "nomor",
  ",",
  "\"kata_dasar\"",
  ":",
  "self",
  ".",
  "kata_dasar",
  ",",
  "\"pelafalan\"",
  ":",
  "self",
  ".",
  "pelafalan",
  ",",
  "\"bentuk_tidak_baku\"",
  ":",
  "self",
  ".",
  "bentuk_tidak_baku",
  ",",
  "\"varian\"",
  ":",
  "self",
  ".",
  "varian",
  ",",
  "\"makna\"",
  ":",
  "[",
  "makna",
  ".",
  "serialisasi",
  "(",
  ")",
  "for",
  "makna",
  "in",
  "self",
  ".",
  "makna",
  "]",
  "}"
] | 
	Mengembalikan hasil serialisasi objek Entri ini.
        :returns: Dictionary hasil serialisasi
        :rtype: dict | 
	[
  "Mengembalikan",
  "hasil",
  "serialisasi",
  "objek",
  "Entri",
  "ini",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L141-L156 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	Entri._makna | 
	def _makna(self):
        """Mengembalikan representasi string untuk semua makna entri ini.
        :returns: String representasi makna-makna
        :rtype: str
        """
        if len(self.makna) > 1:
            return '\n'.join(
                str(i) + ". " + str(makna)
                for i, makna in enumerate(self.makna, 1)
            )
        return str(self.makna[0]) | 
	python | 
	def _makna(self):
        """Mengembalikan representasi string untuk semua makna entri ini.
        :returns: String representasi makna-makna
        :rtype: str
        """
        if len(self.makna) > 1:
            return '\n'.join(
                str(i) + ". " + str(makna)
                for i, makna in enumerate(self.makna, 1)
            )
        return str(self.makna[0]) | 
	[
  "def",
  "_makna",
  "(",
  "self",
  ")",
  ":",
  "if",
  "len",
  "(",
  "self",
  ".",
  "makna",
  ")",
  ">",
  "1",
  ":",
  "return",
  "'\\n'",
  ".",
  "join",
  "(",
  "str",
  "(",
  "i",
  ")",
  "+",
  "\". \"",
  "+",
  "str",
  "(",
  "makna",
  ")",
  "for",
  "i",
  ",",
  "makna",
  "in",
  "enumerate",
  "(",
  "self",
  ".",
  "makna",
  ",",
  "1",
  ")",
  ")",
  "return",
  "str",
  "(",
  "self",
  ".",
  "makna",
  "[",
  "0",
  "]",
  ")"
] | 
	Mengembalikan representasi string untuk semua makna entri ini.
        :returns: String representasi makna-makna
        :rtype: str | 
	[
  "Mengembalikan",
  "representasi",
  "string",
  "untuk",
  "semua",
  "makna",
  "entri",
  "ini",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L158-L170 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	Entri._nama | 
	def _nama(self):
        """Mengembalikan representasi string untuk nama entri ini.
        :returns: String representasi nama entri
        :rtype: str
        """
        hasil = self.nama
        if self.nomor:
            hasil += " [{}]".format(self.nomor)
        if self.kata_dasar:
            hasil = " » ".join(self.kata_dasar) + " » " + hasil
        return hasil | 
	python | 
	def _nama(self):
        """Mengembalikan representasi string untuk nama entri ini.
        :returns: String representasi nama entri
        :rtype: str
        """
        hasil = self.nama
        if self.nomor:
            hasil += " [{}]".format(self.nomor)
        if self.kata_dasar:
            hasil = " » ".join(self.kata_dasar) + " » " + hasil
        return hasil | 
	[
  "def",
  "_nama",
  "(",
  "self",
  ")",
  ":",
  "hasil",
  "=",
  "self",
  ".",
  "nama",
  "if",
  "self",
  ".",
  "nomor",
  ":",
  "hasil",
  "+=",
  "\" [{}]\"",
  ".",
  "format",
  "(",
  "self",
  ".",
  "nomor",
  ")",
  "if",
  "self",
  ".",
  "kata_dasar",
  ":",
  "hasil",
  "=",
  "\" » \".",
  "j",
  "oin(",
  "s",
  "elf.",
  "k",
  "ata_dasar)",
  " ",
  " ",
  " » \" +",
  "h",
  "sil",
  "return",
  "hasil"
] | 
	Mengembalikan representasi string untuk nama entri ini.
        :returns: String representasi nama entri
        :rtype: str | 
	[
  "Mengembalikan",
  "representasi",
  "string",
  "untuk",
  "nama",
  "entri",
  "ini",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L172-L184 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	Entri._varian | 
	def _varian(self, varian):
        """Mengembalikan representasi string untuk varian entri ini.
        Dapat digunakan untuk "Varian" maupun "Bentuk tidak baku".
        :param varian: List bentuk tidak baku atau varian
        :type varian: list
        :returns: String representasi varian atau bentuk tidak baku
        :rtype: str
        """
        if varian == self.bentuk_tidak_baku:
            nama = "Bentuk tidak baku"
        elif varian == self.varian:
            nama = "Varian"
        else:
            return ''
        return nama + ': ' + ', '.join(varian) | 
	python | 
	def _varian(self, varian):
        """Mengembalikan representasi string untuk varian entri ini.
        Dapat digunakan untuk "Varian" maupun "Bentuk tidak baku".
        :param varian: List bentuk tidak baku atau varian
        :type varian: list
        :returns: String representasi varian atau bentuk tidak baku
        :rtype: str
        """
        if varian == self.bentuk_tidak_baku:
            nama = "Bentuk tidak baku"
        elif varian == self.varian:
            nama = "Varian"
        else:
            return ''
        return nama + ': ' + ', '.join(varian) | 
	[
  "def",
  "_varian",
  "(",
  "self",
  ",",
  "varian",
  ")",
  ":",
  "if",
  "varian",
  "==",
  "self",
  ".",
  "bentuk_tidak_baku",
  ":",
  "nama",
  "=",
  "\"Bentuk tidak baku\"",
  "elif",
  "varian",
  "==",
  "self",
  ".",
  "varian",
  ":",
  "nama",
  "=",
  "\"Varian\"",
  "else",
  ":",
  "return",
  "''",
  "return",
  "nama",
  "+",
  "': '",
  "+",
  "', '",
  ".",
  "join",
  "(",
  "varian",
  ")"
] | 
	Mengembalikan representasi string untuk varian entri ini.
        Dapat digunakan untuk "Varian" maupun "Bentuk tidak baku".
        :param varian: List bentuk tidak baku atau varian
        :type varian: list
        :returns: String representasi varian atau bentuk tidak baku
        :rtype: str | 
	[
  "Mengembalikan",
  "representasi",
  "string",
  "untuk",
  "varian",
  "entri",
  "ini",
  ".",
  "Dapat",
  "digunakan",
  "untuk",
  "Varian",
  "maupun",
  "Bentuk",
  "tidak",
  "baku",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L186-L202 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	Makna._init_kelas | 
	def _init_kelas(self, makna_label):
        """Memproses kelas kata yang ada dalam makna.
        :param makna_label: BeautifulSoup untuk makna yang ingin diproses.
        :type makna_label: BeautifulSoup
        """
        kelas = makna_label.find(color='red')
        lain = makna_label.find(color='darkgreen')
        info = makna_label.find(color='green')
        if kelas:
            kelas = kelas.find_all('span')
        if lain:
            self.kelas = {lain.text.strip(): lain['title'].strip()}
            self.submakna = lain.next_sibling.strip()
            self.submakna += ' ' + makna_label.find(color='grey').text.strip()
        else:
            self.kelas = {
                k.text.strip(): k['title'].strip() for k in kelas
            } if kelas else {}
        self.info = info.text.strip() if info else '' | 
	python | 
	def _init_kelas(self, makna_label):
        """Memproses kelas kata yang ada dalam makna.
        :param makna_label: BeautifulSoup untuk makna yang ingin diproses.
        :type makna_label: BeautifulSoup
        """
        kelas = makna_label.find(color='red')
        lain = makna_label.find(color='darkgreen')
        info = makna_label.find(color='green')
        if kelas:
            kelas = kelas.find_all('span')
        if lain:
            self.kelas = {lain.text.strip(): lain['title'].strip()}
            self.submakna = lain.next_sibling.strip()
            self.submakna += ' ' + makna_label.find(color='grey').text.strip()
        else:
            self.kelas = {
                k.text.strip(): k['title'].strip() for k in kelas
            } if kelas else {}
        self.info = info.text.strip() if info else '' | 
	[
  "def",
  "_init_kelas",
  "(",
  "self",
  ",",
  "makna_label",
  ")",
  ":",
  "kelas",
  "=",
  "makna_label",
  ".",
  "find",
  "(",
  "color",
  "=",
  "'red'",
  ")",
  "lain",
  "=",
  "makna_label",
  ".",
  "find",
  "(",
  "color",
  "=",
  "'darkgreen'",
  ")",
  "info",
  "=",
  "makna_label",
  ".",
  "find",
  "(",
  "color",
  "=",
  "'green'",
  ")",
  "if",
  "kelas",
  ":",
  "kelas",
  "=",
  "kelas",
  ".",
  "find_all",
  "(",
  "'span'",
  ")",
  "if",
  "lain",
  ":",
  "self",
  ".",
  "kelas",
  "=",
  "{",
  "lain",
  ".",
  "text",
  ".",
  "strip",
  "(",
  ")",
  ":",
  "lain",
  "[",
  "'title'",
  "]",
  ".",
  "strip",
  "(",
  ")",
  "}",
  "self",
  ".",
  "submakna",
  "=",
  "lain",
  ".",
  "next_sibling",
  ".",
  "strip",
  "(",
  ")",
  "self",
  ".",
  "submakna",
  "+=",
  "' '",
  "+",
  "makna_label",
  ".",
  "find",
  "(",
  "color",
  "=",
  "'grey'",
  ")",
  ".",
  "text",
  ".",
  "strip",
  "(",
  ")",
  "else",
  ":",
  "self",
  ".",
  "kelas",
  "=",
  "{",
  "k",
  ".",
  "text",
  ".",
  "strip",
  "(",
  ")",
  ":",
  "k",
  "[",
  "'title'",
  "]",
  ".",
  "strip",
  "(",
  ")",
  "for",
  "k",
  "in",
  "kelas",
  "}",
  "if",
  "kelas",
  "else",
  "{",
  "}",
  "self",
  ".",
  "info",
  "=",
  "info",
  ".",
  "text",
  ".",
  "strip",
  "(",
  ")",
  "if",
  "info",
  "else",
  "''"
] | 
	Memproses kelas kata yang ada dalam makna.
        :param makna_label: BeautifulSoup untuk makna yang ingin diproses.
        :type makna_label: BeautifulSoup | 
	[
  "Memproses",
  "kelas",
  "kata",
  "yang",
  "ada",
  "dalam",
  "makna",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L239-L259 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	Makna._init_contoh | 
	def _init_contoh(self, makna_label):
        """Memproses contoh yang ada dalam makna.
        :param makna_label: BeautifulSoup untuk makna yang ingin diproses.
        :type makna_label: BeautifulSoup
        """
        indeks = makna_label.text.find(': ')
        if indeks != -1:
            contoh = makna_label.text[indeks + 2:].strip()
            self.contoh = contoh.split('; ')
        else:
            self.contoh = [] | 
	python | 
	def _init_contoh(self, makna_label):
        """Memproses contoh yang ada dalam makna.
        :param makna_label: BeautifulSoup untuk makna yang ingin diproses.
        :type makna_label: BeautifulSoup
        """
        indeks = makna_label.text.find(': ')
        if indeks != -1:
            contoh = makna_label.text[indeks + 2:].strip()
            self.contoh = contoh.split('; ')
        else:
            self.contoh = [] | 
	[
  "def",
  "_init_contoh",
  "(",
  "self",
  ",",
  "makna_label",
  ")",
  ":",
  "indeks",
  "=",
  "makna_label",
  ".",
  "text",
  ".",
  "find",
  "(",
  "': '",
  ")",
  "if",
  "indeks",
  "!=",
  "-",
  "1",
  ":",
  "contoh",
  "=",
  "makna_label",
  ".",
  "text",
  "[",
  "indeks",
  "+",
  "2",
  ":",
  "]",
  ".",
  "strip",
  "(",
  ")",
  "self",
  ".",
  "contoh",
  "=",
  "contoh",
  ".",
  "split",
  "(",
  "'; '",
  ")",
  "else",
  ":",
  "self",
  ".",
  "contoh",
  "=",
  "[",
  "]"
] | 
	Memproses contoh yang ada dalam makna.
        :param makna_label: BeautifulSoup untuk makna yang ingin diproses.
        :type makna_label: BeautifulSoup | 
	[
  "Memproses",
  "contoh",
  "yang",
  "ada",
  "dalam",
  "makna",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L261-L273 | 
	train | 
| 
	laymonage/kbbi-python | 
	kbbi/kbbi.py | 
	Makna.serialisasi | 
	def serialisasi(self):
        """Mengembalikan hasil serialisasi objek Makna ini.
        :returns: Dictionary hasil serialisasi
        :rtype: dict
        """
        return {
            "kelas": self.kelas,
            "submakna": self.submakna,
            "info": self.info,
            "contoh": self.contoh
        } | 
	python | 
	def serialisasi(self):
        """Mengembalikan hasil serialisasi objek Makna ini.
        :returns: Dictionary hasil serialisasi
        :rtype: dict
        """
        return {
            "kelas": self.kelas,
            "submakna": self.submakna,
            "info": self.info,
            "contoh": self.contoh
        } | 
	[
  "def",
  "serialisasi",
  "(",
  "self",
  ")",
  ":",
  "return",
  "{",
  "\"kelas\"",
  ":",
  "self",
  ".",
  "kelas",
  ",",
  "\"submakna\"",
  ":",
  "self",
  ".",
  "submakna",
  ",",
  "\"info\"",
  ":",
  "self",
  ".",
  "info",
  ",",
  "\"contoh\"",
  ":",
  "self",
  ".",
  "contoh",
  "}"
] | 
	Mengembalikan hasil serialisasi objek Makna ini.
        :returns: Dictionary hasil serialisasi
        :rtype: dict | 
	[
  "Mengembalikan",
  "hasil",
  "serialisasi",
  "objek",
  "Makna",
  "ini",
  "."
] | 
	1a52ba8bcc6dc4c5c1215f9e00207aca264287d6 | 
	https://github.com/laymonage/kbbi-python/blob/1a52ba8bcc6dc4c5c1215f9e00207aca264287d6/kbbi/kbbi.py#L275-L287 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/docs.py | 
	build_sphinx | 
	def build_sphinx(pkg_data, projectdir):
    """Build sphinx documentation.
    :rtype: int
    :return: subprocess.call return code
    :param `bootstrap_py.control.PackageData` pkg_data: package meta data
    :param str projectdir: project root directory
    """
    try:
        version, _minor_version = pkg_data.version.rsplit('.', 1)
    except ValueError:
        version = pkg_data.version
    args = ' '.join(('sphinx-quickstart',
                     '--sep',
                     '-q',
                     '-p "{name}"',
                     '-a "{author}"',
                     '-v "{version}"',
                     '-r "{release}"',
                     '-l en',
                     '--suffix=.rst',
                     '--master=index',
                     '--ext-autodoc',
                     '--ext-viewcode',
                     '--makefile',
                     '{projectdir}')).format(name=pkg_data.name,
                                             author=pkg_data.author,
                                             version=version,
                                             release=pkg_data.version,
                                             projectdir=projectdir)
    if subprocess.call(shlex.split(args)) == 0:
        _touch_gitkeep(projectdir) | 
	python | 
	def build_sphinx(pkg_data, projectdir):
    """Build sphinx documentation.
    :rtype: int
    :return: subprocess.call return code
    :param `bootstrap_py.control.PackageData` pkg_data: package meta data
    :param str projectdir: project root directory
    """
    try:
        version, _minor_version = pkg_data.version.rsplit('.', 1)
    except ValueError:
        version = pkg_data.version
    args = ' '.join(('sphinx-quickstart',
                     '--sep',
                     '-q',
                     '-p "{name}"',
                     '-a "{author}"',
                     '-v "{version}"',
                     '-r "{release}"',
                     '-l en',
                     '--suffix=.rst',
                     '--master=index',
                     '--ext-autodoc',
                     '--ext-viewcode',
                     '--makefile',
                     '{projectdir}')).format(name=pkg_data.name,
                                             author=pkg_data.author,
                                             version=version,
                                             release=pkg_data.version,
                                             projectdir=projectdir)
    if subprocess.call(shlex.split(args)) == 0:
        _touch_gitkeep(projectdir) | 
	[
  "def",
  "build_sphinx",
  "(",
  "pkg_data",
  ",",
  "projectdir",
  ")",
  ":",
  "try",
  ":",
  "version",
  ",",
  "_minor_version",
  "=",
  "pkg_data",
  ".",
  "version",
  ".",
  "rsplit",
  "(",
  "'.'",
  ",",
  "1",
  ")",
  "except",
  "ValueError",
  ":",
  "version",
  "=",
  "pkg_data",
  ".",
  "version",
  "args",
  "=",
  "' '",
  ".",
  "join",
  "(",
  "(",
  "'sphinx-quickstart'",
  ",",
  "'--sep'",
  ",",
  "'-q'",
  ",",
  "'-p \"{name}\"'",
  ",",
  "'-a \"{author}\"'",
  ",",
  "'-v \"{version}\"'",
  ",",
  "'-r \"{release}\"'",
  ",",
  "'-l en'",
  ",",
  "'--suffix=.rst'",
  ",",
  "'--master=index'",
  ",",
  "'--ext-autodoc'",
  ",",
  "'--ext-viewcode'",
  ",",
  "'--makefile'",
  ",",
  "'{projectdir}'",
  ")",
  ")",
  ".",
  "format",
  "(",
  "name",
  "=",
  "pkg_data",
  ".",
  "name",
  ",",
  "author",
  "=",
  "pkg_data",
  ".",
  "author",
  ",",
  "version",
  "=",
  "version",
  ",",
  "release",
  "=",
  "pkg_data",
  ".",
  "version",
  ",",
  "projectdir",
  "=",
  "projectdir",
  ")",
  "if",
  "subprocess",
  ".",
  "call",
  "(",
  "shlex",
  ".",
  "split",
  "(",
  "args",
  ")",
  ")",
  "==",
  "0",
  ":",
  "_touch_gitkeep",
  "(",
  "projectdir",
  ")"
] | 
	Build sphinx documentation.
    :rtype: int
    :return: subprocess.call return code
    :param `bootstrap_py.control.PackageData` pkg_data: package meta data
    :param str projectdir: project root directory | 
	[
  "Build",
  "sphinx",
  "documentation",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/docs.py#L8-L40 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/crossmap.py | 
	bowtiedb | 
	def bowtiedb(fa, keepDB):
    """
    make bowtie db
    """
    btdir = '%s/bt2' % (os.getcwd())
    # make directory for
    if not os.path.exists(btdir):
        os.mkdir(btdir)
    btdb = '%s/%s' % (btdir, fa.rsplit('/', 1)[-1])
    if keepDB is True:
        if os.path.exists('%s.1.bt2' % (btdb)):
            return btdb
    p = subprocess.Popen('bowtie2-build -q %s %s' \
        % (fa, btdb), shell = True)
    p.communicate()
    return btdb | 
	python | 
	def bowtiedb(fa, keepDB):
    """
    make bowtie db
    """
    btdir = '%s/bt2' % (os.getcwd())
    # make directory for
    if not os.path.exists(btdir):
        os.mkdir(btdir)
    btdb = '%s/%s' % (btdir, fa.rsplit('/', 1)[-1])
    if keepDB is True:
        if os.path.exists('%s.1.bt2' % (btdb)):
            return btdb
    p = subprocess.Popen('bowtie2-build -q %s %s' \
        % (fa, btdb), shell = True)
    p.communicate()
    return btdb | 
	[
  "def",
  "bowtiedb",
  "(",
  "fa",
  ",",
  "keepDB",
  ")",
  ":",
  "btdir",
  "=",
  "'%s/bt2'",
  "%",
  "(",
  "os",
  ".",
  "getcwd",
  "(",
  ")",
  ")",
  "# make directory for",
  "if",
  "not",
  "os",
  ".",
  "path",
  ".",
  "exists",
  "(",
  "btdir",
  ")",
  ":",
  "os",
  ".",
  "mkdir",
  "(",
  "btdir",
  ")",
  "btdb",
  "=",
  "'%s/%s'",
  "%",
  "(",
  "btdir",
  ",",
  "fa",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "-",
  "1",
  "]",
  ")",
  "if",
  "keepDB",
  "is",
  "True",
  ":",
  "if",
  "os",
  ".",
  "path",
  ".",
  "exists",
  "(",
  "'%s.1.bt2'",
  "%",
  "(",
  "btdb",
  ")",
  ")",
  ":",
  "return",
  "btdb",
  "p",
  "=",
  "subprocess",
  ".",
  "Popen",
  "(",
  "'bowtie2-build -q %s %s'",
  "%",
  "(",
  "fa",
  ",",
  "btdb",
  ")",
  ",",
  "shell",
  "=",
  "True",
  ")",
  "p",
  ".",
  "communicate",
  "(",
  ")",
  "return",
  "btdb"
] | 
	make bowtie db | 
	[
  "make",
  "bowtie",
  "db"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/crossmap.py#L16-L31 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/crossmap.py | 
	bowtie | 
	def bowtie(sam, btd, f, r, u, opt, no_shrink, threads):
    """
    generate bowtie2 command
    """
    bt2 = 'bowtie2 -x %s -p %s ' % (btd, threads)
    if f is not False:
        bt2 += '-1 %s -2 %s ' % (f, r)
    if u is not False:
        bt2 += '-U %s ' % (u)
    bt2 += opt
    if no_shrink is False:
        if f is False:
            bt2 += ' | shrinksam -u -k %s-shrunk.sam ' % (sam)
        else:
            bt2 += ' | shrinksam -k %s-shrunk.sam ' % (sam)
    else:
        bt2 += ' > %s.sam' % (sam)
    return bt2 | 
	python | 
	def bowtie(sam, btd, f, r, u, opt, no_shrink, threads):
    """
    generate bowtie2 command
    """
    bt2 = 'bowtie2 -x %s -p %s ' % (btd, threads)
    if f is not False:
        bt2 += '-1 %s -2 %s ' % (f, r)
    if u is not False:
        bt2 += '-U %s ' % (u)
    bt2 += opt
    if no_shrink is False:
        if f is False:
            bt2 += ' | shrinksam -u -k %s-shrunk.sam ' % (sam)
        else:
            bt2 += ' | shrinksam -k %s-shrunk.sam ' % (sam)
    else:
        bt2 += ' > %s.sam' % (sam)
    return bt2 | 
	[
  "def",
  "bowtie",
  "(",
  "sam",
  ",",
  "btd",
  ",",
  "f",
  ",",
  "r",
  ",",
  "u",
  ",",
  "opt",
  ",",
  "no_shrink",
  ",",
  "threads",
  ")",
  ":",
  "bt2",
  "=",
  "'bowtie2 -x %s -p %s '",
  "%",
  "(",
  "btd",
  ",",
  "threads",
  ")",
  "if",
  "f",
  "is",
  "not",
  "False",
  ":",
  "bt2",
  "+=",
  "'-1 %s -2 %s '",
  "%",
  "(",
  "f",
  ",",
  "r",
  ")",
  "if",
  "u",
  "is",
  "not",
  "False",
  ":",
  "bt2",
  "+=",
  "'-U %s '",
  "%",
  "(",
  "u",
  ")",
  "bt2",
  "+=",
  "opt",
  "if",
  "no_shrink",
  "is",
  "False",
  ":",
  "if",
  "f",
  "is",
  "False",
  ":",
  "bt2",
  "+=",
  "' | shrinksam -u -k %s-shrunk.sam '",
  "%",
  "(",
  "sam",
  ")",
  "else",
  ":",
  "bt2",
  "+=",
  "' | shrinksam -k %s-shrunk.sam '",
  "%",
  "(",
  "sam",
  ")",
  "else",
  ":",
  "bt2",
  "+=",
  "' > %s.sam'",
  "%",
  "(",
  "sam",
  ")",
  "return",
  "bt2"
] | 
	generate bowtie2 command | 
	[
  "generate",
  "bowtie2",
  "command"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/crossmap.py#L33-L50 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/crossmap.py | 
	crossmap | 
	def crossmap(fas, reads, options, no_shrink, keepDB, threads, cluster, nodes):
    """
    map all read sets against all fasta files
    """
    if cluster is True:
        threads = '48'
    btc = []
    for fa in fas:
        btd = bowtiedb(fa, keepDB)
        F, R, U = reads
        if F is not False:
            if U is False:
                u = False
            for i, f in enumerate(F):
                r = R[i]
                if U is not False:
                    u = U[i]
                sam = '%s/%s-vs-%s' % (os.getcwd(), \
                        fa.rsplit('/', 1)[-1], f.rsplit('/', 1)[-1].rsplit('.', 3)[0])
                btc.append(bowtie(sam, btd, f, r, u, options, no_shrink, threads))
        else:
            f = False
            r = False
            for u in U:
                sam = '%s/%s-vs-%s' % (os.getcwd(), \
                        fa.rsplit('/', 1)[-1], u.rsplit('/', 1)[-1].rsplit('.', 3)[0])
                btc.append(bowtie(sam, btd, f, r, u, options, no_shrink, threads))
    if cluster is False:
        for i in btc:
            p = subprocess.Popen(i, shell = True)
            p.communicate()
    else:
        ID = ''.join(random.choice([str(i) for i in range(0, 9)]) for _ in range(5))
        for node, commands in enumerate(chunks(btc, nodes), 1):
            bs = open('%s/crossmap-qsub.%s.%s.sh' % (os.getcwd(), ID, node), 'w')
            print('\n'.join(commands), file=bs)
            bs.close()
            p = subprocess.Popen(\
                    'qsub -V -N crossmap %s' \
                        % (bs.name), \
                    shell = True)
            p.communicate() | 
	python | 
	def crossmap(fas, reads, options, no_shrink, keepDB, threads, cluster, nodes):
    """
    map all read sets against all fasta files
    """
    if cluster is True:
        threads = '48'
    btc = []
    for fa in fas:
        btd = bowtiedb(fa, keepDB)
        F, R, U = reads
        if F is not False:
            if U is False:
                u = False
            for i, f in enumerate(F):
                r = R[i]
                if U is not False:
                    u = U[i]
                sam = '%s/%s-vs-%s' % (os.getcwd(), \
                        fa.rsplit('/', 1)[-1], f.rsplit('/', 1)[-1].rsplit('.', 3)[0])
                btc.append(bowtie(sam, btd, f, r, u, options, no_shrink, threads))
        else:
            f = False
            r = False
            for u in U:
                sam = '%s/%s-vs-%s' % (os.getcwd(), \
                        fa.rsplit('/', 1)[-1], u.rsplit('/', 1)[-1].rsplit('.', 3)[0])
                btc.append(bowtie(sam, btd, f, r, u, options, no_shrink, threads))
    if cluster is False:
        for i in btc:
            p = subprocess.Popen(i, shell = True)
            p.communicate()
    else:
        ID = ''.join(random.choice([str(i) for i in range(0, 9)]) for _ in range(5))
        for node, commands in enumerate(chunks(btc, nodes), 1):
            bs = open('%s/crossmap-qsub.%s.%s.sh' % (os.getcwd(), ID, node), 'w')
            print('\n'.join(commands), file=bs)
            bs.close()
            p = subprocess.Popen(\
                    'qsub -V -N crossmap %s' \
                        % (bs.name), \
                    shell = True)
            p.communicate() | 
	[
  "def",
  "crossmap",
  "(",
  "fas",
  ",",
  "reads",
  ",",
  "options",
  ",",
  "no_shrink",
  ",",
  "keepDB",
  ",",
  "threads",
  ",",
  "cluster",
  ",",
  "nodes",
  ")",
  ":",
  "if",
  "cluster",
  "is",
  "True",
  ":",
  "threads",
  "=",
  "'48'",
  "btc",
  "=",
  "[",
  "]",
  "for",
  "fa",
  "in",
  "fas",
  ":",
  "btd",
  "=",
  "bowtiedb",
  "(",
  "fa",
  ",",
  "keepDB",
  ")",
  "F",
  ",",
  "R",
  ",",
  "U",
  "=",
  "reads",
  "if",
  "F",
  "is",
  "not",
  "False",
  ":",
  "if",
  "U",
  "is",
  "False",
  ":",
  "u",
  "=",
  "False",
  "for",
  "i",
  ",",
  "f",
  "in",
  "enumerate",
  "(",
  "F",
  ")",
  ":",
  "r",
  "=",
  "R",
  "[",
  "i",
  "]",
  "if",
  "U",
  "is",
  "not",
  "False",
  ":",
  "u",
  "=",
  "U",
  "[",
  "i",
  "]",
  "sam",
  "=",
  "'%s/%s-vs-%s'",
  "%",
  "(",
  "os",
  ".",
  "getcwd",
  "(",
  ")",
  ",",
  "fa",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "-",
  "1",
  "]",
  ",",
  "f",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "-",
  "1",
  "]",
  ".",
  "rsplit",
  "(",
  "'.'",
  ",",
  "3",
  ")",
  "[",
  "0",
  "]",
  ")",
  "btc",
  ".",
  "append",
  "(",
  "bowtie",
  "(",
  "sam",
  ",",
  "btd",
  ",",
  "f",
  ",",
  "r",
  ",",
  "u",
  ",",
  "options",
  ",",
  "no_shrink",
  ",",
  "threads",
  ")",
  ")",
  "else",
  ":",
  "f",
  "=",
  "False",
  "r",
  "=",
  "False",
  "for",
  "u",
  "in",
  "U",
  ":",
  "sam",
  "=",
  "'%s/%s-vs-%s'",
  "%",
  "(",
  "os",
  ".",
  "getcwd",
  "(",
  ")",
  ",",
  "fa",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "-",
  "1",
  "]",
  ",",
  "u",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "-",
  "1",
  "]",
  ".",
  "rsplit",
  "(",
  "'.'",
  ",",
  "3",
  ")",
  "[",
  "0",
  "]",
  ")",
  "btc",
  ".",
  "append",
  "(",
  "bowtie",
  "(",
  "sam",
  ",",
  "btd",
  ",",
  "f",
  ",",
  "r",
  ",",
  "u",
  ",",
  "options",
  ",",
  "no_shrink",
  ",",
  "threads",
  ")",
  ")",
  "if",
  "cluster",
  "is",
  "False",
  ":",
  "for",
  "i",
  "in",
  "btc",
  ":",
  "p",
  "=",
  "subprocess",
  ".",
  "Popen",
  "(",
  "i",
  ",",
  "shell",
  "=",
  "True",
  ")",
  "p",
  ".",
  "communicate",
  "(",
  ")",
  "else",
  ":",
  "ID",
  "=",
  "''",
  ".",
  "join",
  "(",
  "random",
  ".",
  "choice",
  "(",
  "[",
  "str",
  "(",
  "i",
  ")",
  "for",
  "i",
  "in",
  "range",
  "(",
  "0",
  ",",
  "9",
  ")",
  "]",
  ")",
  "for",
  "_",
  "in",
  "range",
  "(",
  "5",
  ")",
  ")",
  "for",
  "node",
  ",",
  "commands",
  "in",
  "enumerate",
  "(",
  "chunks",
  "(",
  "btc",
  ",",
  "nodes",
  ")",
  ",",
  "1",
  ")",
  ":",
  "bs",
  "=",
  "open",
  "(",
  "'%s/crossmap-qsub.%s.%s.sh'",
  "%",
  "(",
  "os",
  ".",
  "getcwd",
  "(",
  ")",
  ",",
  "ID",
  ",",
  "node",
  ")",
  ",",
  "'w'",
  ")",
  "print",
  "(",
  "'\\n'",
  ".",
  "join",
  "(",
  "commands",
  ")",
  ",",
  "file",
  "=",
  "bs",
  ")",
  "bs",
  ".",
  "close",
  "(",
  ")",
  "p",
  "=",
  "subprocess",
  ".",
  "Popen",
  "(",
  "'qsub -V -N crossmap %s'",
  "%",
  "(",
  "bs",
  ".",
  "name",
  ")",
  ",",
  "shell",
  "=",
  "True",
  ")",
  "p",
  ".",
  "communicate",
  "(",
  ")"
] | 
	map all read sets against all fasta files | 
	[
  "map",
  "all",
  "read",
  "sets",
  "against",
  "all",
  "fasta",
  "files"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/crossmap.py#L55-L96 | 
	train | 
| 
	disqus/nydus | 
	nydus/db/base.py | 
	BaseCluster.get_conn | 
	def get_conn(self, *args, **kwargs):
        """
        Returns a connection object from the router given ``args``.
        Useful in cases where a connection cannot be automatically determined
        during all steps of the process. An example of this would be
        Redis pipelines.
        """
        connections = self.__connections_for('get_conn', args=args, kwargs=kwargs)
        if len(connections) is 1:
            return connections[0]
        else:
            return connections | 
	python | 
	def get_conn(self, *args, **kwargs):
        """
        Returns a connection object from the router given ``args``.
        Useful in cases where a connection cannot be automatically determined
        during all steps of the process. An example of this would be
        Redis pipelines.
        """
        connections = self.__connections_for('get_conn', args=args, kwargs=kwargs)
        if len(connections) is 1:
            return connections[0]
        else:
            return connections | 
	[
  "def",
  "get_conn",
  "(",
  "self",
  ",",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ":",
  "connections",
  "=",
  "self",
  ".",
  "__connections_for",
  "(",
  "'get_conn'",
  ",",
  "args",
  "=",
  "args",
  ",",
  "kwargs",
  "=",
  "kwargs",
  ")",
  "if",
  "len",
  "(",
  "connections",
  ")",
  "is",
  "1",
  ":",
  "return",
  "connections",
  "[",
  "0",
  "]",
  "else",
  ":",
  "return",
  "connections"
] | 
	Returns a connection object from the router given ``args``.
        Useful in cases where a connection cannot be automatically determined
        during all steps of the process. An example of this would be
        Redis pipelines. | 
	[
  "Returns",
  "a",
  "connection",
  "object",
  "from",
  "the",
  "router",
  "given",
  "args",
  "."
] | 
	9b505840da47a34f758a830c3992fa5dcb7bb7ad | 
	https://github.com/disqus/nydus/blob/9b505840da47a34f758a830c3992fa5dcb7bb7ad/nydus/db/base.py#L100-L113 | 
	train | 
| 
	scottrice/pysteam | 
	pysteam/_crc_algorithms.py | 
	Crc.__get_nondirect_init | 
	def __get_nondirect_init(self, init):
        """
        return the non-direct init if the direct algorithm has been selected.
        """
        crc = init
        for i in range(self.Width):
            bit = crc & 0x01
            if bit:
                crc^= self.Poly
            crc >>= 1
            if bit:
                crc |= self.MSB_Mask
        return crc & self.Mask | 
	python | 
	def __get_nondirect_init(self, init):
        """
        return the non-direct init if the direct algorithm has been selected.
        """
        crc = init
        for i in range(self.Width):
            bit = crc & 0x01
            if bit:
                crc^= self.Poly
            crc >>= 1
            if bit:
                crc |= self.MSB_Mask
        return crc & self.Mask | 
	[
  "def",
  "__get_nondirect_init",
  "(",
  "self",
  ",",
  "init",
  ")",
  ":",
  "crc",
  "=",
  "init",
  "for",
  "i",
  "in",
  "range",
  "(",
  "self",
  ".",
  "Width",
  ")",
  ":",
  "bit",
  "=",
  "crc",
  "&",
  "0x01",
  "if",
  "bit",
  ":",
  "crc",
  "^=",
  "self",
  ".",
  "Poly",
  "crc",
  ">>=",
  "1",
  "if",
  "bit",
  ":",
  "crc",
  "|=",
  "self",
  ".",
  "MSB_Mask",
  "return",
  "crc",
  "&",
  "self",
  ".",
  "Mask"
] | 
	return the non-direct init if the direct algorithm has been selected. | 
	[
  "return",
  "the",
  "non",
  "-",
  "direct",
  "init",
  "if",
  "the",
  "direct",
  "algorithm",
  "has",
  "been",
  "selected",
  "."
] | 
	1eb2254b5235a053a953e596fa7602d0b110245d | 
	https://github.com/scottrice/pysteam/blob/1eb2254b5235a053a953e596fa7602d0b110245d/pysteam/_crc_algorithms.py#L98-L110 | 
	train | 
| 
	scottrice/pysteam | 
	pysteam/_crc_algorithms.py | 
	Crc.reflect | 
	def reflect(self, data, width):
        """
        reflect a data word, i.e. reverts the bit order.
        """
        x = data & 0x01
        for i in range(width - 1):
            data >>= 1
            x = (x << 1) | (data & 0x01)
        return x | 
	python | 
	def reflect(self, data, width):
        """
        reflect a data word, i.e. reverts the bit order.
        """
        x = data & 0x01
        for i in range(width - 1):
            data >>= 1
            x = (x << 1) | (data & 0x01)
        return x | 
	[
  "def",
  "reflect",
  "(",
  "self",
  ",",
  "data",
  ",",
  "width",
  ")",
  ":",
  "x",
  "=",
  "data",
  "&",
  "0x01",
  "for",
  "i",
  "in",
  "range",
  "(",
  "width",
  "-",
  "1",
  ")",
  ":",
  "data",
  ">>=",
  "1",
  "x",
  "=",
  "(",
  "x",
  "<<",
  "1",
  ")",
  "|",
  "(",
  "data",
  "&",
  "0x01",
  ")",
  "return",
  "x"
] | 
	reflect a data word, i.e. reverts the bit order. | 
	[
  "reflect",
  "a",
  "data",
  "word",
  "i",
  ".",
  "e",
  ".",
  "reverts",
  "the",
  "bit",
  "order",
  "."
] | 
	1eb2254b5235a053a953e596fa7602d0b110245d | 
	https://github.com/scottrice/pysteam/blob/1eb2254b5235a053a953e596fa7602d0b110245d/pysteam/_crc_algorithms.py#L115-L123 | 
	train | 
| 
	scottrice/pysteam | 
	pysteam/_crc_algorithms.py | 
	Crc.bit_by_bit | 
	def bit_by_bit(self, in_data):
        """
        Classic simple and slow CRC implementation.  This function iterates bit
        by bit over the augmented input message and returns the calculated CRC
        value at the end.
        """
        # If the input data is a string, convert to bytes.
        if isinstance(in_data, str):
            in_data = [ord(c) for c in in_data]
        register = self.NonDirectInit
        for octet in in_data:
            if self.ReflectIn:
                octet = self.reflect(octet, 8)
            for i in range(8):
                topbit = register & self.MSB_Mask
                register = ((register << 1) & self.Mask) | ((octet >> (7 - i)) & 0x01)
                if topbit:
                    register ^= self.Poly
        for i in range(self.Width):
            topbit = register & self.MSB_Mask
            register = ((register << 1) & self.Mask)
            if topbit:
                register ^= self.Poly
        if self.ReflectOut:
            register = self.reflect(register, self.Width)
        return register ^ self.XorOut | 
	python | 
	def bit_by_bit(self, in_data):
        """
        Classic simple and slow CRC implementation.  This function iterates bit
        by bit over the augmented input message and returns the calculated CRC
        value at the end.
        """
        # If the input data is a string, convert to bytes.
        if isinstance(in_data, str):
            in_data = [ord(c) for c in in_data]
        register = self.NonDirectInit
        for octet in in_data:
            if self.ReflectIn:
                octet = self.reflect(octet, 8)
            for i in range(8):
                topbit = register & self.MSB_Mask
                register = ((register << 1) & self.Mask) | ((octet >> (7 - i)) & 0x01)
                if topbit:
                    register ^= self.Poly
        for i in range(self.Width):
            topbit = register & self.MSB_Mask
            register = ((register << 1) & self.Mask)
            if topbit:
                register ^= self.Poly
        if self.ReflectOut:
            register = self.reflect(register, self.Width)
        return register ^ self.XorOut | 
	[
  "def",
  "bit_by_bit",
  "(",
  "self",
  ",",
  "in_data",
  ")",
  ":",
  "# If the input data is a string, convert to bytes.",
  "if",
  "isinstance",
  "(",
  "in_data",
  ",",
  "str",
  ")",
  ":",
  "in_data",
  "=",
  "[",
  "ord",
  "(",
  "c",
  ")",
  "for",
  "c",
  "in",
  "in_data",
  "]",
  "register",
  "=",
  "self",
  ".",
  "NonDirectInit",
  "for",
  "octet",
  "in",
  "in_data",
  ":",
  "if",
  "self",
  ".",
  "ReflectIn",
  ":",
  "octet",
  "=",
  "self",
  ".",
  "reflect",
  "(",
  "octet",
  ",",
  "8",
  ")",
  "for",
  "i",
  "in",
  "range",
  "(",
  "8",
  ")",
  ":",
  "topbit",
  "=",
  "register",
  "&",
  "self",
  ".",
  "MSB_Mask",
  "register",
  "=",
  "(",
  "(",
  "register",
  "<<",
  "1",
  ")",
  "&",
  "self",
  ".",
  "Mask",
  ")",
  "|",
  "(",
  "(",
  "octet",
  ">>",
  "(",
  "7",
  "-",
  "i",
  ")",
  ")",
  "&",
  "0x01",
  ")",
  "if",
  "topbit",
  ":",
  "register",
  "^=",
  "self",
  ".",
  "Poly",
  "for",
  "i",
  "in",
  "range",
  "(",
  "self",
  ".",
  "Width",
  ")",
  ":",
  "topbit",
  "=",
  "register",
  "&",
  "self",
  ".",
  "MSB_Mask",
  "register",
  "=",
  "(",
  "(",
  "register",
  "<<",
  "1",
  ")",
  "&",
  "self",
  ".",
  "Mask",
  ")",
  "if",
  "topbit",
  ":",
  "register",
  "^=",
  "self",
  ".",
  "Poly",
  "if",
  "self",
  ".",
  "ReflectOut",
  ":",
  "register",
  "=",
  "self",
  ".",
  "reflect",
  "(",
  "register",
  ",",
  "self",
  ".",
  "Width",
  ")",
  "return",
  "register",
  "^",
  "self",
  ".",
  "XorOut"
] | 
	Classic simple and slow CRC implementation.  This function iterates bit
        by bit over the augmented input message and returns the calculated CRC
        value at the end. | 
	[
  "Classic",
  "simple",
  "and",
  "slow",
  "CRC",
  "implementation",
  ".",
  "This",
  "function",
  "iterates",
  "bit",
  "by",
  "bit",
  "over",
  "the",
  "augmented",
  "input",
  "message",
  "and",
  "returns",
  "the",
  "calculated",
  "CRC",
  "value",
  "at",
  "the",
  "end",
  "."
] | 
	1eb2254b5235a053a953e596fa7602d0b110245d | 
	https://github.com/scottrice/pysteam/blob/1eb2254b5235a053a953e596fa7602d0b110245d/pysteam/_crc_algorithms.py#L128-L156 | 
	train | 
| 
	scottrice/pysteam | 
	pysteam/_crc_algorithms.py | 
	Crc.gen_table | 
	def gen_table(self):
        """
        This function generates the CRC table used for the table_driven CRC
        algorithm.  The Python version cannot handle tables of an index width
        other than 8.  See the generated C code for tables with different sizes
        instead.
        """
        table_length = 1 << self.TableIdxWidth
        tbl = [0] * table_length
        for i in range(table_length):
            register = i
            if self.ReflectIn:
                register = self.reflect(register, self.TableIdxWidth)
            register = register << (self.Width - self.TableIdxWidth + self.CrcShift)
            for j in range(self.TableIdxWidth):
                if register & (self.MSB_Mask << self.CrcShift) != 0:
                    register = (register << 1) ^ (self.Poly << self.CrcShift)
                else:
                    register = (register << 1)
            if self.ReflectIn:
                register = self.reflect(register >> self.CrcShift, self.Width) << self.CrcShift
            tbl[i] = register & (self.Mask << self.CrcShift)
        return tbl | 
	python | 
	def gen_table(self):
        """
        This function generates the CRC table used for the table_driven CRC
        algorithm.  The Python version cannot handle tables of an index width
        other than 8.  See the generated C code for tables with different sizes
        instead.
        """
        table_length = 1 << self.TableIdxWidth
        tbl = [0] * table_length
        for i in range(table_length):
            register = i
            if self.ReflectIn:
                register = self.reflect(register, self.TableIdxWidth)
            register = register << (self.Width - self.TableIdxWidth + self.CrcShift)
            for j in range(self.TableIdxWidth):
                if register & (self.MSB_Mask << self.CrcShift) != 0:
                    register = (register << 1) ^ (self.Poly << self.CrcShift)
                else:
                    register = (register << 1)
            if self.ReflectIn:
                register = self.reflect(register >> self.CrcShift, self.Width) << self.CrcShift
            tbl[i] = register & (self.Mask << self.CrcShift)
        return tbl | 
	[
  "def",
  "gen_table",
  "(",
  "self",
  ")",
  ":",
  "table_length",
  "=",
  "1",
  "<<",
  "self",
  ".",
  "TableIdxWidth",
  "tbl",
  "=",
  "[",
  "0",
  "]",
  "*",
  "table_length",
  "for",
  "i",
  "in",
  "range",
  "(",
  "table_length",
  ")",
  ":",
  "register",
  "=",
  "i",
  "if",
  "self",
  ".",
  "ReflectIn",
  ":",
  "register",
  "=",
  "self",
  ".",
  "reflect",
  "(",
  "register",
  ",",
  "self",
  ".",
  "TableIdxWidth",
  ")",
  "register",
  "=",
  "register",
  "<<",
  "(",
  "self",
  ".",
  "Width",
  "-",
  "self",
  ".",
  "TableIdxWidth",
  "+",
  "self",
  ".",
  "CrcShift",
  ")",
  "for",
  "j",
  "in",
  "range",
  "(",
  "self",
  ".",
  "TableIdxWidth",
  ")",
  ":",
  "if",
  "register",
  "&",
  "(",
  "self",
  ".",
  "MSB_Mask",
  "<<",
  "self",
  ".",
  "CrcShift",
  ")",
  "!=",
  "0",
  ":",
  "register",
  "=",
  "(",
  "register",
  "<<",
  "1",
  ")",
  "^",
  "(",
  "self",
  ".",
  "Poly",
  "<<",
  "self",
  ".",
  "CrcShift",
  ")",
  "else",
  ":",
  "register",
  "=",
  "(",
  "register",
  "<<",
  "1",
  ")",
  "if",
  "self",
  ".",
  "ReflectIn",
  ":",
  "register",
  "=",
  "self",
  ".",
  "reflect",
  "(",
  "register",
  ">>",
  "self",
  ".",
  "CrcShift",
  ",",
  "self",
  ".",
  "Width",
  ")",
  "<<",
  "self",
  ".",
  "CrcShift",
  "tbl",
  "[",
  "i",
  "]",
  "=",
  "register",
  "&",
  "(",
  "self",
  ".",
  "Mask",
  "<<",
  "self",
  ".",
  "CrcShift",
  ")",
  "return",
  "tbl"
] | 
	This function generates the CRC table used for the table_driven CRC
        algorithm.  The Python version cannot handle tables of an index width
        other than 8.  See the generated C code for tables with different sizes
        instead. | 
	[
  "This",
  "function",
  "generates",
  "the",
  "CRC",
  "table",
  "used",
  "for",
  "the",
  "table_driven",
  "CRC",
  "algorithm",
  ".",
  "The",
  "Python",
  "version",
  "cannot",
  "handle",
  "tables",
  "of",
  "an",
  "index",
  "width",
  "other",
  "than",
  "8",
  ".",
  "See",
  "the",
  "generated",
  "C",
  "code",
  "for",
  "tables",
  "with",
  "different",
  "sizes",
  "instead",
  "."
] | 
	1eb2254b5235a053a953e596fa7602d0b110245d | 
	https://github.com/scottrice/pysteam/blob/1eb2254b5235a053a953e596fa7602d0b110245d/pysteam/_crc_algorithms.py#L190-L212 | 
	train | 
| 
	scottrice/pysteam | 
	pysteam/_crc_algorithms.py | 
	Crc.table_driven | 
	def table_driven(self, in_data):
        """
        The Standard table_driven CRC algorithm.
        """
        # If the input data is a string, convert to bytes.
        if isinstance(in_data, str):
            in_data = [ord(c) for c in in_data]
        tbl = self.gen_table()
        register = self.DirectInit << self.CrcShift
        if not self.ReflectIn:
            for octet in in_data:
                tblidx = ((register >> (self.Width - self.TableIdxWidth + self.CrcShift)) ^ octet) & 0xff
                register = ((register << (self.TableIdxWidth - self.CrcShift)) ^ tbl[tblidx]) & (self.Mask << self.CrcShift)
            register = register >> self.CrcShift
        else:
            register = self.reflect(register, self.Width + self.CrcShift) << self.CrcShift
            for octet in in_data:
                tblidx = ((register >> self.CrcShift) ^ octet) & 0xff
                register = ((register >> self.TableIdxWidth) ^ tbl[tblidx]) & (self.Mask << self.CrcShift)
            register = self.reflect(register, self.Width + self.CrcShift) & self.Mask
        if self.ReflectOut:
            register = self.reflect(register, self.Width)
        return register ^ self.XorOut | 
	python | 
	def table_driven(self, in_data):
        """
        The Standard table_driven CRC algorithm.
        """
        # If the input data is a string, convert to bytes.
        if isinstance(in_data, str):
            in_data = [ord(c) for c in in_data]
        tbl = self.gen_table()
        register = self.DirectInit << self.CrcShift
        if not self.ReflectIn:
            for octet in in_data:
                tblidx = ((register >> (self.Width - self.TableIdxWidth + self.CrcShift)) ^ octet) & 0xff
                register = ((register << (self.TableIdxWidth - self.CrcShift)) ^ tbl[tblidx]) & (self.Mask << self.CrcShift)
            register = register >> self.CrcShift
        else:
            register = self.reflect(register, self.Width + self.CrcShift) << self.CrcShift
            for octet in in_data:
                tblidx = ((register >> self.CrcShift) ^ octet) & 0xff
                register = ((register >> self.TableIdxWidth) ^ tbl[tblidx]) & (self.Mask << self.CrcShift)
            register = self.reflect(register, self.Width + self.CrcShift) & self.Mask
        if self.ReflectOut:
            register = self.reflect(register, self.Width)
        return register ^ self.XorOut | 
	[
  "def",
  "table_driven",
  "(",
  "self",
  ",",
  "in_data",
  ")",
  ":",
  "# If the input data is a string, convert to bytes.",
  "if",
  "isinstance",
  "(",
  "in_data",
  ",",
  "str",
  ")",
  ":",
  "in_data",
  "=",
  "[",
  "ord",
  "(",
  "c",
  ")",
  "for",
  "c",
  "in",
  "in_data",
  "]",
  "tbl",
  "=",
  "self",
  ".",
  "gen_table",
  "(",
  ")",
  "register",
  "=",
  "self",
  ".",
  "DirectInit",
  "<<",
  "self",
  ".",
  "CrcShift",
  "if",
  "not",
  "self",
  ".",
  "ReflectIn",
  ":",
  "for",
  "octet",
  "in",
  "in_data",
  ":",
  "tblidx",
  "=",
  "(",
  "(",
  "register",
  ">>",
  "(",
  "self",
  ".",
  "Width",
  "-",
  "self",
  ".",
  "TableIdxWidth",
  "+",
  "self",
  ".",
  "CrcShift",
  ")",
  ")",
  "^",
  "octet",
  ")",
  "&",
  "0xff",
  "register",
  "=",
  "(",
  "(",
  "register",
  "<<",
  "(",
  "self",
  ".",
  "TableIdxWidth",
  "-",
  "self",
  ".",
  "CrcShift",
  ")",
  ")",
  "^",
  "tbl",
  "[",
  "tblidx",
  "]",
  ")",
  "&",
  "(",
  "self",
  ".",
  "Mask",
  "<<",
  "self",
  ".",
  "CrcShift",
  ")",
  "register",
  "=",
  "register",
  ">>",
  "self",
  ".",
  "CrcShift",
  "else",
  ":",
  "register",
  "=",
  "self",
  ".",
  "reflect",
  "(",
  "register",
  ",",
  "self",
  ".",
  "Width",
  "+",
  "self",
  ".",
  "CrcShift",
  ")",
  "<<",
  "self",
  ".",
  "CrcShift",
  "for",
  "octet",
  "in",
  "in_data",
  ":",
  "tblidx",
  "=",
  "(",
  "(",
  "register",
  ">>",
  "self",
  ".",
  "CrcShift",
  ")",
  "^",
  "octet",
  ")",
  "&",
  "0xff",
  "register",
  "=",
  "(",
  "(",
  "register",
  ">>",
  "self",
  ".",
  "TableIdxWidth",
  ")",
  "^",
  "tbl",
  "[",
  "tblidx",
  "]",
  ")",
  "&",
  "(",
  "self",
  ".",
  "Mask",
  "<<",
  "self",
  ".",
  "CrcShift",
  ")",
  "register",
  "=",
  "self",
  ".",
  "reflect",
  "(",
  "register",
  ",",
  "self",
  ".",
  "Width",
  "+",
  "self",
  ".",
  "CrcShift",
  ")",
  "&",
  "self",
  ".",
  "Mask",
  "if",
  "self",
  ".",
  "ReflectOut",
  ":",
  "register",
  "=",
  "self",
  ".",
  "reflect",
  "(",
  "register",
  ",",
  "self",
  ".",
  "Width",
  ")",
  "return",
  "register",
  "^",
  "self",
  ".",
  "XorOut"
] | 
	The Standard table_driven CRC algorithm. | 
	[
  "The",
  "Standard",
  "table_driven",
  "CRC",
  "algorithm",
  "."
] | 
	1eb2254b5235a053a953e596fa7602d0b110245d | 
	https://github.com/scottrice/pysteam/blob/1eb2254b5235a053a953e596fa7602d0b110245d/pysteam/_crc_algorithms.py#L217-L242 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/strip_masked.py | 
	parse_masked | 
	def parse_masked(seq, min_len):
    """
    parse masked sequence into non-masked and masked regions
    """
    nm, masked = [], [[]]
    prev = None
    for base in seq[1]:
        if base.isupper():
            nm.append(base)
            if masked != [[]] and len(masked[-1]) < min_len:
                nm.extend(masked[-1])
                del masked[-1]
            prev = False
        elif base.islower():
            if prev is False:
                masked.append([])
            masked[-1].append(base)
            prev = True
    return nm, masked | 
	python | 
	def parse_masked(seq, min_len):
    """
    parse masked sequence into non-masked and masked regions
    """
    nm, masked = [], [[]]
    prev = None
    for base in seq[1]:
        if base.isupper():
            nm.append(base)
            if masked != [[]] and len(masked[-1]) < min_len:
                nm.extend(masked[-1])
                del masked[-1]
            prev = False
        elif base.islower():
            if prev is False:
                masked.append([])
            masked[-1].append(base)
            prev = True
    return nm, masked | 
	[
  "def",
  "parse_masked",
  "(",
  "seq",
  ",",
  "min_len",
  ")",
  ":",
  "nm",
  ",",
  "masked",
  "=",
  "[",
  "]",
  ",",
  "[",
  "[",
  "]",
  "]",
  "prev",
  "=",
  "None",
  "for",
  "base",
  "in",
  "seq",
  "[",
  "1",
  "]",
  ":",
  "if",
  "base",
  ".",
  "isupper",
  "(",
  ")",
  ":",
  "nm",
  ".",
  "append",
  "(",
  "base",
  ")",
  "if",
  "masked",
  "!=",
  "[",
  "[",
  "]",
  "]",
  "and",
  "len",
  "(",
  "masked",
  "[",
  "-",
  "1",
  "]",
  ")",
  "<",
  "min_len",
  ":",
  "nm",
  ".",
  "extend",
  "(",
  "masked",
  "[",
  "-",
  "1",
  "]",
  ")",
  "del",
  "masked",
  "[",
  "-",
  "1",
  "]",
  "prev",
  "=",
  "False",
  "elif",
  "base",
  ".",
  "islower",
  "(",
  ")",
  ":",
  "if",
  "prev",
  "is",
  "False",
  ":",
  "masked",
  ".",
  "append",
  "(",
  "[",
  "]",
  ")",
  "masked",
  "[",
  "-",
  "1",
  "]",
  ".",
  "append",
  "(",
  "base",
  ")",
  "prev",
  "=",
  "True",
  "return",
  "nm",
  ",",
  "masked"
] | 
	parse masked sequence into non-masked and masked regions | 
	[
  "parse",
  "masked",
  "sequence",
  "into",
  "non",
  "-",
  "masked",
  "and",
  "masked",
  "regions"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/strip_masked.py#L13-L31 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/strip_masked.py | 
	strip_masked | 
	def strip_masked(fasta, min_len, print_masked):
    """
    remove masked regions from fasta file as long as
    they are longer than min_len
    """
    for seq in parse_fasta(fasta):
        nm, masked = parse_masked(seq, min_len)
        nm = ['%s removed_masked >=%s' % (seq[0], min_len), ''.join(nm)]
        yield [0, nm]
        if print_masked is True:
            for i, m in enumerate([i for i in masked if i != []], 1):
                m = ['%s insertion:%s' % (seq[0], i), ''.join(m)]
                yield [1, m] | 
	python | 
	def strip_masked(fasta, min_len, print_masked):
    """
    remove masked regions from fasta file as long as
    they are longer than min_len
    """
    for seq in parse_fasta(fasta):
        nm, masked = parse_masked(seq, min_len)
        nm = ['%s removed_masked >=%s' % (seq[0], min_len), ''.join(nm)]
        yield [0, nm]
        if print_masked is True:
            for i, m in enumerate([i for i in masked if i != []], 1):
                m = ['%s insertion:%s' % (seq[0], i), ''.join(m)]
                yield [1, m] | 
	[
  "def",
  "strip_masked",
  "(",
  "fasta",
  ",",
  "min_len",
  ",",
  "print_masked",
  ")",
  ":",
  "for",
  "seq",
  "in",
  "parse_fasta",
  "(",
  "fasta",
  ")",
  ":",
  "nm",
  ",",
  "masked",
  "=",
  "parse_masked",
  "(",
  "seq",
  ",",
  "min_len",
  ")",
  "nm",
  "=",
  "[",
  "'%s removed_masked >=%s'",
  "%",
  "(",
  "seq",
  "[",
  "0",
  "]",
  ",",
  "min_len",
  ")",
  ",",
  "''",
  ".",
  "join",
  "(",
  "nm",
  ")",
  "]",
  "yield",
  "[",
  "0",
  ",",
  "nm",
  "]",
  "if",
  "print_masked",
  "is",
  "True",
  ":",
  "for",
  "i",
  ",",
  "m",
  "in",
  "enumerate",
  "(",
  "[",
  "i",
  "for",
  "i",
  "in",
  "masked",
  "if",
  "i",
  "!=",
  "[",
  "]",
  "]",
  ",",
  "1",
  ")",
  ":",
  "m",
  "=",
  "[",
  "'%s insertion:%s'",
  "%",
  "(",
  "seq",
  "[",
  "0",
  "]",
  ",",
  "i",
  ")",
  ",",
  "''",
  ".",
  "join",
  "(",
  "m",
  ")",
  "]",
  "yield",
  "[",
  "1",
  ",",
  "m",
  "]"
] | 
	remove masked regions from fasta file as long as
    they are longer than min_len | 
	[
  "remove",
  "masked",
  "regions",
  "from",
  "fasta",
  "file",
  "as",
  "long",
  "as",
  "they",
  "are",
  "longer",
  "than",
  "min_len"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/strip_masked.py#L33-L45 | 
	train | 
| 
	smdabdoub/phylotoast | 
	bin/network_plots_gephi.py | 
	get_relative_abundance | 
	def get_relative_abundance(biomfile):
    """
    Return arcsine transformed relative abundance from a BIOM format file.
    :type biomfile: BIOM format file
    :param biomfile: BIOM format file used to obtain relative abundances for each OTU in
                     a SampleID, which are used as node sizes in network plots.
    :type return: Dictionary of dictionaries.
    :return: Dictionary keyed on SampleID whose value is a dictionarykeyed on OTU Name
             whose value is the arc sine tranfsormed relative abundance value for that
             SampleID-OTU Name pair.
    """
    biomf = biom.load_table(biomfile)
    norm_biomf = biomf.norm(inplace=False)
    rel_abd = {}
    for sid in norm_biomf.ids():
        rel_abd[sid] = {}
        for otuid in norm_biomf.ids("observation"):
            otuname = oc.otu_name(norm_biomf.metadata(otuid, axis="observation")["taxonomy"])
            otuname = " ".join(otuname.split("_"))
            abd = norm_biomf.get_value_by_ids(otuid, sid)
            rel_abd[sid][otuname] = abd
    ast_rel_abd = bc.arcsine_sqrt_transform(rel_abd)
    return ast_rel_abd | 
	python | 
	def get_relative_abundance(biomfile):
    """
    Return arcsine transformed relative abundance from a BIOM format file.
    :type biomfile: BIOM format file
    :param biomfile: BIOM format file used to obtain relative abundances for each OTU in
                     a SampleID, which are used as node sizes in network plots.
    :type return: Dictionary of dictionaries.
    :return: Dictionary keyed on SampleID whose value is a dictionarykeyed on OTU Name
             whose value is the arc sine tranfsormed relative abundance value for that
             SampleID-OTU Name pair.
    """
    biomf = biom.load_table(biomfile)
    norm_biomf = biomf.norm(inplace=False)
    rel_abd = {}
    for sid in norm_biomf.ids():
        rel_abd[sid] = {}
        for otuid in norm_biomf.ids("observation"):
            otuname = oc.otu_name(norm_biomf.metadata(otuid, axis="observation")["taxonomy"])
            otuname = " ".join(otuname.split("_"))
            abd = norm_biomf.get_value_by_ids(otuid, sid)
            rel_abd[sid][otuname] = abd
    ast_rel_abd = bc.arcsine_sqrt_transform(rel_abd)
    return ast_rel_abd | 
	[
  "def",
  "get_relative_abundance",
  "(",
  "biomfile",
  ")",
  ":",
  "biomf",
  "=",
  "biom",
  ".",
  "load_table",
  "(",
  "biomfile",
  ")",
  "norm_biomf",
  "=",
  "biomf",
  ".",
  "norm",
  "(",
  "inplace",
  "=",
  "False",
  ")",
  "rel_abd",
  "=",
  "{",
  "}",
  "for",
  "sid",
  "in",
  "norm_biomf",
  ".",
  "ids",
  "(",
  ")",
  ":",
  "rel_abd",
  "[",
  "sid",
  "]",
  "=",
  "{",
  "}",
  "for",
  "otuid",
  "in",
  "norm_biomf",
  ".",
  "ids",
  "(",
  "\"observation\"",
  ")",
  ":",
  "otuname",
  "=",
  "oc",
  ".",
  "otu_name",
  "(",
  "norm_biomf",
  ".",
  "metadata",
  "(",
  "otuid",
  ",",
  "axis",
  "=",
  "\"observation\"",
  ")",
  "[",
  "\"taxonomy\"",
  "]",
  ")",
  "otuname",
  "=",
  "\" \"",
  ".",
  "join",
  "(",
  "otuname",
  ".",
  "split",
  "(",
  "\"_\"",
  ")",
  ")",
  "abd",
  "=",
  "norm_biomf",
  ".",
  "get_value_by_ids",
  "(",
  "otuid",
  ",",
  "sid",
  ")",
  "rel_abd",
  "[",
  "sid",
  "]",
  "[",
  "otuname",
  "]",
  "=",
  "abd",
  "ast_rel_abd",
  "=",
  "bc",
  ".",
  "arcsine_sqrt_transform",
  "(",
  "rel_abd",
  ")",
  "return",
  "ast_rel_abd"
] | 
	Return arcsine transformed relative abundance from a BIOM format file.
    :type biomfile: BIOM format file
    :param biomfile: BIOM format file used to obtain relative abundances for each OTU in
                     a SampleID, which are used as node sizes in network plots.
    :type return: Dictionary of dictionaries.
    :return: Dictionary keyed on SampleID whose value is a dictionarykeyed on OTU Name
             whose value is the arc sine tranfsormed relative abundance value for that
             SampleID-OTU Name pair. | 
	[
  "Return",
  "arcsine",
  "transformed",
  "relative",
  "abundance",
  "from",
  "a",
  "BIOM",
  "format",
  "file",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/network_plots_gephi.py#L33-L57 | 
	train | 
| 
	smdabdoub/phylotoast | 
	bin/iTol.py | 
	find_otu | 
	def find_otu(otuid, tree):
    """
    Find an OTU ID in a Newick-format tree.
    Return the starting position of the ID or None if not found.
    """
    for m in re.finditer(otuid, tree):
        before, after = tree[m.start()-1], tree[m.start()+len(otuid)]
        if before in ["(", ",", ")"] and after in [":", ";"]:
            return m.start()
    return None | 
	python | 
	def find_otu(otuid, tree):
    """
    Find an OTU ID in a Newick-format tree.
    Return the starting position of the ID or None if not found.
    """
    for m in re.finditer(otuid, tree):
        before, after = tree[m.start()-1], tree[m.start()+len(otuid)]
        if before in ["(", ",", ")"] and after in [":", ";"]:
            return m.start()
    return None | 
	[
  "def",
  "find_otu",
  "(",
  "otuid",
  ",",
  "tree",
  ")",
  ":",
  "for",
  "m",
  "in",
  "re",
  ".",
  "finditer",
  "(",
  "otuid",
  ",",
  "tree",
  ")",
  ":",
  "before",
  ",",
  "after",
  "=",
  "tree",
  "[",
  "m",
  ".",
  "start",
  "(",
  ")",
  "-",
  "1",
  "]",
  ",",
  "tree",
  "[",
  "m",
  ".",
  "start",
  "(",
  ")",
  "+",
  "len",
  "(",
  "otuid",
  ")",
  "]",
  "if",
  "before",
  "in",
  "[",
  "\"(\"",
  ",",
  "\",\"",
  ",",
  "\")\"",
  "]",
  "and",
  "after",
  "in",
  "[",
  "\":\"",
  ",",
  "\";\"",
  "]",
  ":",
  "return",
  "m",
  ".",
  "start",
  "(",
  ")",
  "return",
  "None"
] | 
	Find an OTU ID in a Newick-format tree.
    Return the starting position of the ID or None if not found. | 
	[
  "Find",
  "an",
  "OTU",
  "ID",
  "in",
  "a",
  "Newick",
  "-",
  "format",
  "tree",
  ".",
  "Return",
  "the",
  "starting",
  "position",
  "of",
  "the",
  "ID",
  "or",
  "None",
  "if",
  "not",
  "found",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/iTol.py#L17-L26 | 
	train | 
| 
	smdabdoub/phylotoast | 
	bin/iTol.py | 
	newick_replace_otuids | 
	def newick_replace_otuids(tree, biomf):
    """
    Replace the OTU ids in the Newick phylogenetic tree format with truncated
    OTU names
    """
    for val, id_, md in biomf.iter(axis="observation"):
        otu_loc = find_otu(id_, tree)
        if otu_loc is not None:
            tree = tree[:otu_loc] + \
                   oc.otu_name(md["taxonomy"]) + \
                   tree[otu_loc + len(id_):]
    return tree | 
	python | 
	def newick_replace_otuids(tree, biomf):
    """
    Replace the OTU ids in the Newick phylogenetic tree format with truncated
    OTU names
    """
    for val, id_, md in biomf.iter(axis="observation"):
        otu_loc = find_otu(id_, tree)
        if otu_loc is not None:
            tree = tree[:otu_loc] + \
                   oc.otu_name(md["taxonomy"]) + \
                   tree[otu_loc + len(id_):]
    return tree | 
	[
  "def",
  "newick_replace_otuids",
  "(",
  "tree",
  ",",
  "biomf",
  ")",
  ":",
  "for",
  "val",
  ",",
  "id_",
  ",",
  "md",
  "in",
  "biomf",
  ".",
  "iter",
  "(",
  "axis",
  "=",
  "\"observation\"",
  ")",
  ":",
  "otu_loc",
  "=",
  "find_otu",
  "(",
  "id_",
  ",",
  "tree",
  ")",
  "if",
  "otu_loc",
  "is",
  "not",
  "None",
  ":",
  "tree",
  "=",
  "tree",
  "[",
  ":",
  "otu_loc",
  "]",
  "+",
  "oc",
  ".",
  "otu_name",
  "(",
  "md",
  "[",
  "\"taxonomy\"",
  "]",
  ")",
  "+",
  "tree",
  "[",
  "otu_loc",
  "+",
  "len",
  "(",
  "id_",
  ")",
  ":",
  "]",
  "return",
  "tree"
] | 
	Replace the OTU ids in the Newick phylogenetic tree format with truncated
    OTU names | 
	[
  "Replace",
  "the",
  "OTU",
  "ids",
  "in",
  "the",
  "Newick",
  "phylogenetic",
  "tree",
  "format",
  "with",
  "truncated",
  "OTU",
  "names"
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/iTol.py#L29-L40 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/cluster_ani.py | 
	genome_info | 
	def genome_info(genome, info):
    """
    return genome info for choosing representative
    if ggKbase table provided - choose rep based on SCGs and genome length
        - priority for most SCGs - extra SCGs, then largest genome
    otherwise, based on largest genome
    """
    try:
        scg       = info['#SCGs']
        dups      = info['#SCG duplicates']
        length    = info['genome size (bp)']
        return [scg - dups, length, genome]
    except:
        return [False, False, info['genome size (bp)'], genome] | 
	python | 
	def genome_info(genome, info):
    """
    return genome info for choosing representative
    if ggKbase table provided - choose rep based on SCGs and genome length
        - priority for most SCGs - extra SCGs, then largest genome
    otherwise, based on largest genome
    """
    try:
        scg       = info['#SCGs']
        dups      = info['#SCG duplicates']
        length    = info['genome size (bp)']
        return [scg - dups, length, genome]
    except:
        return [False, False, info['genome size (bp)'], genome] | 
	[
  "def",
  "genome_info",
  "(",
  "genome",
  ",",
  "info",
  ")",
  ":",
  "try",
  ":",
  "scg",
  "=",
  "info",
  "[",
  "'#SCGs'",
  "]",
  "dups",
  "=",
  "info",
  "[",
  "'#SCG duplicates'",
  "]",
  "length",
  "=",
  "info",
  "[",
  "'genome size (bp)'",
  "]",
  "return",
  "[",
  "scg",
  "-",
  "dups",
  ",",
  "length",
  ",",
  "genome",
  "]",
  "except",
  ":",
  "return",
  "[",
  "False",
  ",",
  "False",
  ",",
  "info",
  "[",
  "'genome size (bp)'",
  "]",
  ",",
  "genome",
  "]"
] | 
	return genome info for choosing representative
    if ggKbase table provided - choose rep based on SCGs and genome length
        - priority for most SCGs - extra SCGs, then largest genome
    otherwise, based on largest genome | 
	[
  "return",
  "genome",
  "info",
  "for",
  "choosing",
  "representative"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/cluster_ani.py#L97-L112 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/cluster_ani.py | 
	print_clusters | 
	def print_clusters(fastas, info, ANI):
    """
    choose represenative genome and
    print cluster information
    *if ggKbase table is provided, use SCG info to choose best genome
    """
    header = ['#cluster', 'num. genomes', 'rep.', 'genome', '#SCGs', '#SCG duplicates', \
            'genome size (bp)', 'fragments', 'list']
    yield header
    in_cluster = []
    for cluster_num, cluster in enumerate(connected_components(ANI)):
        cluster = sorted([genome_info(genome, info[genome]) \
                            for genome in cluster], \
                            key = lambda x: x[0:], reverse = True)
        rep = cluster[0][-1]
        cluster = [i[-1] for i in cluster]
        size = len(cluster)
        for genome in cluster:
            in_cluster.append(genome)
            try:
                stats = [size, rep, genome, \
                            info[genome]['#SCGs'], info[genome]['#SCG duplicates'], \
                            info[genome]['genome size (bp)'], info[genome]['# contigs'], cluster]
            except:
                stats = [size, rep, genome, \
                            'n/a', 'n/a', \
                            info[genome]['genome size (bp)'], info[genome]['# contigs'], cluster]
            if rep == genome:
                stats = ['*%s' % (cluster_num)] + stats
            else:
                stats = [cluster_num] + stats
            yield stats
    # print singletons
    try:
        start = cluster_num + 1
    except:
        start = 0
    fastas = set([i.rsplit('.', 1)[0].rsplit('/', 1)[-1].rsplit('.contigs')[0] for i in fastas])
    for cluster_num, genome in \
            enumerate(fastas.difference(set(in_cluster)), start):
        try:
            stats = ['*%s' % (cluster_num), 1, genome, genome, \
                        info[genome]['#SCGs'], info[genome]['#SCG duplicates'], \
                        info[genome]['genome size (bp)'], info[genome]['# contigs'], [genome]]
        except:
            stats = ['*%s' % (cluster_num), 1, genome, genome, \
                        'n/a', 'n/a', \
                        info[genome]['genome size (bp)'], info[genome]['# contigs'], [genome]]
        yield stats | 
	python | 
	def print_clusters(fastas, info, ANI):
    """
    choose represenative genome and
    print cluster information
    *if ggKbase table is provided, use SCG info to choose best genome
    """
    header = ['#cluster', 'num. genomes', 'rep.', 'genome', '#SCGs', '#SCG duplicates', \
            'genome size (bp)', 'fragments', 'list']
    yield header
    in_cluster = []
    for cluster_num, cluster in enumerate(connected_components(ANI)):
        cluster = sorted([genome_info(genome, info[genome]) \
                            for genome in cluster], \
                            key = lambda x: x[0:], reverse = True)
        rep = cluster[0][-1]
        cluster = [i[-1] for i in cluster]
        size = len(cluster)
        for genome in cluster:
            in_cluster.append(genome)
            try:
                stats = [size, rep, genome, \
                            info[genome]['#SCGs'], info[genome]['#SCG duplicates'], \
                            info[genome]['genome size (bp)'], info[genome]['# contigs'], cluster]
            except:
                stats = [size, rep, genome, \
                            'n/a', 'n/a', \
                            info[genome]['genome size (bp)'], info[genome]['# contigs'], cluster]
            if rep == genome:
                stats = ['*%s' % (cluster_num)] + stats
            else:
                stats = [cluster_num] + stats
            yield stats
    # print singletons
    try:
        start = cluster_num + 1
    except:
        start = 0
    fastas = set([i.rsplit('.', 1)[0].rsplit('/', 1)[-1].rsplit('.contigs')[0] for i in fastas])
    for cluster_num, genome in \
            enumerate(fastas.difference(set(in_cluster)), start):
        try:
            stats = ['*%s' % (cluster_num), 1, genome, genome, \
                        info[genome]['#SCGs'], info[genome]['#SCG duplicates'], \
                        info[genome]['genome size (bp)'], info[genome]['# contigs'], [genome]]
        except:
            stats = ['*%s' % (cluster_num), 1, genome, genome, \
                        'n/a', 'n/a', \
                        info[genome]['genome size (bp)'], info[genome]['# contigs'], [genome]]
        yield stats | 
	[
  "def",
  "print_clusters",
  "(",
  "fastas",
  ",",
  "info",
  ",",
  "ANI",
  ")",
  ":",
  "header",
  "=",
  "[",
  "'#cluster'",
  ",",
  "'num. genomes'",
  ",",
  "'rep.'",
  ",",
  "'genome'",
  ",",
  "'#SCGs'",
  ",",
  "'#SCG duplicates'",
  ",",
  "'genome size (bp)'",
  ",",
  "'fragments'",
  ",",
  "'list'",
  "]",
  "yield",
  "header",
  "in_cluster",
  "=",
  "[",
  "]",
  "for",
  "cluster_num",
  ",",
  "cluster",
  "in",
  "enumerate",
  "(",
  "connected_components",
  "(",
  "ANI",
  ")",
  ")",
  ":",
  "cluster",
  "=",
  "sorted",
  "(",
  "[",
  "genome_info",
  "(",
  "genome",
  ",",
  "info",
  "[",
  "genome",
  "]",
  ")",
  "for",
  "genome",
  "in",
  "cluster",
  "]",
  ",",
  "key",
  "=",
  "lambda",
  "x",
  ":",
  "x",
  "[",
  "0",
  ":",
  "]",
  ",",
  "reverse",
  "=",
  "True",
  ")",
  "rep",
  "=",
  "cluster",
  "[",
  "0",
  "]",
  "[",
  "-",
  "1",
  "]",
  "cluster",
  "=",
  "[",
  "i",
  "[",
  "-",
  "1",
  "]",
  "for",
  "i",
  "in",
  "cluster",
  "]",
  "size",
  "=",
  "len",
  "(",
  "cluster",
  ")",
  "for",
  "genome",
  "in",
  "cluster",
  ":",
  "in_cluster",
  ".",
  "append",
  "(",
  "genome",
  ")",
  "try",
  ":",
  "stats",
  "=",
  "[",
  "size",
  ",",
  "rep",
  ",",
  "genome",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'#SCGs'",
  "]",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'#SCG duplicates'",
  "]",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'genome size (bp)'",
  "]",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'# contigs'",
  "]",
  ",",
  "cluster",
  "]",
  "except",
  ":",
  "stats",
  "=",
  "[",
  "size",
  ",",
  "rep",
  ",",
  "genome",
  ",",
  "'n/a'",
  ",",
  "'n/a'",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'genome size (bp)'",
  "]",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'# contigs'",
  "]",
  ",",
  "cluster",
  "]",
  "if",
  "rep",
  "==",
  "genome",
  ":",
  "stats",
  "=",
  "[",
  "'*%s'",
  "%",
  "(",
  "cluster_num",
  ")",
  "]",
  "+",
  "stats",
  "else",
  ":",
  "stats",
  "=",
  "[",
  "cluster_num",
  "]",
  "+",
  "stats",
  "yield",
  "stats",
  "# print singletons",
  "try",
  ":",
  "start",
  "=",
  "cluster_num",
  "+",
  "1",
  "except",
  ":",
  "start",
  "=",
  "0",
  "fastas",
  "=",
  "set",
  "(",
  "[",
  "i",
  ".",
  "rsplit",
  "(",
  "'.'",
  ",",
  "1",
  ")",
  "[",
  "0",
  "]",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "-",
  "1",
  "]",
  ".",
  "rsplit",
  "(",
  "'.contigs'",
  ")",
  "[",
  "0",
  "]",
  "for",
  "i",
  "in",
  "fastas",
  "]",
  ")",
  "for",
  "cluster_num",
  ",",
  "genome",
  "in",
  "enumerate",
  "(",
  "fastas",
  ".",
  "difference",
  "(",
  "set",
  "(",
  "in_cluster",
  ")",
  ")",
  ",",
  "start",
  ")",
  ":",
  "try",
  ":",
  "stats",
  "=",
  "[",
  "'*%s'",
  "%",
  "(",
  "cluster_num",
  ")",
  ",",
  "1",
  ",",
  "genome",
  ",",
  "genome",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'#SCGs'",
  "]",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'#SCG duplicates'",
  "]",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'genome size (bp)'",
  "]",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'# contigs'",
  "]",
  ",",
  "[",
  "genome",
  "]",
  "]",
  "except",
  ":",
  "stats",
  "=",
  "[",
  "'*%s'",
  "%",
  "(",
  "cluster_num",
  ")",
  ",",
  "1",
  ",",
  "genome",
  ",",
  "genome",
  ",",
  "'n/a'",
  ",",
  "'n/a'",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'genome size (bp)'",
  "]",
  ",",
  "info",
  "[",
  "genome",
  "]",
  "[",
  "'# contigs'",
  "]",
  ",",
  "[",
  "genome",
  "]",
  "]",
  "yield",
  "stats"
] | 
	choose represenative genome and
    print cluster information
    *if ggKbase table is provided, use SCG info to choose best genome | 
	[
  "choose",
  "represenative",
  "genome",
  "and",
  "print",
  "cluster",
  "information"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/cluster_ani.py#L114-L163 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/cluster_ani.py | 
	parse_ggKbase_tables | 
	def parse_ggKbase_tables(tables, id_type):
    """
    convert ggKbase genome info tables to dictionary
    """
    g2info = {}
    for table in tables:
        for line in open(table):
            line = line.strip().split('\t')
            if line[0].startswith('name'):
                header = line
                header[4] = 'genome size (bp)'
                header[12] = '#SCGs'
                header[13] = '#SCG duplicates'
                continue
            name, code, info = line[0], line[1], line
            info = [to_int(i) for i in info]
            if id_type is False: # try to use name and code ID
                if 'UNK' in code or 'unknown' in code:
                    code = name
                if (name != code) and (name and code in g2info):
                    print('# duplicate name or code in table(s)', file=sys.stderr)
                    print('# %s and/or %s' % (name, code), file=sys.stderr)
                    exit()
                if name not in g2info:
                    g2info[name] = {item:stat for item, stat in zip(header, info)}
                if code not in g2info:
                    g2info[code] = {item:stat for item, stat in zip(header, info)}
            else:
                if id_type == 'name':
                    ID = name
                elif id_type == 'code':
                    ID = code
                else:
                    print('# specify name or code column using -id', file=sys.stderr)
                    exit()
                ID = ID.replace(' ', '')
                g2info[ID] = {item:stat for item, stat in zip(header, info)}
                if g2info[ID]['genome size (bp)'] == '':
                    g2info[ID]['genome size (bp)'] = 0
    return g2info | 
	python | 
	def parse_ggKbase_tables(tables, id_type):
    """
    convert ggKbase genome info tables to dictionary
    """
    g2info = {}
    for table in tables:
        for line in open(table):
            line = line.strip().split('\t')
            if line[0].startswith('name'):
                header = line
                header[4] = 'genome size (bp)'
                header[12] = '#SCGs'
                header[13] = '#SCG duplicates'
                continue
            name, code, info = line[0], line[1], line
            info = [to_int(i) for i in info]
            if id_type is False: # try to use name and code ID
                if 'UNK' in code or 'unknown' in code:
                    code = name
                if (name != code) and (name and code in g2info):
                    print('# duplicate name or code in table(s)', file=sys.stderr)
                    print('# %s and/or %s' % (name, code), file=sys.stderr)
                    exit()
                if name not in g2info:
                    g2info[name] = {item:stat for item, stat in zip(header, info)}
                if code not in g2info:
                    g2info[code] = {item:stat for item, stat in zip(header, info)}
            else:
                if id_type == 'name':
                    ID = name
                elif id_type == 'code':
                    ID = code
                else:
                    print('# specify name or code column using -id', file=sys.stderr)
                    exit()
                ID = ID.replace(' ', '')
                g2info[ID] = {item:stat for item, stat in zip(header, info)}
                if g2info[ID]['genome size (bp)'] == '':
                    g2info[ID]['genome size (bp)'] = 0
    return g2info | 
	[
  "def",
  "parse_ggKbase_tables",
  "(",
  "tables",
  ",",
  "id_type",
  ")",
  ":",
  "g2info",
  "=",
  "{",
  "}",
  "for",
  "table",
  "in",
  "tables",
  ":",
  "for",
  "line",
  "in",
  "open",
  "(",
  "table",
  ")",
  ":",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  "'\\t'",
  ")",
  "if",
  "line",
  "[",
  "0",
  "]",
  ".",
  "startswith",
  "(",
  "'name'",
  ")",
  ":",
  "header",
  "=",
  "line",
  "header",
  "[",
  "4",
  "]",
  "=",
  "'genome size (bp)'",
  "header",
  "[",
  "12",
  "]",
  "=",
  "'#SCGs'",
  "header",
  "[",
  "13",
  "]",
  "=",
  "'#SCG duplicates'",
  "continue",
  "name",
  ",",
  "code",
  ",",
  "info",
  "=",
  "line",
  "[",
  "0",
  "]",
  ",",
  "line",
  "[",
  "1",
  "]",
  ",",
  "line",
  "info",
  "=",
  "[",
  "to_int",
  "(",
  "i",
  ")",
  "for",
  "i",
  "in",
  "info",
  "]",
  "if",
  "id_type",
  "is",
  "False",
  ":",
  "# try to use name and code ID",
  "if",
  "'UNK'",
  "in",
  "code",
  "or",
  "'unknown'",
  "in",
  "code",
  ":",
  "code",
  "=",
  "name",
  "if",
  "(",
  "name",
  "!=",
  "code",
  ")",
  "and",
  "(",
  "name",
  "and",
  "code",
  "in",
  "g2info",
  ")",
  ":",
  "print",
  "(",
  "'# duplicate name or code in table(s)'",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "print",
  "(",
  "'# %s and/or %s'",
  "%",
  "(",
  "name",
  ",",
  "code",
  ")",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "exit",
  "(",
  ")",
  "if",
  "name",
  "not",
  "in",
  "g2info",
  ":",
  "g2info",
  "[",
  "name",
  "]",
  "=",
  "{",
  "item",
  ":",
  "stat",
  "for",
  "item",
  ",",
  "stat",
  "in",
  "zip",
  "(",
  "header",
  ",",
  "info",
  ")",
  "}",
  "if",
  "code",
  "not",
  "in",
  "g2info",
  ":",
  "g2info",
  "[",
  "code",
  "]",
  "=",
  "{",
  "item",
  ":",
  "stat",
  "for",
  "item",
  ",",
  "stat",
  "in",
  "zip",
  "(",
  "header",
  ",",
  "info",
  ")",
  "}",
  "else",
  ":",
  "if",
  "id_type",
  "==",
  "'name'",
  ":",
  "ID",
  "=",
  "name",
  "elif",
  "id_type",
  "==",
  "'code'",
  ":",
  "ID",
  "=",
  "code",
  "else",
  ":",
  "print",
  "(",
  "'# specify name or code column using -id'",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "exit",
  "(",
  ")",
  "ID",
  "=",
  "ID",
  ".",
  "replace",
  "(",
  "' '",
  ",",
  "''",
  ")",
  "g2info",
  "[",
  "ID",
  "]",
  "=",
  "{",
  "item",
  ":",
  "stat",
  "for",
  "item",
  ",",
  "stat",
  "in",
  "zip",
  "(",
  "header",
  ",",
  "info",
  ")",
  "}",
  "if",
  "g2info",
  "[",
  "ID",
  "]",
  "[",
  "'genome size (bp)'",
  "]",
  "==",
  "''",
  ":",
  "g2info",
  "[",
  "ID",
  "]",
  "[",
  "'genome size (bp)'",
  "]",
  "=",
  "0",
  "return",
  "g2info"
] | 
	convert ggKbase genome info tables to dictionary | 
	[
  "convert",
  "ggKbase",
  "genome",
  "info",
  "tables",
  "to",
  "dictionary"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/cluster_ani.py#L174-L213 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/cluster_ani.py | 
	parse_checkM_tables | 
	def parse_checkM_tables(tables):
    """
    convert checkM genome info tables to dictionary
    """
    g2info = {}
    for table in tables:
        for line in open(table):
            line = line.strip().split('\t')
            if line[0].startswith('Bin Id'):
                header = line
                header[8] = 'genome size (bp)'
                header[5] = '#SCGs'
                header[6] = '#SCG duplicates'
                continue
            ID, info = line[0], line
            info = [to_int(i) for i in info]
            ID = ID.replace(' ', '')
            g2info[ID] = {item:stat for item, stat in zip(header, info)}
            if g2info[ID]['genome size (bp)'] == '':
                g2info[ID]['genome size (bp)'] = 0
    return g2info | 
	python | 
	def parse_checkM_tables(tables):
    """
    convert checkM genome info tables to dictionary
    """
    g2info = {}
    for table in tables:
        for line in open(table):
            line = line.strip().split('\t')
            if line[0].startswith('Bin Id'):
                header = line
                header[8] = 'genome size (bp)'
                header[5] = '#SCGs'
                header[6] = '#SCG duplicates'
                continue
            ID, info = line[0], line
            info = [to_int(i) for i in info]
            ID = ID.replace(' ', '')
            g2info[ID] = {item:stat for item, stat in zip(header, info)}
            if g2info[ID]['genome size (bp)'] == '':
                g2info[ID]['genome size (bp)'] = 0
    return g2info | 
	[
  "def",
  "parse_checkM_tables",
  "(",
  "tables",
  ")",
  ":",
  "g2info",
  "=",
  "{",
  "}",
  "for",
  "table",
  "in",
  "tables",
  ":",
  "for",
  "line",
  "in",
  "open",
  "(",
  "table",
  ")",
  ":",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  "'\\t'",
  ")",
  "if",
  "line",
  "[",
  "0",
  "]",
  ".",
  "startswith",
  "(",
  "'Bin Id'",
  ")",
  ":",
  "header",
  "=",
  "line",
  "header",
  "[",
  "8",
  "]",
  "=",
  "'genome size (bp)'",
  "header",
  "[",
  "5",
  "]",
  "=",
  "'#SCGs'",
  "header",
  "[",
  "6",
  "]",
  "=",
  "'#SCG duplicates'",
  "continue",
  "ID",
  ",",
  "info",
  "=",
  "line",
  "[",
  "0",
  "]",
  ",",
  "line",
  "info",
  "=",
  "[",
  "to_int",
  "(",
  "i",
  ")",
  "for",
  "i",
  "in",
  "info",
  "]",
  "ID",
  "=",
  "ID",
  ".",
  "replace",
  "(",
  "' '",
  ",",
  "''",
  ")",
  "g2info",
  "[",
  "ID",
  "]",
  "=",
  "{",
  "item",
  ":",
  "stat",
  "for",
  "item",
  ",",
  "stat",
  "in",
  "zip",
  "(",
  "header",
  ",",
  "info",
  ")",
  "}",
  "if",
  "g2info",
  "[",
  "ID",
  "]",
  "[",
  "'genome size (bp)'",
  "]",
  "==",
  "''",
  ":",
  "g2info",
  "[",
  "ID",
  "]",
  "[",
  "'genome size (bp)'",
  "]",
  "=",
  "0",
  "return",
  "g2info"
] | 
	convert checkM genome info tables to dictionary | 
	[
  "convert",
  "checkM",
  "genome",
  "info",
  "tables",
  "to",
  "dictionary"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/cluster_ani.py#L215-L235 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/cluster_ani.py | 
	genome_lengths | 
	def genome_lengths(fastas, info):
    """
    get genome lengths
    """
    if info is False:
        info = {}
    for genome in fastas:
        name = genome.rsplit('.', 1)[0].rsplit('/', 1)[-1].rsplit('.contigs')[0]
        if name in info:
            continue
        length = 0
        fragments = 0
        for seq in parse_fasta(genome):
            length += len(seq[1])
            fragments += 1
        info[name] = {'genome size (bp)':length, '# contigs':fragments}
    return info | 
	python | 
	def genome_lengths(fastas, info):
    """
    get genome lengths
    """
    if info is False:
        info = {}
    for genome in fastas:
        name = genome.rsplit('.', 1)[0].rsplit('/', 1)[-1].rsplit('.contigs')[0]
        if name in info:
            continue
        length = 0
        fragments = 0
        for seq in parse_fasta(genome):
            length += len(seq[1])
            fragments += 1
        info[name] = {'genome size (bp)':length, '# contigs':fragments}
    return info | 
	[
  "def",
  "genome_lengths",
  "(",
  "fastas",
  ",",
  "info",
  ")",
  ":",
  "if",
  "info",
  "is",
  "False",
  ":",
  "info",
  "=",
  "{",
  "}",
  "for",
  "genome",
  "in",
  "fastas",
  ":",
  "name",
  "=",
  "genome",
  ".",
  "rsplit",
  "(",
  "'.'",
  ",",
  "1",
  ")",
  "[",
  "0",
  "]",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "-",
  "1",
  "]",
  ".",
  "rsplit",
  "(",
  "'.contigs'",
  ")",
  "[",
  "0",
  "]",
  "if",
  "name",
  "in",
  "info",
  ":",
  "continue",
  "length",
  "=",
  "0",
  "fragments",
  "=",
  "0",
  "for",
  "seq",
  "in",
  "parse_fasta",
  "(",
  "genome",
  ")",
  ":",
  "length",
  "+=",
  "len",
  "(",
  "seq",
  "[",
  "1",
  "]",
  ")",
  "fragments",
  "+=",
  "1",
  "info",
  "[",
  "name",
  "]",
  "=",
  "{",
  "'genome size (bp)'",
  ":",
  "length",
  ",",
  "'# contigs'",
  ":",
  "fragments",
  "}",
  "return",
  "info"
] | 
	get genome lengths | 
	[
  "get",
  "genome",
  "lengths"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/cluster_ani.py#L237-L253 | 
	train | 
| 
	disqus/nydus | 
	nydus/db/routers/base.py | 
	BaseRouter.get_dbs | 
	def get_dbs(self, attr, args, kwargs, **fkwargs):
        """
        Returns a list of db keys to route the given call to.
        :param attr: Name of attribute being called on the connection.
        :param args: List of arguments being passed to ``attr``.
        :param kwargs: Dictionary of keyword arguments being passed to ``attr``.
        >>> redis = Cluster(router=BaseRouter)
        >>> router = redis.router
        >>> router.get_dbs('incr', args=('key name', 1))
        [0,1,2]
        """
        if not self._ready:
            if not self.setup_router(args=args, kwargs=kwargs, **fkwargs):
                raise self.UnableToSetupRouter()
        retval = self._pre_routing(attr=attr, args=args, kwargs=kwargs, **fkwargs)
        if retval is not None:
            args, kwargs = retval
        if not (args or kwargs):
            return self.cluster.hosts.keys()
        try:
            db_nums = self._route(attr=attr, args=args, kwargs=kwargs, **fkwargs)
        except Exception as e:
            self._handle_exception(e)
            db_nums = []
        return self._post_routing(attr=attr, db_nums=db_nums, args=args, kwargs=kwargs, **fkwargs) | 
	python | 
	def get_dbs(self, attr, args, kwargs, **fkwargs):
        """
        Returns a list of db keys to route the given call to.
        :param attr: Name of attribute being called on the connection.
        :param args: List of arguments being passed to ``attr``.
        :param kwargs: Dictionary of keyword arguments being passed to ``attr``.
        >>> redis = Cluster(router=BaseRouter)
        >>> router = redis.router
        >>> router.get_dbs('incr', args=('key name', 1))
        [0,1,2]
        """
        if not self._ready:
            if not self.setup_router(args=args, kwargs=kwargs, **fkwargs):
                raise self.UnableToSetupRouter()
        retval = self._pre_routing(attr=attr, args=args, kwargs=kwargs, **fkwargs)
        if retval is not None:
            args, kwargs = retval
        if not (args or kwargs):
            return self.cluster.hosts.keys()
        try:
            db_nums = self._route(attr=attr, args=args, kwargs=kwargs, **fkwargs)
        except Exception as e:
            self._handle_exception(e)
            db_nums = []
        return self._post_routing(attr=attr, db_nums=db_nums, args=args, kwargs=kwargs, **fkwargs) | 
	[
  "def",
  "get_dbs",
  "(",
  "self",
  ",",
  "attr",
  ",",
  "args",
  ",",
  "kwargs",
  ",",
  "*",
  "*",
  "fkwargs",
  ")",
  ":",
  "if",
  "not",
  "self",
  ".",
  "_ready",
  ":",
  "if",
  "not",
  "self",
  ".",
  "setup_router",
  "(",
  "args",
  "=",
  "args",
  ",",
  "kwargs",
  "=",
  "kwargs",
  ",",
  "*",
  "*",
  "fkwargs",
  ")",
  ":",
  "raise",
  "self",
  ".",
  "UnableToSetupRouter",
  "(",
  ")",
  "retval",
  "=",
  "self",
  ".",
  "_pre_routing",
  "(",
  "attr",
  "=",
  "attr",
  ",",
  "args",
  "=",
  "args",
  ",",
  "kwargs",
  "=",
  "kwargs",
  ",",
  "*",
  "*",
  "fkwargs",
  ")",
  "if",
  "retval",
  "is",
  "not",
  "None",
  ":",
  "args",
  ",",
  "kwargs",
  "=",
  "retval",
  "if",
  "not",
  "(",
  "args",
  "or",
  "kwargs",
  ")",
  ":",
  "return",
  "self",
  ".",
  "cluster",
  ".",
  "hosts",
  ".",
  "keys",
  "(",
  ")",
  "try",
  ":",
  "db_nums",
  "=",
  "self",
  ".",
  "_route",
  "(",
  "attr",
  "=",
  "attr",
  ",",
  "args",
  "=",
  "args",
  ",",
  "kwargs",
  "=",
  "kwargs",
  ",",
  "*",
  "*",
  "fkwargs",
  ")",
  "except",
  "Exception",
  "as",
  "e",
  ":",
  "self",
  ".",
  "_handle_exception",
  "(",
  "e",
  ")",
  "db_nums",
  "=",
  "[",
  "]",
  "return",
  "self",
  ".",
  "_post_routing",
  "(",
  "attr",
  "=",
  "attr",
  ",",
  "db_nums",
  "=",
  "db_nums",
  ",",
  "args",
  "=",
  "args",
  ",",
  "kwargs",
  "=",
  "kwargs",
  ",",
  "*",
  "*",
  "fkwargs",
  ")"
] | 
	Returns a list of db keys to route the given call to.
        :param attr: Name of attribute being called on the connection.
        :param args: List of arguments being passed to ``attr``.
        :param kwargs: Dictionary of keyword arguments being passed to ``attr``.
        >>> redis = Cluster(router=BaseRouter)
        >>> router = redis.router
        >>> router.get_dbs('incr', args=('key name', 1))
        [0,1,2] | 
	[
  "Returns",
  "a",
  "list",
  "of",
  "db",
  "keys",
  "to",
  "route",
  "the",
  "given",
  "call",
  "to",
  "."
] | 
	9b505840da47a34f758a830c3992fa5dcb7bb7ad | 
	https://github.com/disqus/nydus/blob/9b505840da47a34f758a830c3992fa5dcb7bb7ad/nydus/db/routers/base.py#L50-L81 | 
	train | 
| 
	disqus/nydus | 
	nydus/db/routers/base.py | 
	BaseRouter.setup_router | 
	def setup_router(self, args, kwargs, **fkwargs):
        """
        Call method to perform any setup
        """
        self._ready = self._setup_router(args=args, kwargs=kwargs, **fkwargs)
        return self._ready | 
	python | 
	def setup_router(self, args, kwargs, **fkwargs):
        """
        Call method to perform any setup
        """
        self._ready = self._setup_router(args=args, kwargs=kwargs, **fkwargs)
        return self._ready | 
	[
  "def",
  "setup_router",
  "(",
  "self",
  ",",
  "args",
  ",",
  "kwargs",
  ",",
  "*",
  "*",
  "fkwargs",
  ")",
  ":",
  "self",
  ".",
  "_ready",
  "=",
  "self",
  ".",
  "_setup_router",
  "(",
  "args",
  "=",
  "args",
  ",",
  "kwargs",
  "=",
  "kwargs",
  ",",
  "*",
  "*",
  "fkwargs",
  ")",
  "return",
  "self",
  ".",
  "_ready"
] | 
	Call method to perform any setup | 
	[
  "Call",
  "method",
  "to",
  "perform",
  "any",
  "setup"
] | 
	9b505840da47a34f758a830c3992fa5dcb7bb7ad | 
	https://github.com/disqus/nydus/blob/9b505840da47a34f758a830c3992fa5dcb7bb7ad/nydus/db/routers/base.py#L87-L93 | 
	train | 
| 
	disqus/nydus | 
	nydus/db/routers/base.py | 
	BaseRouter._route | 
	def _route(self, attr, args, kwargs, **fkwargs):
        """
        Perform routing and return db_nums
        """
        return self.cluster.hosts.keys() | 
	python | 
	def _route(self, attr, args, kwargs, **fkwargs):
        """
        Perform routing and return db_nums
        """
        return self.cluster.hosts.keys() | 
	[
  "def",
  "_route",
  "(",
  "self",
  ",",
  "attr",
  ",",
  "args",
  ",",
  "kwargs",
  ",",
  "*",
  "*",
  "fkwargs",
  ")",
  ":",
  "return",
  "self",
  ".",
  "cluster",
  ".",
  "hosts",
  ".",
  "keys",
  "(",
  ")"
] | 
	Perform routing and return db_nums | 
	[
  "Perform",
  "routing",
  "and",
  "return",
  "db_nums"
] | 
	9b505840da47a34f758a830c3992fa5dcb7bb7ad | 
	https://github.com/disqus/nydus/blob/9b505840da47a34f758a830c3992fa5dcb7bb7ad/nydus/db/routers/base.py#L111-L115 | 
	train | 
| 
	disqus/nydus | 
	nydus/db/routers/base.py | 
	RoundRobinRouter.check_down_connections | 
	def check_down_connections(self):
        """
        Iterates through all connections which were previously listed as unavailable
        and marks any that have expired their retry_timeout as being up.
        """
        now = time.time()
        for db_num, marked_down_at in self._down_connections.items():
            if marked_down_at + self.retry_timeout <= now:
                self.mark_connection_up(db_num) | 
	python | 
	def check_down_connections(self):
        """
        Iterates through all connections which were previously listed as unavailable
        and marks any that have expired their retry_timeout as being up.
        """
        now = time.time()
        for db_num, marked_down_at in self._down_connections.items():
            if marked_down_at + self.retry_timeout <= now:
                self.mark_connection_up(db_num) | 
	[
  "def",
  "check_down_connections",
  "(",
  "self",
  ")",
  ":",
  "now",
  "=",
  "time",
  ".",
  "time",
  "(",
  ")",
  "for",
  "db_num",
  ",",
  "marked_down_at",
  "in",
  "self",
  ".",
  "_down_connections",
  ".",
  "items",
  "(",
  ")",
  ":",
  "if",
  "marked_down_at",
  "+",
  "self",
  ".",
  "retry_timeout",
  "<=",
  "now",
  ":",
  "self",
  ".",
  "mark_connection_up",
  "(",
  "db_num",
  ")"
] | 
	Iterates through all connections which were previously listed as unavailable
        and marks any that have expired their retry_timeout as being up. | 
	[
  "Iterates",
  "through",
  "all",
  "connections",
  "which",
  "were",
  "previously",
  "listed",
  "as",
  "unavailable",
  "and",
  "marks",
  "any",
  "that",
  "have",
  "expired",
  "their",
  "retry_timeout",
  "as",
  "being",
  "up",
  "."
] | 
	9b505840da47a34f758a830c3992fa5dcb7bb7ad | 
	https://github.com/disqus/nydus/blob/9b505840da47a34f758a830c3992fa5dcb7bb7ad/nydus/db/routers/base.py#L175-L184 | 
	train | 
| 
	disqus/nydus | 
	nydus/db/routers/base.py | 
	RoundRobinRouter.flush_down_connections | 
	def flush_down_connections(self):
        """
        Marks all connections which were previously listed as unavailable as being up.
        """
        self._get_db_attempts = 0
        for db_num in self._down_connections.keys():
            self.mark_connection_up(db_num) | 
	python | 
	def flush_down_connections(self):
        """
        Marks all connections which were previously listed as unavailable as being up.
        """
        self._get_db_attempts = 0
        for db_num in self._down_connections.keys():
            self.mark_connection_up(db_num) | 
	[
  "def",
  "flush_down_connections",
  "(",
  "self",
  ")",
  ":",
  "self",
  ".",
  "_get_db_attempts",
  "=",
  "0",
  "for",
  "db_num",
  "in",
  "self",
  ".",
  "_down_connections",
  ".",
  "keys",
  "(",
  ")",
  ":",
  "self",
  ".",
  "mark_connection_up",
  "(",
  "db_num",
  ")"
] | 
	Marks all connections which were previously listed as unavailable as being up. | 
	[
  "Marks",
  "all",
  "connections",
  "which",
  "were",
  "previously",
  "listed",
  "as",
  "unavailable",
  "as",
  "being",
  "up",
  "."
] | 
	9b505840da47a34f758a830c3992fa5dcb7bb7ad | 
	https://github.com/disqus/nydus/blob/9b505840da47a34f758a830c3992fa5dcb7bb7ad/nydus/db/routers/base.py#L186-L192 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/analysis.py | 
	standby | 
	def standby(df, resolution='24h', time_window=None):
    """
    Compute standby power
    Parameters
    ----------
    df : pandas.DataFrame or pandas.Series
        Electricity Power
    resolution : str, default='d'
        Resolution of the computation.  Data will be resampled to this resolution (as mean) before computation
        of the minimum.
        String that can be parsed by the pandas resample function, example ='h', '15min', '6h'
    time_window : tuple with start-hour and end-hour, default=None
        Specify the start-time and end-time for the analysis.
        Only data within this time window will be considered.
        Both times have to be specified as string ('01:00', '06:30') or as datetime.time() objects
    Returns
    -------
    df : pandas.Series with DateTimeIndex in the given resolution
    """
    if df.empty:
        raise EmptyDataFrame()
    df = pd.DataFrame(df)  # if df was a pd.Series, convert to DataFrame
    def parse_time(t):
        if isinstance(t, numbers.Number):
            return pd.Timestamp.utcfromtimestamp(t).time()
        else:
            return pd.Timestamp(t).time()
    # first filter based on the time-window
    if time_window is not None:
        t_start = parse_time(time_window[0])
        t_end = parse_time(time_window[1])
        if t_start > t_end:
            # start before midnight
            df = df[(df.index.time >= t_start) | (df.index.time < t_end)]
        else:
            df = df[(df.index.time >= t_start) & (df.index.time < t_end)]
    return df.resample(resolution).min() | 
	python | 
	def standby(df, resolution='24h', time_window=None):
    """
    Compute standby power
    Parameters
    ----------
    df : pandas.DataFrame or pandas.Series
        Electricity Power
    resolution : str, default='d'
        Resolution of the computation.  Data will be resampled to this resolution (as mean) before computation
        of the minimum.
        String that can be parsed by the pandas resample function, example ='h', '15min', '6h'
    time_window : tuple with start-hour and end-hour, default=None
        Specify the start-time and end-time for the analysis.
        Only data within this time window will be considered.
        Both times have to be specified as string ('01:00', '06:30') or as datetime.time() objects
    Returns
    -------
    df : pandas.Series with DateTimeIndex in the given resolution
    """
    if df.empty:
        raise EmptyDataFrame()
    df = pd.DataFrame(df)  # if df was a pd.Series, convert to DataFrame
    def parse_time(t):
        if isinstance(t, numbers.Number):
            return pd.Timestamp.utcfromtimestamp(t).time()
        else:
            return pd.Timestamp(t).time()
    # first filter based on the time-window
    if time_window is not None:
        t_start = parse_time(time_window[0])
        t_end = parse_time(time_window[1])
        if t_start > t_end:
            # start before midnight
            df = df[(df.index.time >= t_start) | (df.index.time < t_end)]
        else:
            df = df[(df.index.time >= t_start) & (df.index.time < t_end)]
    return df.resample(resolution).min() | 
	[
  "def",
  "standby",
  "(",
  "df",
  ",",
  "resolution",
  "=",
  "'24h'",
  ",",
  "time_window",
  "=",
  "None",
  ")",
  ":",
  "if",
  "df",
  ".",
  "empty",
  ":",
  "raise",
  "EmptyDataFrame",
  "(",
  ")",
  "df",
  "=",
  "pd",
  ".",
  "DataFrame",
  "(",
  "df",
  ")",
  "# if df was a pd.Series, convert to DataFrame",
  "def",
  "parse_time",
  "(",
  "t",
  ")",
  ":",
  "if",
  "isinstance",
  "(",
  "t",
  ",",
  "numbers",
  ".",
  "Number",
  ")",
  ":",
  "return",
  "pd",
  ".",
  "Timestamp",
  ".",
  "utcfromtimestamp",
  "(",
  "t",
  ")",
  ".",
  "time",
  "(",
  ")",
  "else",
  ":",
  "return",
  "pd",
  ".",
  "Timestamp",
  "(",
  "t",
  ")",
  ".",
  "time",
  "(",
  ")",
  "# first filter based on the time-window",
  "if",
  "time_window",
  "is",
  "not",
  "None",
  ":",
  "t_start",
  "=",
  "parse_time",
  "(",
  "time_window",
  "[",
  "0",
  "]",
  ")",
  "t_end",
  "=",
  "parse_time",
  "(",
  "time_window",
  "[",
  "1",
  "]",
  ")",
  "if",
  "t_start",
  ">",
  "t_end",
  ":",
  "# start before midnight",
  "df",
  "=",
  "df",
  "[",
  "(",
  "df",
  ".",
  "index",
  ".",
  "time",
  ">=",
  "t_start",
  ")",
  "|",
  "(",
  "df",
  ".",
  "index",
  ".",
  "time",
  "<",
  "t_end",
  ")",
  "]",
  "else",
  ":",
  "df",
  "=",
  "df",
  "[",
  "(",
  "df",
  ".",
  "index",
  ".",
  "time",
  ">=",
  "t_start",
  ")",
  "&",
  "(",
  "df",
  ".",
  "index",
  ".",
  "time",
  "<",
  "t_end",
  ")",
  "]",
  "return",
  "df",
  ".",
  "resample",
  "(",
  "resolution",
  ")",
  ".",
  "min",
  "(",
  ")"
] | 
	Compute standby power
    Parameters
    ----------
    df : pandas.DataFrame or pandas.Series
        Electricity Power
    resolution : str, default='d'
        Resolution of the computation.  Data will be resampled to this resolution (as mean) before computation
        of the minimum.
        String that can be parsed by the pandas resample function, example ='h', '15min', '6h'
    time_window : tuple with start-hour and end-hour, default=None
        Specify the start-time and end-time for the analysis.
        Only data within this time window will be considered.
        Both times have to be specified as string ('01:00', '06:30') or as datetime.time() objects
    Returns
    -------
    df : pandas.Series with DateTimeIndex in the given resolution | 
	[
  "Compute",
  "standby",
  "power"
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/analysis.py#L72-L115 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/analysis.py | 
	share_of_standby | 
	def share_of_standby(df, resolution='24h', time_window=None):
    """
    Compute the share of the standby power in the total consumption.
    Parameters
    ----------
    df : pandas.DataFrame or pandas.Series
        Power (typically electricity, can be anything)
    resolution : str, default='d'
        Resolution of the computation.  Data will be resampled to this resolution (as mean) before computation
        of the minimum.
        String that can be parsed by the pandas resample function, example ='h', '15min', '6h'
    time_window : tuple with start-hour and end-hour, default=None
        Specify the start-time and end-time for the analysis.
        Only data within this time window will be considered.
        Both times have to be specified as string ('01:00', '06:30') or as datetime.time() objects
    Returns
    -------
    fraction : float between 0-1 with the share of the standby consumption
    """
    p_sb = standby(df, resolution, time_window)
    df = df.resample(resolution).mean()
    p_tot = df.sum()
    p_standby = p_sb.sum()
    share_standby = p_standby / p_tot
    res = share_standby.iloc[0]
    return res | 
	python | 
	def share_of_standby(df, resolution='24h', time_window=None):
    """
    Compute the share of the standby power in the total consumption.
    Parameters
    ----------
    df : pandas.DataFrame or pandas.Series
        Power (typically electricity, can be anything)
    resolution : str, default='d'
        Resolution of the computation.  Data will be resampled to this resolution (as mean) before computation
        of the minimum.
        String that can be parsed by the pandas resample function, example ='h', '15min', '6h'
    time_window : tuple with start-hour and end-hour, default=None
        Specify the start-time and end-time for the analysis.
        Only data within this time window will be considered.
        Both times have to be specified as string ('01:00', '06:30') or as datetime.time() objects
    Returns
    -------
    fraction : float between 0-1 with the share of the standby consumption
    """
    p_sb = standby(df, resolution, time_window)
    df = df.resample(resolution).mean()
    p_tot = df.sum()
    p_standby = p_sb.sum()
    share_standby = p_standby / p_tot
    res = share_standby.iloc[0]
    return res | 
	[
  "def",
  "share_of_standby",
  "(",
  "df",
  ",",
  "resolution",
  "=",
  "'24h'",
  ",",
  "time_window",
  "=",
  "None",
  ")",
  ":",
  "p_sb",
  "=",
  "standby",
  "(",
  "df",
  ",",
  "resolution",
  ",",
  "time_window",
  ")",
  "df",
  "=",
  "df",
  ".",
  "resample",
  "(",
  "resolution",
  ")",
  ".",
  "mean",
  "(",
  ")",
  "p_tot",
  "=",
  "df",
  ".",
  "sum",
  "(",
  ")",
  "p_standby",
  "=",
  "p_sb",
  ".",
  "sum",
  "(",
  ")",
  "share_standby",
  "=",
  "p_standby",
  "/",
  "p_tot",
  "res",
  "=",
  "share_standby",
  ".",
  "iloc",
  "[",
  "0",
  "]",
  "return",
  "res"
] | 
	Compute the share of the standby power in the total consumption.
    Parameters
    ----------
    df : pandas.DataFrame or pandas.Series
        Power (typically electricity, can be anything)
    resolution : str, default='d'
        Resolution of the computation.  Data will be resampled to this resolution (as mean) before computation
        of the minimum.
        String that can be parsed by the pandas resample function, example ='h', '15min', '6h'
    time_window : tuple with start-hour and end-hour, default=None
        Specify the start-time and end-time for the analysis.
        Only data within this time window will be considered.
        Both times have to be specified as string ('01:00', '06:30') or as datetime.time() objects
    Returns
    -------
    fraction : float between 0-1 with the share of the standby consumption | 
	[
  "Compute",
  "the",
  "share",
  "of",
  "the",
  "standby",
  "power",
  "in",
  "the",
  "total",
  "consumption",
  "."
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/analysis.py#L118-L146 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/analysis.py | 
	count_peaks | 
	def count_peaks(ts):
    """
    Toggle counter for gas boilers
    Counts the number of times the gas consumption increases with more than 3kW
    Parameters
    ----------
    ts: Pandas Series
        Gas consumption in minute resolution
    Returns
    -------
    int
    """
    on_toggles = ts.diff() > 3000
    shifted = np.logical_not(on_toggles.shift(1))
    result = on_toggles & shifted
    count = result.sum()
    return count | 
	python | 
	def count_peaks(ts):
    """
    Toggle counter for gas boilers
    Counts the number of times the gas consumption increases with more than 3kW
    Parameters
    ----------
    ts: Pandas Series
        Gas consumption in minute resolution
    Returns
    -------
    int
    """
    on_toggles = ts.diff() > 3000
    shifted = np.logical_not(on_toggles.shift(1))
    result = on_toggles & shifted
    count = result.sum()
    return count | 
	[
  "def",
  "count_peaks",
  "(",
  "ts",
  ")",
  ":",
  "on_toggles",
  "=",
  "ts",
  ".",
  "diff",
  "(",
  ")",
  ">",
  "3000",
  "shifted",
  "=",
  "np",
  ".",
  "logical_not",
  "(",
  "on_toggles",
  ".",
  "shift",
  "(",
  "1",
  ")",
  ")",
  "result",
  "=",
  "on_toggles",
  "&",
  "shifted",
  "count",
  "=",
  "result",
  ".",
  "sum",
  "(",
  ")",
  "return",
  "count"
] | 
	Toggle counter for gas boilers
    Counts the number of times the gas consumption increases with more than 3kW
    Parameters
    ----------
    ts: Pandas Series
        Gas consumption in minute resolution
    Returns
    -------
    int | 
	[
  "Toggle",
  "counter",
  "for",
  "gas",
  "boilers"
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/analysis.py#L149-L169 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/analysis.py | 
	load_factor | 
	def load_factor(ts, resolution=None, norm=None):
    """
    Calculate the ratio of input vs. norm over a given interval.
    Parameters
    ----------
    ts : pandas.Series
        timeseries
    resolution : str, optional
        interval over which to calculate the ratio
        default: resolution of the input timeseries
    norm : int | float, optional
        denominator of the ratio
        default: the maximum of the input timeseries
    Returns
    -------
    pandas.Series
    """
    if norm is None:
        norm = ts.max()
    if resolution is not None:
        ts = ts.resample(rule=resolution).mean()
    lf = ts / norm
    return lf | 
	python | 
	def load_factor(ts, resolution=None, norm=None):
    """
    Calculate the ratio of input vs. norm over a given interval.
    Parameters
    ----------
    ts : pandas.Series
        timeseries
    resolution : str, optional
        interval over which to calculate the ratio
        default: resolution of the input timeseries
    norm : int | float, optional
        denominator of the ratio
        default: the maximum of the input timeseries
    Returns
    -------
    pandas.Series
    """
    if norm is None:
        norm = ts.max()
    if resolution is not None:
        ts = ts.resample(rule=resolution).mean()
    lf = ts / norm
    return lf | 
	[
  "def",
  "load_factor",
  "(",
  "ts",
  ",",
  "resolution",
  "=",
  "None",
  ",",
  "norm",
  "=",
  "None",
  ")",
  ":",
  "if",
  "norm",
  "is",
  "None",
  ":",
  "norm",
  "=",
  "ts",
  ".",
  "max",
  "(",
  ")",
  "if",
  "resolution",
  "is",
  "not",
  "None",
  ":",
  "ts",
  "=",
  "ts",
  ".",
  "resample",
  "(",
  "rule",
  "=",
  "resolution",
  ")",
  ".",
  "mean",
  "(",
  ")",
  "lf",
  "=",
  "ts",
  "/",
  "norm",
  "return",
  "lf"
] | 
	Calculate the ratio of input vs. norm over a given interval.
    Parameters
    ----------
    ts : pandas.Series
        timeseries
    resolution : str, optional
        interval over which to calculate the ratio
        default: resolution of the input timeseries
    norm : int | float, optional
        denominator of the ratio
        default: the maximum of the input timeseries
    Returns
    -------
    pandas.Series | 
	[
  "Calculate",
  "the",
  "ratio",
  "of",
  "input",
  "vs",
  ".",
  "norm",
  "over",
  "a",
  "given",
  "interval",
  "."
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/analysis.py#L172-L199 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/besthits.py | 
	top_hits | 
	def top_hits(hits, num, column, reverse):
    """
    get top hits after sorting by column number
    """
    hits.sort(key = itemgetter(column), reverse = reverse)
    for hit in hits[0:num]:
        yield hit | 
	python | 
	def top_hits(hits, num, column, reverse):
    """
    get top hits after sorting by column number
    """
    hits.sort(key = itemgetter(column), reverse = reverse)
    for hit in hits[0:num]:
        yield hit | 
	[
  "def",
  "top_hits",
  "(",
  "hits",
  ",",
  "num",
  ",",
  "column",
  ",",
  "reverse",
  ")",
  ":",
  "hits",
  ".",
  "sort",
  "(",
  "key",
  "=",
  "itemgetter",
  "(",
  "column",
  ")",
  ",",
  "reverse",
  "=",
  "reverse",
  ")",
  "for",
  "hit",
  "in",
  "hits",
  "[",
  "0",
  ":",
  "num",
  "]",
  ":",
  "yield",
  "hit"
] | 
	get top hits after sorting by column number | 
	[
  "get",
  "top",
  "hits",
  "after",
  "sorting",
  "by",
  "column",
  "number"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/besthits.py#L17-L23 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/besthits.py | 
	numBlast_sort | 
	def numBlast_sort(blast, numHits, evalueT, bitT):
    """
    parse b6 output with sorting
    """
    header = ['#query', 'target', 'pident', 'alen', 'mismatch', 'gapopen',
              'qstart', 'qend', 'tstart', 'tend', 'evalue', 'bitscore']
    yield header
    hmm = {h:[] for h in header}
    for line in blast:
        if line.startswith('#'):
            continue
        line = line.strip().split('\t')
        # Evalue and Bitscore thresholds
        line[10], line[11] = float(line[10]), float(line[11])
        evalue, bit = line[10], line[11]
        if evalueT is not False and evalue > evalueT:
            continue
        if bitT is not False and bit < bitT:
            continue
        for i, h in zip(line, header):
            hmm[h].append(i)
    hmm = pd.DataFrame(hmm)
    for query, df in hmm.groupby(by = ['#query']):
        df = df.sort_values(by = ['bitscore'], ascending = False)
        for hit in df[header].values[0:numHits]:
            yield hit | 
	python | 
	def numBlast_sort(blast, numHits, evalueT, bitT):
    """
    parse b6 output with sorting
    """
    header = ['#query', 'target', 'pident', 'alen', 'mismatch', 'gapopen',
              'qstart', 'qend', 'tstart', 'tend', 'evalue', 'bitscore']
    yield header
    hmm = {h:[] for h in header}
    for line in blast:
        if line.startswith('#'):
            continue
        line = line.strip().split('\t')
        # Evalue and Bitscore thresholds
        line[10], line[11] = float(line[10]), float(line[11])
        evalue, bit = line[10], line[11]
        if evalueT is not False and evalue > evalueT:
            continue
        if bitT is not False and bit < bitT:
            continue
        for i, h in zip(line, header):
            hmm[h].append(i)
    hmm = pd.DataFrame(hmm)
    for query, df in hmm.groupby(by = ['#query']):
        df = df.sort_values(by = ['bitscore'], ascending = False)
        for hit in df[header].values[0:numHits]:
            yield hit | 
	[
  "def",
  "numBlast_sort",
  "(",
  "blast",
  ",",
  "numHits",
  ",",
  "evalueT",
  ",",
  "bitT",
  ")",
  ":",
  "header",
  "=",
  "[",
  "'#query'",
  ",",
  "'target'",
  ",",
  "'pident'",
  ",",
  "'alen'",
  ",",
  "'mismatch'",
  ",",
  "'gapopen'",
  ",",
  "'qstart'",
  ",",
  "'qend'",
  ",",
  "'tstart'",
  ",",
  "'tend'",
  ",",
  "'evalue'",
  ",",
  "'bitscore'",
  "]",
  "yield",
  "header",
  "hmm",
  "=",
  "{",
  "h",
  ":",
  "[",
  "]",
  "for",
  "h",
  "in",
  "header",
  "}",
  "for",
  "line",
  "in",
  "blast",
  ":",
  "if",
  "line",
  ".",
  "startswith",
  "(",
  "'#'",
  ")",
  ":",
  "continue",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  "'\\t'",
  ")",
  "# Evalue and Bitscore thresholds",
  "line",
  "[",
  "10",
  "]",
  ",",
  "line",
  "[",
  "11",
  "]",
  "=",
  "float",
  "(",
  "line",
  "[",
  "10",
  "]",
  ")",
  ",",
  "float",
  "(",
  "line",
  "[",
  "11",
  "]",
  ")",
  "evalue",
  ",",
  "bit",
  "=",
  "line",
  "[",
  "10",
  "]",
  ",",
  "line",
  "[",
  "11",
  "]",
  "if",
  "evalueT",
  "is",
  "not",
  "False",
  "and",
  "evalue",
  ">",
  "evalueT",
  ":",
  "continue",
  "if",
  "bitT",
  "is",
  "not",
  "False",
  "and",
  "bit",
  "<",
  "bitT",
  ":",
  "continue",
  "for",
  "i",
  ",",
  "h",
  "in",
  "zip",
  "(",
  "line",
  ",",
  "header",
  ")",
  ":",
  "hmm",
  "[",
  "h",
  "]",
  ".",
  "append",
  "(",
  "i",
  ")",
  "hmm",
  "=",
  "pd",
  ".",
  "DataFrame",
  "(",
  "hmm",
  ")",
  "for",
  "query",
  ",",
  "df",
  "in",
  "hmm",
  ".",
  "groupby",
  "(",
  "by",
  "=",
  "[",
  "'#query'",
  "]",
  ")",
  ":",
  "df",
  "=",
  "df",
  ".",
  "sort_values",
  "(",
  "by",
  "=",
  "[",
  "'bitscore'",
  "]",
  ",",
  "ascending",
  "=",
  "False",
  ")",
  "for",
  "hit",
  "in",
  "df",
  "[",
  "header",
  "]",
  ".",
  "values",
  "[",
  "0",
  ":",
  "numHits",
  "]",
  ":",
  "yield",
  "hit"
] | 
	parse b6 output with sorting | 
	[
  "parse",
  "b6",
  "output",
  "with",
  "sorting"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/besthits.py#L25-L50 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/besthits.py | 
	numBlast | 
	def numBlast(blast, numHits, evalueT = False, bitT = False, sort = False):
    """
    parse b6 output
    """
    if sort is True:
        for hit in numBlast_sort(blast, numHits, evalueT, bitT):
            yield hit
        return
    header = ['#query', 'target', 'pident', 'alen', 'mismatch', 'gapopen',
              'qstart', 'qend', 'tstart', 'tend', 'evalue', 'bitscore']
    yield header
    prev, hits = None, []
    for line in blast:
        line = line.strip().split('\t')
        ID = line[0]
        line[10], line[11] = float(line[10]), float(line[11])
        evalue, bit = line[10], line[11]
        if ID != prev:
            if len(hits) > 0:
                # column is 1 + line index
                for hit in top_hits(hits, numHits, 11, True):
                    yield hit
            hits = []
        if evalueT == False and bitT == False:
            hits.append(line)
        elif evalue <= evalueT and bitT == False:
            hits.append(line)
        elif evalue <= evalueT and bit >= bitT:
            hits.append(line)
        elif evalueT == False and bit >= bitT:
            hits.append(line)
        prev = ID
    for hit in top_hits(hits, numHits, 11, True):
        yield hit | 
	python | 
	def numBlast(blast, numHits, evalueT = False, bitT = False, sort = False):
    """
    parse b6 output
    """
    if sort is True:
        for hit in numBlast_sort(blast, numHits, evalueT, bitT):
            yield hit
        return
    header = ['#query', 'target', 'pident', 'alen', 'mismatch', 'gapopen',
              'qstart', 'qend', 'tstart', 'tend', 'evalue', 'bitscore']
    yield header
    prev, hits = None, []
    for line in blast:
        line = line.strip().split('\t')
        ID = line[0]
        line[10], line[11] = float(line[10]), float(line[11])
        evalue, bit = line[10], line[11]
        if ID != prev:
            if len(hits) > 0:
                # column is 1 + line index
                for hit in top_hits(hits, numHits, 11, True):
                    yield hit
            hits = []
        if evalueT == False and bitT == False:
            hits.append(line)
        elif evalue <= evalueT and bitT == False:
            hits.append(line)
        elif evalue <= evalueT and bit >= bitT:
            hits.append(line)
        elif evalueT == False and bit >= bitT:
            hits.append(line)
        prev = ID
    for hit in top_hits(hits, numHits, 11, True):
        yield hit | 
	[
  "def",
  "numBlast",
  "(",
  "blast",
  ",",
  "numHits",
  ",",
  "evalueT",
  "=",
  "False",
  ",",
  "bitT",
  "=",
  "False",
  ",",
  "sort",
  "=",
  "False",
  ")",
  ":",
  "if",
  "sort",
  "is",
  "True",
  ":",
  "for",
  "hit",
  "in",
  "numBlast_sort",
  "(",
  "blast",
  ",",
  "numHits",
  ",",
  "evalueT",
  ",",
  "bitT",
  ")",
  ":",
  "yield",
  "hit",
  "return",
  "header",
  "=",
  "[",
  "'#query'",
  ",",
  "'target'",
  ",",
  "'pident'",
  ",",
  "'alen'",
  ",",
  "'mismatch'",
  ",",
  "'gapopen'",
  ",",
  "'qstart'",
  ",",
  "'qend'",
  ",",
  "'tstart'",
  ",",
  "'tend'",
  ",",
  "'evalue'",
  ",",
  "'bitscore'",
  "]",
  "yield",
  "header",
  "prev",
  ",",
  "hits",
  "=",
  "None",
  ",",
  "[",
  "]",
  "for",
  "line",
  "in",
  "blast",
  ":",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  "'\\t'",
  ")",
  "ID",
  "=",
  "line",
  "[",
  "0",
  "]",
  "line",
  "[",
  "10",
  "]",
  ",",
  "line",
  "[",
  "11",
  "]",
  "=",
  "float",
  "(",
  "line",
  "[",
  "10",
  "]",
  ")",
  ",",
  "float",
  "(",
  "line",
  "[",
  "11",
  "]",
  ")",
  "evalue",
  ",",
  "bit",
  "=",
  "line",
  "[",
  "10",
  "]",
  ",",
  "line",
  "[",
  "11",
  "]",
  "if",
  "ID",
  "!=",
  "prev",
  ":",
  "if",
  "len",
  "(",
  "hits",
  ")",
  ">",
  "0",
  ":",
  "# column is 1 + line index",
  "for",
  "hit",
  "in",
  "top_hits",
  "(",
  "hits",
  ",",
  "numHits",
  ",",
  "11",
  ",",
  "True",
  ")",
  ":",
  "yield",
  "hit",
  "hits",
  "=",
  "[",
  "]",
  "if",
  "evalueT",
  "==",
  "False",
  "and",
  "bitT",
  "==",
  "False",
  ":",
  "hits",
  ".",
  "append",
  "(",
  "line",
  ")",
  "elif",
  "evalue",
  "<=",
  "evalueT",
  "and",
  "bitT",
  "==",
  "False",
  ":",
  "hits",
  ".",
  "append",
  "(",
  "line",
  ")",
  "elif",
  "evalue",
  "<=",
  "evalueT",
  "and",
  "bit",
  ">=",
  "bitT",
  ":",
  "hits",
  ".",
  "append",
  "(",
  "line",
  ")",
  "elif",
  "evalueT",
  "==",
  "False",
  "and",
  "bit",
  ">=",
  "bitT",
  ":",
  "hits",
  ".",
  "append",
  "(",
  "line",
  ")",
  "prev",
  "=",
  "ID",
  "for",
  "hit",
  "in",
  "top_hits",
  "(",
  "hits",
  ",",
  "numHits",
  ",",
  "11",
  ",",
  "True",
  ")",
  ":",
  "yield",
  "hit"
] | 
	parse b6 output | 
	[
  "parse",
  "b6",
  "output"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/besthits.py#L52-L85 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/besthits.py | 
	numDomtblout | 
	def numDomtblout(domtblout, numHits, evalueT, bitT, sort):
    """
    parse hmm domain table output
    this version is faster but does not work unless the table is sorted
    """
    if sort is True:
        for hit in numDomtblout_sort(domtblout, numHits, evalueT, bitT):
            yield hit
        return
    header = ['#target name', 'target accession', 'tlen',
              'query name', 'query accession', 'qlen',
              'full E-value', 'full score', 'full bias',
              'domain #', '# domains',
              'domain c-Evalue', 'domain i-Evalue', 'domain score', 'domain bias',
              'hmm from', 'hmm to', 'seq from', 'seq to', 'env from', 'env to',
              'acc', 'target description']
    yield header
    prev, hits = None, []
    for line in domtblout:
        if line.startswith('#'):
            continue
        # parse line and get description
        line = line.strip().split()
        desc = ' '.join(line[18:])
        line = line[0:18]
        line.append(desc)
        # create ID based on query name and domain number
        ID = line[0] + line[9]
        # domain c-Evalue and domain score thresholds
        line[11], line[13] = float(line[11]), float(line[13])
        evalue, bitscore = line[11], line[13]
        line[11], line[13] = evalue, bitscore
        if ID != prev:
            if len(hits) > 0:
                for hit in top_hits(hits, numHits, 13, True):
                    yield hit
            hits = []
        if evalueT == False and bitT == False:
            hits.append(line)
        elif evalue <= evalueT and bitT == False:
            hits.append(line)
        elif evalue <= evalueT and bit >= bitT:
            hits.append(line)
        elif evalueT == False and bit >= bitT:
            hits.append(line)
        prev = ID
    for hit in top_hits(hits, numHits, 13, True):
        yield hit | 
	python | 
	def numDomtblout(domtblout, numHits, evalueT, bitT, sort):
    """
    parse hmm domain table output
    this version is faster but does not work unless the table is sorted
    """
    if sort is True:
        for hit in numDomtblout_sort(domtblout, numHits, evalueT, bitT):
            yield hit
        return
    header = ['#target name', 'target accession', 'tlen',
              'query name', 'query accession', 'qlen',
              'full E-value', 'full score', 'full bias',
              'domain #', '# domains',
              'domain c-Evalue', 'domain i-Evalue', 'domain score', 'domain bias',
              'hmm from', 'hmm to', 'seq from', 'seq to', 'env from', 'env to',
              'acc', 'target description']
    yield header
    prev, hits = None, []
    for line in domtblout:
        if line.startswith('#'):
            continue
        # parse line and get description
        line = line.strip().split()
        desc = ' '.join(line[18:])
        line = line[0:18]
        line.append(desc)
        # create ID based on query name and domain number
        ID = line[0] + line[9]
        # domain c-Evalue and domain score thresholds
        line[11], line[13] = float(line[11]), float(line[13])
        evalue, bitscore = line[11], line[13]
        line[11], line[13] = evalue, bitscore
        if ID != prev:
            if len(hits) > 0:
                for hit in top_hits(hits, numHits, 13, True):
                    yield hit
            hits = []
        if evalueT == False and bitT == False:
            hits.append(line)
        elif evalue <= evalueT and bitT == False:
            hits.append(line)
        elif evalue <= evalueT and bit >= bitT:
            hits.append(line)
        elif evalueT == False and bit >= bitT:
            hits.append(line)
        prev = ID
    for hit in top_hits(hits, numHits, 13, True):
        yield hit | 
	[
  "def",
  "numDomtblout",
  "(",
  "domtblout",
  ",",
  "numHits",
  ",",
  "evalueT",
  ",",
  "bitT",
  ",",
  "sort",
  ")",
  ":",
  "if",
  "sort",
  "is",
  "True",
  ":",
  "for",
  "hit",
  "in",
  "numDomtblout_sort",
  "(",
  "domtblout",
  ",",
  "numHits",
  ",",
  "evalueT",
  ",",
  "bitT",
  ")",
  ":",
  "yield",
  "hit",
  "return",
  "header",
  "=",
  "[",
  "'#target name'",
  ",",
  "'target accession'",
  ",",
  "'tlen'",
  ",",
  "'query name'",
  ",",
  "'query accession'",
  ",",
  "'qlen'",
  ",",
  "'full E-value'",
  ",",
  "'full score'",
  ",",
  "'full bias'",
  ",",
  "'domain #'",
  ",",
  "'# domains'",
  ",",
  "'domain c-Evalue'",
  ",",
  "'domain i-Evalue'",
  ",",
  "'domain score'",
  ",",
  "'domain bias'",
  ",",
  "'hmm from'",
  ",",
  "'hmm to'",
  ",",
  "'seq from'",
  ",",
  "'seq to'",
  ",",
  "'env from'",
  ",",
  "'env to'",
  ",",
  "'acc'",
  ",",
  "'target description'",
  "]",
  "yield",
  "header",
  "prev",
  ",",
  "hits",
  "=",
  "None",
  ",",
  "[",
  "]",
  "for",
  "line",
  "in",
  "domtblout",
  ":",
  "if",
  "line",
  ".",
  "startswith",
  "(",
  "'#'",
  ")",
  ":",
  "continue",
  "# parse line and get description",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  ")",
  "desc",
  "=",
  "' '",
  ".",
  "join",
  "(",
  "line",
  "[",
  "18",
  ":",
  "]",
  ")",
  "line",
  "=",
  "line",
  "[",
  "0",
  ":",
  "18",
  "]",
  "line",
  ".",
  "append",
  "(",
  "desc",
  ")",
  "# create ID based on query name and domain number",
  "ID",
  "=",
  "line",
  "[",
  "0",
  "]",
  "+",
  "line",
  "[",
  "9",
  "]",
  "# domain c-Evalue and domain score thresholds",
  "line",
  "[",
  "11",
  "]",
  ",",
  "line",
  "[",
  "13",
  "]",
  "=",
  "float",
  "(",
  "line",
  "[",
  "11",
  "]",
  ")",
  ",",
  "float",
  "(",
  "line",
  "[",
  "13",
  "]",
  ")",
  "evalue",
  ",",
  "bitscore",
  "=",
  "line",
  "[",
  "11",
  "]",
  ",",
  "line",
  "[",
  "13",
  "]",
  "line",
  "[",
  "11",
  "]",
  ",",
  "line",
  "[",
  "13",
  "]",
  "=",
  "evalue",
  ",",
  "bitscore",
  "if",
  "ID",
  "!=",
  "prev",
  ":",
  "if",
  "len",
  "(",
  "hits",
  ")",
  ">",
  "0",
  ":",
  "for",
  "hit",
  "in",
  "top_hits",
  "(",
  "hits",
  ",",
  "numHits",
  ",",
  "13",
  ",",
  "True",
  ")",
  ":",
  "yield",
  "hit",
  "hits",
  "=",
  "[",
  "]",
  "if",
  "evalueT",
  "==",
  "False",
  "and",
  "bitT",
  "==",
  "False",
  ":",
  "hits",
  ".",
  "append",
  "(",
  "line",
  ")",
  "elif",
  "evalue",
  "<=",
  "evalueT",
  "and",
  "bitT",
  "==",
  "False",
  ":",
  "hits",
  ".",
  "append",
  "(",
  "line",
  ")",
  "elif",
  "evalue",
  "<=",
  "evalueT",
  "and",
  "bit",
  ">=",
  "bitT",
  ":",
  "hits",
  ".",
  "append",
  "(",
  "line",
  ")",
  "elif",
  "evalueT",
  "==",
  "False",
  "and",
  "bit",
  ">=",
  "bitT",
  ":",
  "hits",
  ".",
  "append",
  "(",
  "line",
  ")",
  "prev",
  "=",
  "ID",
  "for",
  "hit",
  "in",
  "top_hits",
  "(",
  "hits",
  ",",
  "numHits",
  ",",
  "13",
  ",",
  "True",
  ")",
  ":",
  "yield",
  "hit"
] | 
	parse hmm domain table output
    this version is faster but does not work unless the table is sorted | 
	[
  "parse",
  "hmm",
  "domain",
  "table",
  "output",
  "this",
  "version",
  "is",
  "faster",
  "but",
  "does",
  "not",
  "work",
  "unless",
  "the",
  "table",
  "is",
  "sorted"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/besthits.py#L121-L168 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/stockholm2fa.py | 
	stock2fa | 
	def stock2fa(stock):
    """
    convert stockholm to fasta
    """
    seqs = {}
    for line in stock:
        if line.startswith('#') is False and line.startswith(' ') is False and len(line) > 3:
            id, seq = line.strip().split()
            id = id.rsplit('/', 1)[0]
            id = re.split('[0-9]\|', id, 1)[-1]
            if id not in seqs:
                seqs[id] = []
            seqs[id].append(seq)
        if line.startswith('//'):
            break
    return seqs | 
	python | 
	def stock2fa(stock):
    """
    convert stockholm to fasta
    """
    seqs = {}
    for line in stock:
        if line.startswith('#') is False and line.startswith(' ') is False and len(line) > 3:
            id, seq = line.strip().split()
            id = id.rsplit('/', 1)[0]
            id = re.split('[0-9]\|', id, 1)[-1]
            if id not in seqs:
                seqs[id] = []
            seqs[id].append(seq)
        if line.startswith('//'):
            break
    return seqs | 
	[
  "def",
  "stock2fa",
  "(",
  "stock",
  ")",
  ":",
  "seqs",
  "=",
  "{",
  "}",
  "for",
  "line",
  "in",
  "stock",
  ":",
  "if",
  "line",
  ".",
  "startswith",
  "(",
  "'#'",
  ")",
  "is",
  "False",
  "and",
  "line",
  ".",
  "startswith",
  "(",
  "' '",
  ")",
  "is",
  "False",
  "and",
  "len",
  "(",
  "line",
  ")",
  ">",
  "3",
  ":",
  "id",
  ",",
  "seq",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  ")",
  "id",
  "=",
  "id",
  ".",
  "rsplit",
  "(",
  "'/'",
  ",",
  "1",
  ")",
  "[",
  "0",
  "]",
  "id",
  "=",
  "re",
  ".",
  "split",
  "(",
  "'[0-9]\\|'",
  ",",
  "id",
  ",",
  "1",
  ")",
  "[",
  "-",
  "1",
  "]",
  "if",
  "id",
  "not",
  "in",
  "seqs",
  ":",
  "seqs",
  "[",
  "id",
  "]",
  "=",
  "[",
  "]",
  "seqs",
  "[",
  "id",
  "]",
  ".",
  "append",
  "(",
  "seq",
  ")",
  "if",
  "line",
  ".",
  "startswith",
  "(",
  "'//'",
  ")",
  ":",
  "break",
  "return",
  "seqs"
] | 
	convert stockholm to fasta | 
	[
  "convert",
  "stockholm",
  "to",
  "fasta"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/stockholm2fa.py#L11-L26 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/utils.py | 
	week_schedule | 
	def week_schedule(index, on_time=None, off_time=None, off_days=None):
    """ Return boolean time series following given week schedule.
    Parameters
    ----------
    index : pandas.DatetimeIndex
        Datetime index
    on_time : str or datetime.time
        Daily opening time. Default: '09:00'
    off_time : str or datetime.time
        Daily closing time. Default: '17:00'
    off_days : list of str
        List of weekdays. Default: ['Sunday', 'Monday']
    Returns
    -------
    pandas.Series of bool
        True when on, False otherwise for given datetime index
    Examples
    --------
    >>> import pandas as pd
    >>> from opengrid.library.utils import week_schedule
    >>> index = pd.date_range('20170701', '20170710', freq='H')
    >>> week_schedule(index)
    """
    if on_time is None:
        on_time = '9:00'
    if off_time is None:
        off_time = '17:00'
    if off_days is None:
        off_days = ['Sunday', 'Monday']
    if not isinstance(on_time, datetime.time):
        on_time = pd.to_datetime(on_time, format='%H:%M').time()
    if not isinstance(off_time, datetime.time):
        off_time = pd.to_datetime(off_time, format='%H:%M').time()
    times = (index.time >= on_time) & (index.time < off_time) & (~index.weekday_name.isin(off_days))
    return pd.Series(times, index=index) | 
	python | 
	def week_schedule(index, on_time=None, off_time=None, off_days=None):
    """ Return boolean time series following given week schedule.
    Parameters
    ----------
    index : pandas.DatetimeIndex
        Datetime index
    on_time : str or datetime.time
        Daily opening time. Default: '09:00'
    off_time : str or datetime.time
        Daily closing time. Default: '17:00'
    off_days : list of str
        List of weekdays. Default: ['Sunday', 'Monday']
    Returns
    -------
    pandas.Series of bool
        True when on, False otherwise for given datetime index
    Examples
    --------
    >>> import pandas as pd
    >>> from opengrid.library.utils import week_schedule
    >>> index = pd.date_range('20170701', '20170710', freq='H')
    >>> week_schedule(index)
    """
    if on_time is None:
        on_time = '9:00'
    if off_time is None:
        off_time = '17:00'
    if off_days is None:
        off_days = ['Sunday', 'Monday']
    if not isinstance(on_time, datetime.time):
        on_time = pd.to_datetime(on_time, format='%H:%M').time()
    if not isinstance(off_time, datetime.time):
        off_time = pd.to_datetime(off_time, format='%H:%M').time()
    times = (index.time >= on_time) & (index.time < off_time) & (~index.weekday_name.isin(off_days))
    return pd.Series(times, index=index) | 
	[
  "def",
  "week_schedule",
  "(",
  "index",
  ",",
  "on_time",
  "=",
  "None",
  ",",
  "off_time",
  "=",
  "None",
  ",",
  "off_days",
  "=",
  "None",
  ")",
  ":",
  "if",
  "on_time",
  "is",
  "None",
  ":",
  "on_time",
  "=",
  "'9:00'",
  "if",
  "off_time",
  "is",
  "None",
  ":",
  "off_time",
  "=",
  "'17:00'",
  "if",
  "off_days",
  "is",
  "None",
  ":",
  "off_days",
  "=",
  "[",
  "'Sunday'",
  ",",
  "'Monday'",
  "]",
  "if",
  "not",
  "isinstance",
  "(",
  "on_time",
  ",",
  "datetime",
  ".",
  "time",
  ")",
  ":",
  "on_time",
  "=",
  "pd",
  ".",
  "to_datetime",
  "(",
  "on_time",
  ",",
  "format",
  "=",
  "'%H:%M'",
  ")",
  ".",
  "time",
  "(",
  ")",
  "if",
  "not",
  "isinstance",
  "(",
  "off_time",
  ",",
  "datetime",
  ".",
  "time",
  ")",
  ":",
  "off_time",
  "=",
  "pd",
  ".",
  "to_datetime",
  "(",
  "off_time",
  ",",
  "format",
  "=",
  "'%H:%M'",
  ")",
  ".",
  "time",
  "(",
  ")",
  "times",
  "=",
  "(",
  "index",
  ".",
  "time",
  ">=",
  "on_time",
  ")",
  "&",
  "(",
  "index",
  ".",
  "time",
  "<",
  "off_time",
  ")",
  "&",
  "(",
  "~",
  "index",
  ".",
  "weekday_name",
  ".",
  "isin",
  "(",
  "off_days",
  ")",
  ")",
  "return",
  "pd",
  ".",
  "Series",
  "(",
  "times",
  ",",
  "index",
  "=",
  "index",
  ")"
] | 
	Return boolean time series following given week schedule.
    Parameters
    ----------
    index : pandas.DatetimeIndex
        Datetime index
    on_time : str or datetime.time
        Daily opening time. Default: '09:00'
    off_time : str or datetime.time
        Daily closing time. Default: '17:00'
    off_days : list of str
        List of weekdays. Default: ['Sunday', 'Monday']
    Returns
    -------
    pandas.Series of bool
        True when on, False otherwise for given datetime index
    Examples
    --------
    >>> import pandas as pd
    >>> from opengrid.library.utils import week_schedule
    >>> index = pd.date_range('20170701', '20170710', freq='H')
    >>> week_schedule(index) | 
	[
  "Return",
  "boolean",
  "time",
  "series",
  "following",
  "given",
  "week",
  "schedule",
  "."
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/utils.py#L10-L47 | 
	train | 
| 
	opengridcc/opengrid | 
	opengrid/library/plotting.py | 
	carpet | 
	def carpet(timeseries, **kwargs):
    """
    Draw a carpet plot of a pandas timeseries.
    The carpet plot reads like a letter. Every day one line is added to the
    bottom of the figure, minute for minute moving from left (morning) to right
    (evening).
    The color denotes the level of consumption and is scaled logarithmically.
    If vmin and vmax are not provided as inputs, the minimum and maximum of the
    colorbar represent the minimum and maximum of the (resampled) timeseries.
    Parameters
    ----------
    timeseries : pandas.Series
    vmin, vmax : If not None, either or both of these values determine the range
    of the z axis. If None, the range is given by the minimum and/or maximum
    of the (resampled) timeseries.
    zlabel, title : If not None, these determine the labels of z axis and/or
    title. If None, the name of the timeseries is used if defined.
    cmap : matplotlib.cm instance, default coolwarm
    Examples
    --------
    >>> import numpy as np
    >>> import pandas as pd
    >>> from opengrid.library import plotting
    >>> plt = plotting.plot_style()
    >>> index = pd.date_range('2015-1-1','2015-12-31',freq='h')
    >>> ser = pd.Series(np.random.normal(size=len(index)), index=index, name='abc')
    >>> im = plotting.carpet(ser)
    """
    # define optional input parameters
    cmap = kwargs.pop('cmap', cm.coolwarm)
    norm = kwargs.pop('norm', LogNorm())
    interpolation = kwargs.pop('interpolation', 'nearest')
    cblabel = kwargs.pop('zlabel', timeseries.name if timeseries.name else '')
    title = kwargs.pop('title', 'carpet plot: ' + timeseries.name if timeseries.name else '')
    # data preparation
    if timeseries.dropna().empty:
        print('skipped {} - no data'.format(title))
        return
    ts = timeseries.resample('15min').interpolate()
    vmin = max(0.1, kwargs.pop('vmin', ts[ts > 0].min()))
    vmax = max(vmin, kwargs.pop('vmax', ts.quantile(.999)))
    # convert to dataframe with date as index and time as columns by
    # first replacing the index by a MultiIndex
    mpldatetimes = date2num(ts.index.to_pydatetime())
    ts.index = pd.MultiIndex.from_arrays(
        [np.floor(mpldatetimes), 2 + mpldatetimes % 1])  # '2 +': matplotlib bug workaround.
    # and then unstacking the second index level to columns
    df = ts.unstack()
    # data plotting
    fig, ax = plt.subplots()
    # define the extent of the axes (remark the +- 0.5  for the y axis in order to obtain aligned date ticks)
    extent = [df.columns[0], df.columns[-1], df.index[-1] + 0.5, df.index[0] - 0.5]
    im = plt.imshow(df, vmin=vmin, vmax=vmax, extent=extent, cmap=cmap, aspect='auto', norm=norm,
                    interpolation=interpolation, **kwargs)
    # figure formatting
    # x axis
    ax.xaxis_date()
    ax.xaxis.set_major_locator(HourLocator(interval=2))
    ax.xaxis.set_major_formatter(DateFormatter('%H:%M'))
    ax.xaxis.grid(True)
    plt.xlabel('UTC Time')
    # y axis
    ax.yaxis_date()
    dmin, dmax = ax.yaxis.get_data_interval()
    number_of_days = (num2date(dmax) - num2date(dmin)).days
    # AutoDateLocator is not suited in case few data is available
    if abs(number_of_days) <= 35:
        ax.yaxis.set_major_locator(DayLocator())
    else:
        ax.yaxis.set_major_locator(AutoDateLocator())
    ax.yaxis.set_major_formatter(DateFormatter("%a, %d %b %Y"))
    # plot colorbar
    cbticks = np.logspace(np.log10(vmin), np.log10(vmax), 11, endpoint=True)
    cb = plt.colorbar(format='%.0f', ticks=cbticks)
    cb.set_label(cblabel)
    # plot title
    plt.title(title)
    return im | 
	python | 
	def carpet(timeseries, **kwargs):
    """
    Draw a carpet plot of a pandas timeseries.
    The carpet plot reads like a letter. Every day one line is added to the
    bottom of the figure, minute for minute moving from left (morning) to right
    (evening).
    The color denotes the level of consumption and is scaled logarithmically.
    If vmin and vmax are not provided as inputs, the minimum and maximum of the
    colorbar represent the minimum and maximum of the (resampled) timeseries.
    Parameters
    ----------
    timeseries : pandas.Series
    vmin, vmax : If not None, either or both of these values determine the range
    of the z axis. If None, the range is given by the minimum and/or maximum
    of the (resampled) timeseries.
    zlabel, title : If not None, these determine the labels of z axis and/or
    title. If None, the name of the timeseries is used if defined.
    cmap : matplotlib.cm instance, default coolwarm
    Examples
    --------
    >>> import numpy as np
    >>> import pandas as pd
    >>> from opengrid.library import plotting
    >>> plt = plotting.plot_style()
    >>> index = pd.date_range('2015-1-1','2015-12-31',freq='h')
    >>> ser = pd.Series(np.random.normal(size=len(index)), index=index, name='abc')
    >>> im = plotting.carpet(ser)
    """
    # define optional input parameters
    cmap = kwargs.pop('cmap', cm.coolwarm)
    norm = kwargs.pop('norm', LogNorm())
    interpolation = kwargs.pop('interpolation', 'nearest')
    cblabel = kwargs.pop('zlabel', timeseries.name if timeseries.name else '')
    title = kwargs.pop('title', 'carpet plot: ' + timeseries.name if timeseries.name else '')
    # data preparation
    if timeseries.dropna().empty:
        print('skipped {} - no data'.format(title))
        return
    ts = timeseries.resample('15min').interpolate()
    vmin = max(0.1, kwargs.pop('vmin', ts[ts > 0].min()))
    vmax = max(vmin, kwargs.pop('vmax', ts.quantile(.999)))
    # convert to dataframe with date as index and time as columns by
    # first replacing the index by a MultiIndex
    mpldatetimes = date2num(ts.index.to_pydatetime())
    ts.index = pd.MultiIndex.from_arrays(
        [np.floor(mpldatetimes), 2 + mpldatetimes % 1])  # '2 +': matplotlib bug workaround.
    # and then unstacking the second index level to columns
    df = ts.unstack()
    # data plotting
    fig, ax = plt.subplots()
    # define the extent of the axes (remark the +- 0.5  for the y axis in order to obtain aligned date ticks)
    extent = [df.columns[0], df.columns[-1], df.index[-1] + 0.5, df.index[0] - 0.5]
    im = plt.imshow(df, vmin=vmin, vmax=vmax, extent=extent, cmap=cmap, aspect='auto', norm=norm,
                    interpolation=interpolation, **kwargs)
    # figure formatting
    # x axis
    ax.xaxis_date()
    ax.xaxis.set_major_locator(HourLocator(interval=2))
    ax.xaxis.set_major_formatter(DateFormatter('%H:%M'))
    ax.xaxis.grid(True)
    plt.xlabel('UTC Time')
    # y axis
    ax.yaxis_date()
    dmin, dmax = ax.yaxis.get_data_interval()
    number_of_days = (num2date(dmax) - num2date(dmin)).days
    # AutoDateLocator is not suited in case few data is available
    if abs(number_of_days) <= 35:
        ax.yaxis.set_major_locator(DayLocator())
    else:
        ax.yaxis.set_major_locator(AutoDateLocator())
    ax.yaxis.set_major_formatter(DateFormatter("%a, %d %b %Y"))
    # plot colorbar
    cbticks = np.logspace(np.log10(vmin), np.log10(vmax), 11, endpoint=True)
    cb = plt.colorbar(format='%.0f', ticks=cbticks)
    cb.set_label(cblabel)
    # plot title
    plt.title(title)
    return im | 
	[
  "def",
  "carpet",
  "(",
  "timeseries",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ":",
  "# define optional input parameters",
  "cmap",
  "=",
  "kwargs",
  ".",
  "pop",
  "(",
  "'cmap'",
  ",",
  "cm",
  ".",
  "coolwarm",
  ")",
  "norm",
  "=",
  "kwargs",
  ".",
  "pop",
  "(",
  "'norm'",
  ",",
  "LogNorm",
  "(",
  ")",
  ")",
  "interpolation",
  "=",
  "kwargs",
  ".",
  "pop",
  "(",
  "'interpolation'",
  ",",
  "'nearest'",
  ")",
  "cblabel",
  "=",
  "kwargs",
  ".",
  "pop",
  "(",
  "'zlabel'",
  ",",
  "timeseries",
  ".",
  "name",
  "if",
  "timeseries",
  ".",
  "name",
  "else",
  "''",
  ")",
  "title",
  "=",
  "kwargs",
  ".",
  "pop",
  "(",
  "'title'",
  ",",
  "'carpet plot: '",
  "+",
  "timeseries",
  ".",
  "name",
  "if",
  "timeseries",
  ".",
  "name",
  "else",
  "''",
  ")",
  "# data preparation",
  "if",
  "timeseries",
  ".",
  "dropna",
  "(",
  ")",
  ".",
  "empty",
  ":",
  "print",
  "(",
  "'skipped {} - no data'",
  ".",
  "format",
  "(",
  "title",
  ")",
  ")",
  "return",
  "ts",
  "=",
  "timeseries",
  ".",
  "resample",
  "(",
  "'15min'",
  ")",
  ".",
  "interpolate",
  "(",
  ")",
  "vmin",
  "=",
  "max",
  "(",
  "0.1",
  ",",
  "kwargs",
  ".",
  "pop",
  "(",
  "'vmin'",
  ",",
  "ts",
  "[",
  "ts",
  ">",
  "0",
  "]",
  ".",
  "min",
  "(",
  ")",
  ")",
  ")",
  "vmax",
  "=",
  "max",
  "(",
  "vmin",
  ",",
  "kwargs",
  ".",
  "pop",
  "(",
  "'vmax'",
  ",",
  "ts",
  ".",
  "quantile",
  "(",
  ".999",
  ")",
  ")",
  ")",
  "# convert to dataframe with date as index and time as columns by",
  "# first replacing the index by a MultiIndex",
  "mpldatetimes",
  "=",
  "date2num",
  "(",
  "ts",
  ".",
  "index",
  ".",
  "to_pydatetime",
  "(",
  ")",
  ")",
  "ts",
  ".",
  "index",
  "=",
  "pd",
  ".",
  "MultiIndex",
  ".",
  "from_arrays",
  "(",
  "[",
  "np",
  ".",
  "floor",
  "(",
  "mpldatetimes",
  ")",
  ",",
  "2",
  "+",
  "mpldatetimes",
  "%",
  "1",
  "]",
  ")",
  "# '2 +': matplotlib bug workaround.",
  "# and then unstacking the second index level to columns",
  "df",
  "=",
  "ts",
  ".",
  "unstack",
  "(",
  ")",
  "# data plotting",
  "fig",
  ",",
  "ax",
  "=",
  "plt",
  ".",
  "subplots",
  "(",
  ")",
  "# define the extent of the axes (remark the +- 0.5  for the y axis in order to obtain aligned date ticks)",
  "extent",
  "=",
  "[",
  "df",
  ".",
  "columns",
  "[",
  "0",
  "]",
  ",",
  "df",
  ".",
  "columns",
  "[",
  "-",
  "1",
  "]",
  ",",
  "df",
  ".",
  "index",
  "[",
  "-",
  "1",
  "]",
  "+",
  "0.5",
  ",",
  "df",
  ".",
  "index",
  "[",
  "0",
  "]",
  "-",
  "0.5",
  "]",
  "im",
  "=",
  "plt",
  ".",
  "imshow",
  "(",
  "df",
  ",",
  "vmin",
  "=",
  "vmin",
  ",",
  "vmax",
  "=",
  "vmax",
  ",",
  "extent",
  "=",
  "extent",
  ",",
  "cmap",
  "=",
  "cmap",
  ",",
  "aspect",
  "=",
  "'auto'",
  ",",
  "norm",
  "=",
  "norm",
  ",",
  "interpolation",
  "=",
  "interpolation",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  "# figure formatting",
  "# x axis",
  "ax",
  ".",
  "xaxis_date",
  "(",
  ")",
  "ax",
  ".",
  "xaxis",
  ".",
  "set_major_locator",
  "(",
  "HourLocator",
  "(",
  "interval",
  "=",
  "2",
  ")",
  ")",
  "ax",
  ".",
  "xaxis",
  ".",
  "set_major_formatter",
  "(",
  "DateFormatter",
  "(",
  "'%H:%M'",
  ")",
  ")",
  "ax",
  ".",
  "xaxis",
  ".",
  "grid",
  "(",
  "True",
  ")",
  "plt",
  ".",
  "xlabel",
  "(",
  "'UTC Time'",
  ")",
  "# y axis",
  "ax",
  ".",
  "yaxis_date",
  "(",
  ")",
  "dmin",
  ",",
  "dmax",
  "=",
  "ax",
  ".",
  "yaxis",
  ".",
  "get_data_interval",
  "(",
  ")",
  "number_of_days",
  "=",
  "(",
  "num2date",
  "(",
  "dmax",
  ")",
  "-",
  "num2date",
  "(",
  "dmin",
  ")",
  ")",
  ".",
  "days",
  "# AutoDateLocator is not suited in case few data is available",
  "if",
  "abs",
  "(",
  "number_of_days",
  ")",
  "<=",
  "35",
  ":",
  "ax",
  ".",
  "yaxis",
  ".",
  "set_major_locator",
  "(",
  "DayLocator",
  "(",
  ")",
  ")",
  "else",
  ":",
  "ax",
  ".",
  "yaxis",
  ".",
  "set_major_locator",
  "(",
  "AutoDateLocator",
  "(",
  ")",
  ")",
  "ax",
  ".",
  "yaxis",
  ".",
  "set_major_formatter",
  "(",
  "DateFormatter",
  "(",
  "\"%a, %d %b %Y\"",
  ")",
  ")",
  "# plot colorbar",
  "cbticks",
  "=",
  "np",
  ".",
  "logspace",
  "(",
  "np",
  ".",
  "log10",
  "(",
  "vmin",
  ")",
  ",",
  "np",
  ".",
  "log10",
  "(",
  "vmax",
  ")",
  ",",
  "11",
  ",",
  "endpoint",
  "=",
  "True",
  ")",
  "cb",
  "=",
  "plt",
  ".",
  "colorbar",
  "(",
  "format",
  "=",
  "'%.0f'",
  ",",
  "ticks",
  "=",
  "cbticks",
  ")",
  "cb",
  ".",
  "set_label",
  "(",
  "cblabel",
  ")",
  "# plot title",
  "plt",
  ".",
  "title",
  "(",
  "title",
  ")",
  "return",
  "im"
] | 
	Draw a carpet plot of a pandas timeseries.
    The carpet plot reads like a letter. Every day one line is added to the
    bottom of the figure, minute for minute moving from left (morning) to right
    (evening).
    The color denotes the level of consumption and is scaled logarithmically.
    If vmin and vmax are not provided as inputs, the minimum and maximum of the
    colorbar represent the minimum and maximum of the (resampled) timeseries.
    Parameters
    ----------
    timeseries : pandas.Series
    vmin, vmax : If not None, either or both of these values determine the range
    of the z axis. If None, the range is given by the minimum and/or maximum
    of the (resampled) timeseries.
    zlabel, title : If not None, these determine the labels of z axis and/or
    title. If None, the name of the timeseries is used if defined.
    cmap : matplotlib.cm instance, default coolwarm
    Examples
    --------
    >>> import numpy as np
    >>> import pandas as pd
    >>> from opengrid.library import plotting
    >>> plt = plotting.plot_style()
    >>> index = pd.date_range('2015-1-1','2015-12-31',freq='h')
    >>> ser = pd.Series(np.random.normal(size=len(index)), index=index, name='abc')
    >>> im = plotting.carpet(ser) | 
	[
  "Draw",
  "a",
  "carpet",
  "plot",
  "of",
  "a",
  "pandas",
  "timeseries",
  "."
] | 
	69b8da3c8fcea9300226c45ef0628cd6d4307651 | 
	https://github.com/opengridcc/opengrid/blob/69b8da3c8fcea9300226c45ef0628cd6d4307651/opengrid/library/plotting.py#L34-L125 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	calc_pident_ignore_gaps | 
	def calc_pident_ignore_gaps(a, b):
    """
    calculate percent identity
    """
    m = 0 # matches
    mm = 0 # mismatches
    for A, B in zip(list(a), list(b)):
        if A == '-' or A == '.' or B == '-' or B == '.':
            continue
        if A == B:
            m += 1
        else:
            mm += 1
    try:
        return float(float(m)/float((m + mm))) * 100
    except:
        return 0 | 
	python | 
	def calc_pident_ignore_gaps(a, b):
    """
    calculate percent identity
    """
    m = 0 # matches
    mm = 0 # mismatches
    for A, B in zip(list(a), list(b)):
        if A == '-' or A == '.' or B == '-' or B == '.':
            continue
        if A == B:
            m += 1
        else:
            mm += 1
    try:
        return float(float(m)/float((m + mm))) * 100
    except:
        return 0 | 
	[
  "def",
  "calc_pident_ignore_gaps",
  "(",
  "a",
  ",",
  "b",
  ")",
  ":",
  "m",
  "=",
  "0",
  "# matches",
  "mm",
  "=",
  "0",
  "# mismatches",
  "for",
  "A",
  ",",
  "B",
  "in",
  "zip",
  "(",
  "list",
  "(",
  "a",
  ")",
  ",",
  "list",
  "(",
  "b",
  ")",
  ")",
  ":",
  "if",
  "A",
  "==",
  "'-'",
  "or",
  "A",
  "==",
  "'.'",
  "or",
  "B",
  "==",
  "'-'",
  "or",
  "B",
  "==",
  "'.'",
  ":",
  "continue",
  "if",
  "A",
  "==",
  "B",
  ":",
  "m",
  "+=",
  "1",
  "else",
  ":",
  "mm",
  "+=",
  "1",
  "try",
  ":",
  "return",
  "float",
  "(",
  "float",
  "(",
  "m",
  ")",
  "/",
  "float",
  "(",
  "(",
  "m",
  "+",
  "mm",
  ")",
  ")",
  ")",
  "*",
  "100",
  "except",
  ":",
  "return",
  "0"
] | 
	calculate percent identity | 
	[
  "calculate",
  "percent",
  "identity"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L34-L50 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	remove_gaps | 
	def remove_gaps(A, B):
    """
    skip column if either is a gap
    """
    a_seq, b_seq = [], []
    for a, b in zip(list(A), list(B)):
        if a == '-' or a == '.' or b == '-' or b == '.':
            continue
        a_seq.append(a)
        b_seq.append(b)
    return ''.join(a_seq), ''.join(b_seq) | 
	python | 
	def remove_gaps(A, B):
    """
    skip column if either is a gap
    """
    a_seq, b_seq = [], []
    for a, b in zip(list(A), list(B)):
        if a == '-' or a == '.' or b == '-' or b == '.':
            continue
        a_seq.append(a)
        b_seq.append(b)
    return ''.join(a_seq), ''.join(b_seq) | 
	[
  "def",
  "remove_gaps",
  "(",
  "A",
  ",",
  "B",
  ")",
  ":",
  "a_seq",
  ",",
  "b_seq",
  "=",
  "[",
  "]",
  ",",
  "[",
  "]",
  "for",
  "a",
  ",",
  "b",
  "in",
  "zip",
  "(",
  "list",
  "(",
  "A",
  ")",
  ",",
  "list",
  "(",
  "B",
  ")",
  ")",
  ":",
  "if",
  "a",
  "==",
  "'-'",
  "or",
  "a",
  "==",
  "'.'",
  "or",
  "b",
  "==",
  "'-'",
  "or",
  "b",
  "==",
  "'.'",
  ":",
  "continue",
  "a_seq",
  ".",
  "append",
  "(",
  "a",
  ")",
  "b_seq",
  ".",
  "append",
  "(",
  "b",
  ")",
  "return",
  "''",
  ".",
  "join",
  "(",
  "a_seq",
  ")",
  ",",
  "''",
  ".",
  "join",
  "(",
  "b_seq",
  ")"
] | 
	skip column if either is a gap | 
	[
  "skip",
  "column",
  "if",
  "either",
  "is",
  "a",
  "gap"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L52-L62 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	compare_seqs | 
	def compare_seqs(seqs):
    """
    compare pairs of sequences
    """
    A, B, ignore_gaps = seqs
    a, b = A[1], B[1] # actual sequences
    if len(a) != len(b):
        print('# reads are not the same length', file=sys.stderr)
        exit()
    if ignore_gaps is True:
        pident = calc_pident_ignore_gaps(a, b)
    else:
        pident = calc_pident(a, b)
    return A[0], B[0], pident | 
	python | 
	def compare_seqs(seqs):
    """
    compare pairs of sequences
    """
    A, B, ignore_gaps = seqs
    a, b = A[1], B[1] # actual sequences
    if len(a) != len(b):
        print('# reads are not the same length', file=sys.stderr)
        exit()
    if ignore_gaps is True:
        pident = calc_pident_ignore_gaps(a, b)
    else:
        pident = calc_pident(a, b)
    return A[0], B[0], pident | 
	[
  "def",
  "compare_seqs",
  "(",
  "seqs",
  ")",
  ":",
  "A",
  ",",
  "B",
  ",",
  "ignore_gaps",
  "=",
  "seqs",
  "a",
  ",",
  "b",
  "=",
  "A",
  "[",
  "1",
  "]",
  ",",
  "B",
  "[",
  "1",
  "]",
  "# actual sequences",
  "if",
  "len",
  "(",
  "a",
  ")",
  "!=",
  "len",
  "(",
  "b",
  ")",
  ":",
  "print",
  "(",
  "'# reads are not the same length'",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "exit",
  "(",
  ")",
  "if",
  "ignore_gaps",
  "is",
  "True",
  ":",
  "pident",
  "=",
  "calc_pident_ignore_gaps",
  "(",
  "a",
  ",",
  "b",
  ")",
  "else",
  ":",
  "pident",
  "=",
  "calc_pident",
  "(",
  "a",
  ",",
  "b",
  ")",
  "return",
  "A",
  "[",
  "0",
  "]",
  ",",
  "B",
  "[",
  "0",
  "]",
  ",",
  "pident"
] | 
	compare pairs of sequences | 
	[
  "compare",
  "pairs",
  "of",
  "sequences"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L64-L77 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	compare_seqs_leven | 
	def compare_seqs_leven(seqs):
    """
    calculate Levenshtein ratio of sequences
    """
    A, B, ignore_gaps = seqs
    a, b = remove_gaps(A[1], B[1]) # actual sequences
    if len(a) != len(b):
        print('# reads are not the same length', file=sys.stderr)
        exit()
    pident = lr(a, b) * 100
    return A[0], B[0], pident | 
	python | 
	def compare_seqs_leven(seqs):
    """
    calculate Levenshtein ratio of sequences
    """
    A, B, ignore_gaps = seqs
    a, b = remove_gaps(A[1], B[1]) # actual sequences
    if len(a) != len(b):
        print('# reads are not the same length', file=sys.stderr)
        exit()
    pident = lr(a, b) * 100
    return A[0], B[0], pident | 
	[
  "def",
  "compare_seqs_leven",
  "(",
  "seqs",
  ")",
  ":",
  "A",
  ",",
  "B",
  ",",
  "ignore_gaps",
  "=",
  "seqs",
  "a",
  ",",
  "b",
  "=",
  "remove_gaps",
  "(",
  "A",
  "[",
  "1",
  "]",
  ",",
  "B",
  "[",
  "1",
  "]",
  ")",
  "# actual sequences",
  "if",
  "len",
  "(",
  "a",
  ")",
  "!=",
  "len",
  "(",
  "b",
  ")",
  ":",
  "print",
  "(",
  "'# reads are not the same length'",
  ",",
  "file",
  "=",
  "sys",
  ".",
  "stderr",
  ")",
  "exit",
  "(",
  ")",
  "pident",
  "=",
  "lr",
  "(",
  "a",
  ",",
  "b",
  ")",
  "*",
  "100",
  "return",
  "A",
  "[",
  "0",
  "]",
  ",",
  "B",
  "[",
  "0",
  "]",
  ",",
  "pident"
] | 
	calculate Levenshtein ratio of sequences | 
	[
  "calculate",
  "Levenshtein",
  "ratio",
  "of",
  "sequences"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L79-L89 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	pairwise_compare | 
	def pairwise_compare(afa, leven, threads, print_list, ignore_gaps):
    """
    make pairwise sequence comparisons between aligned sequences
    """
    # load sequences into dictionary
    seqs = {seq[0]: seq for seq in nr_fasta([afa], append_index = True)}
    num_seqs = len(seqs)
    # define all pairs
    pairs = ((i[0], i[1], ignore_gaps) for i in itertools.combinations(list(seqs.values()), 2))
    pool = multithread(threads)
    # calc percent identity between all pairs - parallelize
    if leven is True:
        pident = pool.map(compare_seqs_leven, pairs)
    else:
        compare = pool.imap_unordered(compare_seqs, pairs)
        pident = [i for i in tqdm(compare, total = (num_seqs*num_seqs)/2)]
    pool.close()
    pool.terminate()
    pool.join()
    return to_dictionary(pident, print_list) | 
	python | 
	def pairwise_compare(afa, leven, threads, print_list, ignore_gaps):
    """
    make pairwise sequence comparisons between aligned sequences
    """
    # load sequences into dictionary
    seqs = {seq[0]: seq for seq in nr_fasta([afa], append_index = True)}
    num_seqs = len(seqs)
    # define all pairs
    pairs = ((i[0], i[1], ignore_gaps) for i in itertools.combinations(list(seqs.values()), 2))
    pool = multithread(threads)
    # calc percent identity between all pairs - parallelize
    if leven is True:
        pident = pool.map(compare_seqs_leven, pairs)
    else:
        compare = pool.imap_unordered(compare_seqs, pairs)
        pident = [i for i in tqdm(compare, total = (num_seqs*num_seqs)/2)]
    pool.close()
    pool.terminate()
    pool.join()
    return to_dictionary(pident, print_list) | 
	[
  "def",
  "pairwise_compare",
  "(",
  "afa",
  ",",
  "leven",
  ",",
  "threads",
  ",",
  "print_list",
  ",",
  "ignore_gaps",
  ")",
  ":",
  "# load sequences into dictionary",
  "seqs",
  "=",
  "{",
  "seq",
  "[",
  "0",
  "]",
  ":",
  "seq",
  "for",
  "seq",
  "in",
  "nr_fasta",
  "(",
  "[",
  "afa",
  "]",
  ",",
  "append_index",
  "=",
  "True",
  ")",
  "}",
  "num_seqs",
  "=",
  "len",
  "(",
  "seqs",
  ")",
  "# define all pairs",
  "pairs",
  "=",
  "(",
  "(",
  "i",
  "[",
  "0",
  "]",
  ",",
  "i",
  "[",
  "1",
  "]",
  ",",
  "ignore_gaps",
  ")",
  "for",
  "i",
  "in",
  "itertools",
  ".",
  "combinations",
  "(",
  "list",
  "(",
  "seqs",
  ".",
  "values",
  "(",
  ")",
  ")",
  ",",
  "2",
  ")",
  ")",
  "pool",
  "=",
  "multithread",
  "(",
  "threads",
  ")",
  "# calc percent identity between all pairs - parallelize",
  "if",
  "leven",
  "is",
  "True",
  ":",
  "pident",
  "=",
  "pool",
  ".",
  "map",
  "(",
  "compare_seqs_leven",
  ",",
  "pairs",
  ")",
  "else",
  ":",
  "compare",
  "=",
  "pool",
  ".",
  "imap_unordered",
  "(",
  "compare_seqs",
  ",",
  "pairs",
  ")",
  "pident",
  "=",
  "[",
  "i",
  "for",
  "i",
  "in",
  "tqdm",
  "(",
  "compare",
  ",",
  "total",
  "=",
  "(",
  "num_seqs",
  "*",
  "num_seqs",
  ")",
  "/",
  "2",
  ")",
  "]",
  "pool",
  ".",
  "close",
  "(",
  ")",
  "pool",
  ".",
  "terminate",
  "(",
  ")",
  "pool",
  ".",
  "join",
  "(",
  ")",
  "return",
  "to_dictionary",
  "(",
  "pident",
  ",",
  "print_list",
  ")"
] | 
	make pairwise sequence comparisons between aligned sequences | 
	[
  "make",
  "pairwise",
  "sequence",
  "comparisons",
  "between",
  "aligned",
  "sequences"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L91-L110 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	print_pairwise | 
	def print_pairwise(pw, median = False):
    """
    print matrix of pidents to stdout
    """
    names = sorted(set([i for i in pw]))
    if len(names) != 0:
        if '>' in names[0]:
            yield ['#'] + [i.split('>')[1] for i in names if '>' in i]
        else:
            yield ['#'] + names
        for a in names:
            if '>' in a:
                yield [a.split('>')[1]] + [pw[a][b] for b in names]
            else:
                out = []
                for b in names:
                    if b in pw[a]:
                        if median is False:
                            out.append(max(pw[a][b]))
                        else:
                            out.append(np.median(pw[a][b]))
                    else:
                        out.append('-')
                yield [a] + out | 
	python | 
	def print_pairwise(pw, median = False):
    """
    print matrix of pidents to stdout
    """
    names = sorted(set([i for i in pw]))
    if len(names) != 0:
        if '>' in names[0]:
            yield ['#'] + [i.split('>')[1] for i in names if '>' in i]
        else:
            yield ['#'] + names
        for a in names:
            if '>' in a:
                yield [a.split('>')[1]] + [pw[a][b] for b in names]
            else:
                out = []
                for b in names:
                    if b in pw[a]:
                        if median is False:
                            out.append(max(pw[a][b]))
                        else:
                            out.append(np.median(pw[a][b]))
                    else:
                        out.append('-')
                yield [a] + out | 
	[
  "def",
  "print_pairwise",
  "(",
  "pw",
  ",",
  "median",
  "=",
  "False",
  ")",
  ":",
  "names",
  "=",
  "sorted",
  "(",
  "set",
  "(",
  "[",
  "i",
  "for",
  "i",
  "in",
  "pw",
  "]",
  ")",
  ")",
  "if",
  "len",
  "(",
  "names",
  ")",
  "!=",
  "0",
  ":",
  "if",
  "'>'",
  "in",
  "names",
  "[",
  "0",
  "]",
  ":",
  "yield",
  "[",
  "'#'",
  "]",
  "+",
  "[",
  "i",
  ".",
  "split",
  "(",
  "'>'",
  ")",
  "[",
  "1",
  "]",
  "for",
  "i",
  "in",
  "names",
  "if",
  "'>'",
  "in",
  "i",
  "]",
  "else",
  ":",
  "yield",
  "[",
  "'#'",
  "]",
  "+",
  "names",
  "for",
  "a",
  "in",
  "names",
  ":",
  "if",
  "'>'",
  "in",
  "a",
  ":",
  "yield",
  "[",
  "a",
  ".",
  "split",
  "(",
  "'>'",
  ")",
  "[",
  "1",
  "]",
  "]",
  "+",
  "[",
  "pw",
  "[",
  "a",
  "]",
  "[",
  "b",
  "]",
  "for",
  "b",
  "in",
  "names",
  "]",
  "else",
  ":",
  "out",
  "=",
  "[",
  "]",
  "for",
  "b",
  "in",
  "names",
  ":",
  "if",
  "b",
  "in",
  "pw",
  "[",
  "a",
  "]",
  ":",
  "if",
  "median",
  "is",
  "False",
  ":",
  "out",
  ".",
  "append",
  "(",
  "max",
  "(",
  "pw",
  "[",
  "a",
  "]",
  "[",
  "b",
  "]",
  ")",
  ")",
  "else",
  ":",
  "out",
  ".",
  "append",
  "(",
  "np",
  ".",
  "median",
  "(",
  "pw",
  "[",
  "a",
  "]",
  "[",
  "b",
  "]",
  ")",
  ")",
  "else",
  ":",
  "out",
  ".",
  "append",
  "(",
  "'-'",
  ")",
  "yield",
  "[",
  "a",
  "]",
  "+",
  "out"
] | 
	print matrix of pidents to stdout | 
	[
  "print",
  "matrix",
  "of",
  "pidents",
  "to",
  "stdout"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L132-L155 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	print_comps | 
	def print_comps(comps):
    """
    print stats for comparisons
    """
    if comps == []:
        print('n/a')
    else:
        print('# min: %s, max: %s, mean: %s' % \
            (min(comps), max(comps), np.mean(comps))) | 
	python | 
	def print_comps(comps):
    """
    print stats for comparisons
    """
    if comps == []:
        print('n/a')
    else:
        print('# min: %s, max: %s, mean: %s' % \
            (min(comps), max(comps), np.mean(comps))) | 
	[
  "def",
  "print_comps",
  "(",
  "comps",
  ")",
  ":",
  "if",
  "comps",
  "==",
  "[",
  "]",
  ":",
  "print",
  "(",
  "'n/a'",
  ")",
  "else",
  ":",
  "print",
  "(",
  "'# min: %s, max: %s, mean: %s'",
  "%",
  "(",
  "min",
  "(",
  "comps",
  ")",
  ",",
  "max",
  "(",
  "comps",
  ")",
  ",",
  "np",
  ".",
  "mean",
  "(",
  "comps",
  ")",
  ")",
  ")"
] | 
	print stats for comparisons | 
	[
  "print",
  "stats",
  "for",
  "comparisons"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L157-L165 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	compare_clades | 
	def compare_clades(pw):
    """
    print min. pident within each clade and then matrix of between-clade max.
    """
    names = sorted(set([i for i in pw]))
    for i in range(0, 4):
        wi, bt = {}, {}
        for a in names:
            for b in pw[a]:
                if ';' not in a or ';' not in b:
                    continue
                pident = pw[a][b]
                cA, cB = a.split(';')[i], b.split(';')[i]
                if i == 0 and '_' in cA and '_' in cB:
                    cA = cA.rsplit('_', 1)[1]
                    cB = cB.rsplit('_', 1)[1]
                elif '>' in cA or '>' in cB:
                    cA = cA.split('>')[1]
                    cB = cB.split('>')[1]
                if cA == cB:
                    if cA not in wi:
                        wi[cA] = []
                    wi[cA].append(pident)
                else:
                    if cA not in bt:
                        bt[cA] = {}
                    if cB not in bt[cA]:
                        bt[cA][cB] = []
                    bt[cA][cB].append(pident)
        print('\n# min. within')
        for clade, pidents in list(wi.items()):
            print('\t'.join(['wi:%s' % str(i), clade, str(min(pidents))]))
        # print matrix of maximum between groups
        comps = []
        print('\n# max. between')
        for comp in print_pairwise(bt):
            if comp is not None:
                print('\t'.join(['bt:%s' % str(i)] + [str(j) for j in comp]))
                if comp[0] != '#':
                    comps.extend([j for j in comp[1:] if j != '-'])
        print_comps(comps)
        # print matrix of median between groups
        comps = []
        print('\n# median between')
        for comp in print_pairwise(bt, median = True):
            if comp is not None:
                print('\t'.join(['bt:%s' % str(i)] + [str(j) for j in comp]))
                if comp[0] != '#':
                    comps.extend([j for j in comp[1:] if j != '-'])
        print_comps(comps) | 
	python | 
	def compare_clades(pw):
    """
    print min. pident within each clade and then matrix of between-clade max.
    """
    names = sorted(set([i for i in pw]))
    for i in range(0, 4):
        wi, bt = {}, {}
        for a in names:
            for b in pw[a]:
                if ';' not in a or ';' not in b:
                    continue
                pident = pw[a][b]
                cA, cB = a.split(';')[i], b.split(';')[i]
                if i == 0 and '_' in cA and '_' in cB:
                    cA = cA.rsplit('_', 1)[1]
                    cB = cB.rsplit('_', 1)[1]
                elif '>' in cA or '>' in cB:
                    cA = cA.split('>')[1]
                    cB = cB.split('>')[1]
                if cA == cB:
                    if cA not in wi:
                        wi[cA] = []
                    wi[cA].append(pident)
                else:
                    if cA not in bt:
                        bt[cA] = {}
                    if cB not in bt[cA]:
                        bt[cA][cB] = []
                    bt[cA][cB].append(pident)
        print('\n# min. within')
        for clade, pidents in list(wi.items()):
            print('\t'.join(['wi:%s' % str(i), clade, str(min(pidents))]))
        # print matrix of maximum between groups
        comps = []
        print('\n# max. between')
        for comp in print_pairwise(bt):
            if comp is not None:
                print('\t'.join(['bt:%s' % str(i)] + [str(j) for j in comp]))
                if comp[0] != '#':
                    comps.extend([j for j in comp[1:] if j != '-'])
        print_comps(comps)
        # print matrix of median between groups
        comps = []
        print('\n# median between')
        for comp in print_pairwise(bt, median = True):
            if comp is not None:
                print('\t'.join(['bt:%s' % str(i)] + [str(j) for j in comp]))
                if comp[0] != '#':
                    comps.extend([j for j in comp[1:] if j != '-'])
        print_comps(comps) | 
	[
  "def",
  "compare_clades",
  "(",
  "pw",
  ")",
  ":",
  "names",
  "=",
  "sorted",
  "(",
  "set",
  "(",
  "[",
  "i",
  "for",
  "i",
  "in",
  "pw",
  "]",
  ")",
  ")",
  "for",
  "i",
  "in",
  "range",
  "(",
  "0",
  ",",
  "4",
  ")",
  ":",
  "wi",
  ",",
  "bt",
  "=",
  "{",
  "}",
  ",",
  "{",
  "}",
  "for",
  "a",
  "in",
  "names",
  ":",
  "for",
  "b",
  "in",
  "pw",
  "[",
  "a",
  "]",
  ":",
  "if",
  "';'",
  "not",
  "in",
  "a",
  "or",
  "';'",
  "not",
  "in",
  "b",
  ":",
  "continue",
  "pident",
  "=",
  "pw",
  "[",
  "a",
  "]",
  "[",
  "b",
  "]",
  "cA",
  ",",
  "cB",
  "=",
  "a",
  ".",
  "split",
  "(",
  "';'",
  ")",
  "[",
  "i",
  "]",
  ",",
  "b",
  ".",
  "split",
  "(",
  "';'",
  ")",
  "[",
  "i",
  "]",
  "if",
  "i",
  "==",
  "0",
  "and",
  "'_'",
  "in",
  "cA",
  "and",
  "'_'",
  "in",
  "cB",
  ":",
  "cA",
  "=",
  "cA",
  ".",
  "rsplit",
  "(",
  "'_'",
  ",",
  "1",
  ")",
  "[",
  "1",
  "]",
  "cB",
  "=",
  "cB",
  ".",
  "rsplit",
  "(",
  "'_'",
  ",",
  "1",
  ")",
  "[",
  "1",
  "]",
  "elif",
  "'>'",
  "in",
  "cA",
  "or",
  "'>'",
  "in",
  "cB",
  ":",
  "cA",
  "=",
  "cA",
  ".",
  "split",
  "(",
  "'>'",
  ")",
  "[",
  "1",
  "]",
  "cB",
  "=",
  "cB",
  ".",
  "split",
  "(",
  "'>'",
  ")",
  "[",
  "1",
  "]",
  "if",
  "cA",
  "==",
  "cB",
  ":",
  "if",
  "cA",
  "not",
  "in",
  "wi",
  ":",
  "wi",
  "[",
  "cA",
  "]",
  "=",
  "[",
  "]",
  "wi",
  "[",
  "cA",
  "]",
  ".",
  "append",
  "(",
  "pident",
  ")",
  "else",
  ":",
  "if",
  "cA",
  "not",
  "in",
  "bt",
  ":",
  "bt",
  "[",
  "cA",
  "]",
  "=",
  "{",
  "}",
  "if",
  "cB",
  "not",
  "in",
  "bt",
  "[",
  "cA",
  "]",
  ":",
  "bt",
  "[",
  "cA",
  "]",
  "[",
  "cB",
  "]",
  "=",
  "[",
  "]",
  "bt",
  "[",
  "cA",
  "]",
  "[",
  "cB",
  "]",
  ".",
  "append",
  "(",
  "pident",
  ")",
  "print",
  "(",
  "'\\n# min. within'",
  ")",
  "for",
  "clade",
  ",",
  "pidents",
  "in",
  "list",
  "(",
  "wi",
  ".",
  "items",
  "(",
  ")",
  ")",
  ":",
  "print",
  "(",
  "'\\t'",
  ".",
  "join",
  "(",
  "[",
  "'wi:%s'",
  "%",
  "str",
  "(",
  "i",
  ")",
  ",",
  "clade",
  ",",
  "str",
  "(",
  "min",
  "(",
  "pidents",
  ")",
  ")",
  "]",
  ")",
  ")",
  "# print matrix of maximum between groups",
  "comps",
  "=",
  "[",
  "]",
  "print",
  "(",
  "'\\n# max. between'",
  ")",
  "for",
  "comp",
  "in",
  "print_pairwise",
  "(",
  "bt",
  ")",
  ":",
  "if",
  "comp",
  "is",
  "not",
  "None",
  ":",
  "print",
  "(",
  "'\\t'",
  ".",
  "join",
  "(",
  "[",
  "'bt:%s'",
  "%",
  "str",
  "(",
  "i",
  ")",
  "]",
  "+",
  "[",
  "str",
  "(",
  "j",
  ")",
  "for",
  "j",
  "in",
  "comp",
  "]",
  ")",
  ")",
  "if",
  "comp",
  "[",
  "0",
  "]",
  "!=",
  "'#'",
  ":",
  "comps",
  ".",
  "extend",
  "(",
  "[",
  "j",
  "for",
  "j",
  "in",
  "comp",
  "[",
  "1",
  ":",
  "]",
  "if",
  "j",
  "!=",
  "'-'",
  "]",
  ")",
  "print_comps",
  "(",
  "comps",
  ")",
  "# print matrix of median between groups",
  "comps",
  "=",
  "[",
  "]",
  "print",
  "(",
  "'\\n# median between'",
  ")",
  "for",
  "comp",
  "in",
  "print_pairwise",
  "(",
  "bt",
  ",",
  "median",
  "=",
  "True",
  ")",
  ":",
  "if",
  "comp",
  "is",
  "not",
  "None",
  ":",
  "print",
  "(",
  "'\\t'",
  ".",
  "join",
  "(",
  "[",
  "'bt:%s'",
  "%",
  "str",
  "(",
  "i",
  ")",
  "]",
  "+",
  "[",
  "str",
  "(",
  "j",
  ")",
  "for",
  "j",
  "in",
  "comp",
  "]",
  ")",
  ")",
  "if",
  "comp",
  "[",
  "0",
  "]",
  "!=",
  "'#'",
  ":",
  "comps",
  ".",
  "extend",
  "(",
  "[",
  "j",
  "for",
  "j",
  "in",
  "comp",
  "[",
  "1",
  ":",
  "]",
  "if",
  "j",
  "!=",
  "'-'",
  "]",
  ")",
  "print_comps",
  "(",
  "comps",
  ")"
] | 
	print min. pident within each clade and then matrix of between-clade max. | 
	[
  "print",
  "min",
  ".",
  "pident",
  "within",
  "each",
  "clade",
  "and",
  "then",
  "matrix",
  "of",
  "between",
  "-",
  "clade",
  "max",
  "."
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L167-L216 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/compare_aligned.py | 
	matrix2dictionary | 
	def matrix2dictionary(matrix):
    """
    convert matrix to dictionary of comparisons
    """
    pw = {}
    for line in matrix:
        line = line.strip().split('\t')
        if line[0].startswith('#'):
            names = line[1:]
            continue
        a = line[0]
        for i, pident in enumerate(line[1:]):
            b = names[i]
            if a not in pw:
                pw[a] = {}
            if b not in pw:
                pw[b] = {}
            if pident != '-':
                pident = float(pident)
            pw[a][b] = pident
            pw[b][a] = pident
    return pw | 
	python | 
	def matrix2dictionary(matrix):
    """
    convert matrix to dictionary of comparisons
    """
    pw = {}
    for line in matrix:
        line = line.strip().split('\t')
        if line[0].startswith('#'):
            names = line[1:]
            continue
        a = line[0]
        for i, pident in enumerate(line[1:]):
            b = names[i]
            if a not in pw:
                pw[a] = {}
            if b not in pw:
                pw[b] = {}
            if pident != '-':
                pident = float(pident)
            pw[a][b] = pident
            pw[b][a] = pident
    return pw | 
	[
  "def",
  "matrix2dictionary",
  "(",
  "matrix",
  ")",
  ":",
  "pw",
  "=",
  "{",
  "}",
  "for",
  "line",
  "in",
  "matrix",
  ":",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  ".",
  "split",
  "(",
  "'\\t'",
  ")",
  "if",
  "line",
  "[",
  "0",
  "]",
  ".",
  "startswith",
  "(",
  "'#'",
  ")",
  ":",
  "names",
  "=",
  "line",
  "[",
  "1",
  ":",
  "]",
  "continue",
  "a",
  "=",
  "line",
  "[",
  "0",
  "]",
  "for",
  "i",
  ",",
  "pident",
  "in",
  "enumerate",
  "(",
  "line",
  "[",
  "1",
  ":",
  "]",
  ")",
  ":",
  "b",
  "=",
  "names",
  "[",
  "i",
  "]",
  "if",
  "a",
  "not",
  "in",
  "pw",
  ":",
  "pw",
  "[",
  "a",
  "]",
  "=",
  "{",
  "}",
  "if",
  "b",
  "not",
  "in",
  "pw",
  ":",
  "pw",
  "[",
  "b",
  "]",
  "=",
  "{",
  "}",
  "if",
  "pident",
  "!=",
  "'-'",
  ":",
  "pident",
  "=",
  "float",
  "(",
  "pident",
  ")",
  "pw",
  "[",
  "a",
  "]",
  "[",
  "b",
  "]",
  "=",
  "pident",
  "pw",
  "[",
  "b",
  "]",
  "[",
  "a",
  "]",
  "=",
  "pident",
  "return",
  "pw"
] | 
	convert matrix to dictionary of comparisons | 
	[
  "convert",
  "matrix",
  "to",
  "dictionary",
  "of",
  "comparisons"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/compare_aligned.py#L218-L239 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/commands.py | 
	setoption | 
	def setoption(parser, metadata=None):
    """Set argument parser option."""
    parser.add_argument('-v', action='version',
                        version=__version__)
    subparsers = parser.add_subparsers(help='sub commands help')
    create_cmd = subparsers.add_parser('create')
    create_cmd.add_argument('name',
                            help='Specify Python package name.')
    create_cmd.add_argument('-d', dest='description', action='store',
                            help='Short description about your package.')
    create_cmd.add_argument('-a', dest='author', action='store',
                            required=True,
                            help='Python package author name.')
    create_cmd.add_argument('-e', dest='email', action='store',
                            required=True,
                            help='Python package author email address.')
    create_cmd.add_argument('-l', dest='license',
                            choices=metadata.licenses().keys(),
                            default='GPLv3+',
                            help='Specify license. (default: %(default)s)')
    create_cmd.add_argument('-s', dest='status',
                            choices=metadata.status().keys(),
                            default='Alpha',
                            help=('Specify development status. '
                                  '(default: %(default)s)'))
    create_cmd.add_argument('--no-check', action='store_true',
                            help='No checking package name in PyPI.')
    create_cmd.add_argument('--with-samples', action='store_true',
                            help='Generate package with sample code.')
    group = create_cmd.add_mutually_exclusive_group(required=True)
    group.add_argument('-U', dest='username', action='store',
                       help='Specify GitHub username.')
    group.add_argument('-u', dest='url', action='store', type=valid_url,
                       help='Python package homepage url.')
    create_cmd.add_argument('-o', dest='outdir', action='store',
                            default=os.path.abspath(os.path.curdir),
                            help='Specify output directory. (default: $PWD)')
    list_cmd = subparsers.add_parser('list')
    list_cmd.add_argument('-l', dest='licenses', action='store_true',
                          help='show license choices.') | 
	python | 
	def setoption(parser, metadata=None):
    """Set argument parser option."""
    parser.add_argument('-v', action='version',
                        version=__version__)
    subparsers = parser.add_subparsers(help='sub commands help')
    create_cmd = subparsers.add_parser('create')
    create_cmd.add_argument('name',
                            help='Specify Python package name.')
    create_cmd.add_argument('-d', dest='description', action='store',
                            help='Short description about your package.')
    create_cmd.add_argument('-a', dest='author', action='store',
                            required=True,
                            help='Python package author name.')
    create_cmd.add_argument('-e', dest='email', action='store',
                            required=True,
                            help='Python package author email address.')
    create_cmd.add_argument('-l', dest='license',
                            choices=metadata.licenses().keys(),
                            default='GPLv3+',
                            help='Specify license. (default: %(default)s)')
    create_cmd.add_argument('-s', dest='status',
                            choices=metadata.status().keys(),
                            default='Alpha',
                            help=('Specify development status. '
                                  '(default: %(default)s)'))
    create_cmd.add_argument('--no-check', action='store_true',
                            help='No checking package name in PyPI.')
    create_cmd.add_argument('--with-samples', action='store_true',
                            help='Generate package with sample code.')
    group = create_cmd.add_mutually_exclusive_group(required=True)
    group.add_argument('-U', dest='username', action='store',
                       help='Specify GitHub username.')
    group.add_argument('-u', dest='url', action='store', type=valid_url,
                       help='Python package homepage url.')
    create_cmd.add_argument('-o', dest='outdir', action='store',
                            default=os.path.abspath(os.path.curdir),
                            help='Specify output directory. (default: $PWD)')
    list_cmd = subparsers.add_parser('list')
    list_cmd.add_argument('-l', dest='licenses', action='store_true',
                          help='show license choices.') | 
	[
  "def",
  "setoption",
  "(",
  "parser",
  ",",
  "metadata",
  "=",
  "None",
  ")",
  ":",
  "parser",
  ".",
  "add_argument",
  "(",
  "'-v'",
  ",",
  "action",
  "=",
  "'version'",
  ",",
  "version",
  "=",
  "__version__",
  ")",
  "subparsers",
  "=",
  "parser",
  ".",
  "add_subparsers",
  "(",
  "help",
  "=",
  "'sub commands help'",
  ")",
  "create_cmd",
  "=",
  "subparsers",
  ".",
  "add_parser",
  "(",
  "'create'",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'name'",
  ",",
  "help",
  "=",
  "'Specify Python package name.'",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'-d'",
  ",",
  "dest",
  "=",
  "'description'",
  ",",
  "action",
  "=",
  "'store'",
  ",",
  "help",
  "=",
  "'Short description about your package.'",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'-a'",
  ",",
  "dest",
  "=",
  "'author'",
  ",",
  "action",
  "=",
  "'store'",
  ",",
  "required",
  "=",
  "True",
  ",",
  "help",
  "=",
  "'Python package author name.'",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'-e'",
  ",",
  "dest",
  "=",
  "'email'",
  ",",
  "action",
  "=",
  "'store'",
  ",",
  "required",
  "=",
  "True",
  ",",
  "help",
  "=",
  "'Python package author email address.'",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'-l'",
  ",",
  "dest",
  "=",
  "'license'",
  ",",
  "choices",
  "=",
  "metadata",
  ".",
  "licenses",
  "(",
  ")",
  ".",
  "keys",
  "(",
  ")",
  ",",
  "default",
  "=",
  "'GPLv3+'",
  ",",
  "help",
  "=",
  "'Specify license. (default: %(default)s)'",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'-s'",
  ",",
  "dest",
  "=",
  "'status'",
  ",",
  "choices",
  "=",
  "metadata",
  ".",
  "status",
  "(",
  ")",
  ".",
  "keys",
  "(",
  ")",
  ",",
  "default",
  "=",
  "'Alpha'",
  ",",
  "help",
  "=",
  "(",
  "'Specify development status. '",
  "'(default: %(default)s)'",
  ")",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'--no-check'",
  ",",
  "action",
  "=",
  "'store_true'",
  ",",
  "help",
  "=",
  "'No checking package name in PyPI.'",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'--with-samples'",
  ",",
  "action",
  "=",
  "'store_true'",
  ",",
  "help",
  "=",
  "'Generate package with sample code.'",
  ")",
  "group",
  "=",
  "create_cmd",
  ".",
  "add_mutually_exclusive_group",
  "(",
  "required",
  "=",
  "True",
  ")",
  "group",
  ".",
  "add_argument",
  "(",
  "'-U'",
  ",",
  "dest",
  "=",
  "'username'",
  ",",
  "action",
  "=",
  "'store'",
  ",",
  "help",
  "=",
  "'Specify GitHub username.'",
  ")",
  "group",
  ".",
  "add_argument",
  "(",
  "'-u'",
  ",",
  "dest",
  "=",
  "'url'",
  ",",
  "action",
  "=",
  "'store'",
  ",",
  "type",
  "=",
  "valid_url",
  ",",
  "help",
  "=",
  "'Python package homepage url.'",
  ")",
  "create_cmd",
  ".",
  "add_argument",
  "(",
  "'-o'",
  ",",
  "dest",
  "=",
  "'outdir'",
  ",",
  "action",
  "=",
  "'store'",
  ",",
  "default",
  "=",
  "os",
  ".",
  "path",
  ".",
  "abspath",
  "(",
  "os",
  ".",
  "path",
  ".",
  "curdir",
  ")",
  ",",
  "help",
  "=",
  "'Specify output directory. (default: $PWD)'",
  ")",
  "list_cmd",
  "=",
  "subparsers",
  ".",
  "add_parser",
  "(",
  "'list'",
  ")",
  "list_cmd",
  ".",
  "add_argument",
  "(",
  "'-l'",
  ",",
  "dest",
  "=",
  "'licenses'",
  ",",
  "action",
  "=",
  "'store_true'",
  ",",
  "help",
  "=",
  "'show license choices.'",
  ")"
] | 
	Set argument parser option. | 
	[
  "Set",
  "argument",
  "parser",
  "option",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/commands.py#L12-L51 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/commands.py | 
	parse_options | 
	def parse_options(metadata):
    """Parse argument options."""
    parser = argparse.ArgumentParser(description='%(prog)s usage:',
                                     prog=__prog__)
    setoption(parser, metadata=metadata)
    return parser | 
	python | 
	def parse_options(metadata):
    """Parse argument options."""
    parser = argparse.ArgumentParser(description='%(prog)s usage:',
                                     prog=__prog__)
    setoption(parser, metadata=metadata)
    return parser | 
	[
  "def",
  "parse_options",
  "(",
  "metadata",
  ")",
  ":",
  "parser",
  "=",
  "argparse",
  ".",
  "ArgumentParser",
  "(",
  "description",
  "=",
  "'%(prog)s usage:'",
  ",",
  "prog",
  "=",
  "__prog__",
  ")",
  "setoption",
  "(",
  "parser",
  ",",
  "metadata",
  "=",
  "metadata",
  ")",
  "return",
  "parser"
] | 
	Parse argument options. | 
	[
  "Parse",
  "argument",
  "options",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/commands.py#L72-L77 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/commands.py | 
	main | 
	def main():
    """Execute main processes."""
    try:
        pkg_version = Update()
        if pkg_version.updatable():
            pkg_version.show_message()
        metadata = control.retreive_metadata()
        parser = parse_options(metadata)
        argvs = sys.argv
        if len(argvs) <= 1:
            parser.print_help()
            sys.exit(1)
        args = parser.parse_args()
        control.print_licences(args, metadata)
        control.check_repository_existence(args)
        control.check_package_existence(args)
        control.generate_package(args)
    except (RuntimeError, BackendFailure, Conflict) as exc:
        sys.stderr.write('{0}\n'.format(exc))
        sys.exit(1) | 
	python | 
	def main():
    """Execute main processes."""
    try:
        pkg_version = Update()
        if pkg_version.updatable():
            pkg_version.show_message()
        metadata = control.retreive_metadata()
        parser = parse_options(metadata)
        argvs = sys.argv
        if len(argvs) <= 1:
            parser.print_help()
            sys.exit(1)
        args = parser.parse_args()
        control.print_licences(args, metadata)
        control.check_repository_existence(args)
        control.check_package_existence(args)
        control.generate_package(args)
    except (RuntimeError, BackendFailure, Conflict) as exc:
        sys.stderr.write('{0}\n'.format(exc))
        sys.exit(1) | 
	[
  "def",
  "main",
  "(",
  ")",
  ":",
  "try",
  ":",
  "pkg_version",
  "=",
  "Update",
  "(",
  ")",
  "if",
  "pkg_version",
  ".",
  "updatable",
  "(",
  ")",
  ":",
  "pkg_version",
  ".",
  "show_message",
  "(",
  ")",
  "metadata",
  "=",
  "control",
  ".",
  "retreive_metadata",
  "(",
  ")",
  "parser",
  "=",
  "parse_options",
  "(",
  "metadata",
  ")",
  "argvs",
  "=",
  "sys",
  ".",
  "argv",
  "if",
  "len",
  "(",
  "argvs",
  ")",
  "<=",
  "1",
  ":",
  "parser",
  ".",
  "print_help",
  "(",
  ")",
  "sys",
  ".",
  "exit",
  "(",
  "1",
  ")",
  "args",
  "=",
  "parser",
  ".",
  "parse_args",
  "(",
  ")",
  "control",
  ".",
  "print_licences",
  "(",
  "args",
  ",",
  "metadata",
  ")",
  "control",
  ".",
  "check_repository_existence",
  "(",
  "args",
  ")",
  "control",
  ".",
  "check_package_existence",
  "(",
  "args",
  ")",
  "control",
  ".",
  "generate_package",
  "(",
  "args",
  ")",
  "except",
  "(",
  "RuntimeError",
  ",",
  "BackendFailure",
  ",",
  "Conflict",
  ")",
  "as",
  "exc",
  ":",
  "sys",
  ".",
  "stderr",
  ".",
  "write",
  "(",
  "'{0}\\n'",
  ".",
  "format",
  "(",
  "exc",
  ")",
  ")",
  "sys",
  ".",
  "exit",
  "(",
  "1",
  ")"
] | 
	Execute main processes. | 
	[
  "Execute",
  "main",
  "processes",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/commands.py#L80-L99 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/package.py | 
	PackageData._check_or_set_default_params | 
	def _check_or_set_default_params(self):
        """Check key and set default vaule when it does not exists."""
        if not hasattr(self, 'date'):
            self._set_param('date', datetime.utcnow().strftime('%Y-%m-%d'))
        if not hasattr(self, 'version'):
            self._set_param('version', self.default_version)
        # pylint: disable=no-member
        if not hasattr(self, 'description') or self.description is None:
            getattr(self, '_set_param')('description', self.warning_message) | 
	python | 
	def _check_or_set_default_params(self):
        """Check key and set default vaule when it does not exists."""
        if not hasattr(self, 'date'):
            self._set_param('date', datetime.utcnow().strftime('%Y-%m-%d'))
        if not hasattr(self, 'version'):
            self._set_param('version', self.default_version)
        # pylint: disable=no-member
        if not hasattr(self, 'description') or self.description is None:
            getattr(self, '_set_param')('description', self.warning_message) | 
	[
  "def",
  "_check_or_set_default_params",
  "(",
  "self",
  ")",
  ":",
  "if",
  "not",
  "hasattr",
  "(",
  "self",
  ",",
  "'date'",
  ")",
  ":",
  "self",
  ".",
  "_set_param",
  "(",
  "'date'",
  ",",
  "datetime",
  ".",
  "utcnow",
  "(",
  ")",
  ".",
  "strftime",
  "(",
  "'%Y-%m-%d'",
  ")",
  ")",
  "if",
  "not",
  "hasattr",
  "(",
  "self",
  ",",
  "'version'",
  ")",
  ":",
  "self",
  ".",
  "_set_param",
  "(",
  "'version'",
  ",",
  "self",
  ".",
  "default_version",
  ")",
  "# pylint: disable=no-member",
  "if",
  "not",
  "hasattr",
  "(",
  "self",
  ",",
  "'description'",
  ")",
  "or",
  "self",
  ".",
  "description",
  "is",
  "None",
  ":",
  "getattr",
  "(",
  "self",
  ",",
  "'_set_param'",
  ")",
  "(",
  "'description'",
  ",",
  "self",
  ".",
  "warning_message",
  ")"
] | 
	Check key and set default vaule when it does not exists. | 
	[
  "Check",
  "key",
  "and",
  "set",
  "default",
  "vaule",
  "when",
  "it",
  "does",
  "not",
  "exists",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/package.py#L44-L52 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/package.py | 
	PackageTree.move | 
	def move(self):
        """Move directory from working directory to output directory."""
        if not os.path.isdir(self.outdir):
            os.makedirs(self.outdir)
        shutil.move(self.tmpdir, os.path.join(self.outdir, self.name)) | 
	python | 
	def move(self):
        """Move directory from working directory to output directory."""
        if not os.path.isdir(self.outdir):
            os.makedirs(self.outdir)
        shutil.move(self.tmpdir, os.path.join(self.outdir, self.name)) | 
	[
  "def",
  "move",
  "(",
  "self",
  ")",
  ":",
  "if",
  "not",
  "os",
  ".",
  "path",
  ".",
  "isdir",
  "(",
  "self",
  ".",
  "outdir",
  ")",
  ":",
  "os",
  ".",
  "makedirs",
  "(",
  "self",
  ".",
  "outdir",
  ")",
  "shutil",
  ".",
  "move",
  "(",
  "self",
  ".",
  "tmpdir",
  ",",
  "os",
  ".",
  "path",
  ".",
  "join",
  "(",
  "self",
  ".",
  "outdir",
  ",",
  "self",
  ".",
  "name",
  ")",
  ")"
] | 
	Move directory from working directory to output directory. | 
	[
  "Move",
  "directory",
  "from",
  "working",
  "directory",
  "to",
  "output",
  "directory",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/package.py#L169-L173 | 
	train | 
| 
	mkouhei/bootstrap-py | 
	bootstrap_py/package.py | 
	PackageTree.vcs_init | 
	def vcs_init(self):
        """Initialize VCS repository."""
        VCS(os.path.join(self.outdir, self.name), self.pkg_data) | 
	python | 
	def vcs_init(self):
        """Initialize VCS repository."""
        VCS(os.path.join(self.outdir, self.name), self.pkg_data) | 
	[
  "def",
  "vcs_init",
  "(",
  "self",
  ")",
  ":",
  "VCS",
  "(",
  "os",
  ".",
  "path",
  ".",
  "join",
  "(",
  "self",
  ".",
  "outdir",
  ",",
  "self",
  ".",
  "name",
  ")",
  ",",
  "self",
  ".",
  "pkg_data",
  ")"
] | 
	Initialize VCS repository. | 
	[
  "Initialize",
  "VCS",
  "repository",
  "."
] | 
	95d56ed98ef409fd9f019dc352fd1c3711533275 | 
	https://github.com/mkouhei/bootstrap-py/blob/95d56ed98ef409fd9f019dc352fd1c3711533275/bootstrap_py/package.py#L185-L187 | 
	train | 
| 
	scottrice/pysteam | 
	pysteam/winutils.py | 
	find_steam_location | 
	def find_steam_location():
  """
  Finds the location of the current Steam installation on Windows machines.
  Returns None for any non-Windows machines, or for Windows machines where
  Steam is not installed.
  """
  if registry is None:
    return None
  key = registry.CreateKey(registry.HKEY_CURRENT_USER,"Software\Valve\Steam")
  return registry.QueryValueEx(key,"SteamPath")[0] | 
	python | 
	def find_steam_location():
  """
  Finds the location of the current Steam installation on Windows machines.
  Returns None for any non-Windows machines, or for Windows machines where
  Steam is not installed.
  """
  if registry is None:
    return None
  key = registry.CreateKey(registry.HKEY_CURRENT_USER,"Software\Valve\Steam")
  return registry.QueryValueEx(key,"SteamPath")[0] | 
	[
  "def",
  "find_steam_location",
  "(",
  ")",
  ":",
  "if",
  "registry",
  "is",
  "None",
  ":",
  "return",
  "None",
  "key",
  "=",
  "registry",
  ".",
  "CreateKey",
  "(",
  "registry",
  ".",
  "HKEY_CURRENT_USER",
  ",",
  "\"Software\\Valve\\Steam\"",
  ")",
  "return",
  "registry",
  ".",
  "QueryValueEx",
  "(",
  "key",
  ",",
  "\"SteamPath\"",
  ")",
  "[",
  "0",
  "]"
] | 
	Finds the location of the current Steam installation on Windows machines.
  Returns None for any non-Windows machines, or for Windows machines where
  Steam is not installed. | 
	[
  "Finds",
  "the",
  "location",
  "of",
  "the",
  "current",
  "Steam",
  "installation",
  "on",
  "Windows",
  "machines",
  ".",
  "Returns",
  "None",
  "for",
  "any",
  "non",
  "-",
  "Windows",
  "machines",
  "or",
  "for",
  "Windows",
  "machines",
  "where",
  "Steam",
  "is",
  "not",
  "installed",
  "."
] | 
	1eb2254b5235a053a953e596fa7602d0b110245d | 
	https://github.com/scottrice/pysteam/blob/1eb2254b5235a053a953e596fa7602d0b110245d/pysteam/winutils.py#L10-L20 | 
	train | 
| 
	smdabdoub/phylotoast | 
	bin/PCoA_bubble.py | 
	plot_PCoA | 
	def plot_PCoA(cat_data, otu_name, unifrac, names, colors, xr, yr, outDir,
              save_as, plot_style):
    """
    Plot PCoA principal coordinates scaled by the relative abundances of
    otu_name.
    """
    fig = plt.figure(figsize=(14, 8))
    ax = fig.add_subplot(111)
    for i, cat in enumerate(cat_data):
        plt.scatter(cat_data[cat]["pc1"], cat_data[cat]["pc2"], cat_data[cat]["size"],
                    color=colors[cat], alpha=0.85, marker="o", edgecolor="black",
                    label=cat)
    lgnd = plt.legend(loc="best", scatterpoints=3, fontsize=13)
    for i in range(len(colors.keys())):
        lgnd.legendHandles[i]._sizes = [80]  # Change the legend marker size manually
    plt.title(" ".join(otu_name.split("_")), style="italic")
    plt.ylabel("PC2 (Percent Explained Variance {:.3f}%)".format(float(unifrac["varexp"][1])))
    plt.xlabel("PC1 (Percent Explained Variance {:.3f}%)".format(float(unifrac["varexp"][0])))
    plt.xlim(round(xr[0]*1.5, 1), round(xr[1]*1.5, 1))
    plt.ylim(round(yr[0]*1.5, 1), round(yr[1]*1.5, 1))
    if plot_style:
        gu.ggplot2_style(ax)
        fc = "0.8"
    else:
        fc = "none"
    fig.savefig(os.path.join(outDir, "_".join(otu_name.split())) + "." + save_as,
                facecolor=fc, edgecolor="none", format=save_as,
                bbox_inches="tight", pad_inches=0.2)
    plt.close(fig) | 
	python | 
	def plot_PCoA(cat_data, otu_name, unifrac, names, colors, xr, yr, outDir,
              save_as, plot_style):
    """
    Plot PCoA principal coordinates scaled by the relative abundances of
    otu_name.
    """
    fig = plt.figure(figsize=(14, 8))
    ax = fig.add_subplot(111)
    for i, cat in enumerate(cat_data):
        plt.scatter(cat_data[cat]["pc1"], cat_data[cat]["pc2"], cat_data[cat]["size"],
                    color=colors[cat], alpha=0.85, marker="o", edgecolor="black",
                    label=cat)
    lgnd = plt.legend(loc="best", scatterpoints=3, fontsize=13)
    for i in range(len(colors.keys())):
        lgnd.legendHandles[i]._sizes = [80]  # Change the legend marker size manually
    plt.title(" ".join(otu_name.split("_")), style="italic")
    plt.ylabel("PC2 (Percent Explained Variance {:.3f}%)".format(float(unifrac["varexp"][1])))
    plt.xlabel("PC1 (Percent Explained Variance {:.3f}%)".format(float(unifrac["varexp"][0])))
    plt.xlim(round(xr[0]*1.5, 1), round(xr[1]*1.5, 1))
    plt.ylim(round(yr[0]*1.5, 1), round(yr[1]*1.5, 1))
    if plot_style:
        gu.ggplot2_style(ax)
        fc = "0.8"
    else:
        fc = "none"
    fig.savefig(os.path.join(outDir, "_".join(otu_name.split())) + "." + save_as,
                facecolor=fc, edgecolor="none", format=save_as,
                bbox_inches="tight", pad_inches=0.2)
    plt.close(fig) | 
	[
  "def",
  "plot_PCoA",
  "(",
  "cat_data",
  ",",
  "otu_name",
  ",",
  "unifrac",
  ",",
  "names",
  ",",
  "colors",
  ",",
  "xr",
  ",",
  "yr",
  ",",
  "outDir",
  ",",
  "save_as",
  ",",
  "plot_style",
  ")",
  ":",
  "fig",
  "=",
  "plt",
  ".",
  "figure",
  "(",
  "figsize",
  "=",
  "(",
  "14",
  ",",
  "8",
  ")",
  ")",
  "ax",
  "=",
  "fig",
  ".",
  "add_subplot",
  "(",
  "111",
  ")",
  "for",
  "i",
  ",",
  "cat",
  "in",
  "enumerate",
  "(",
  "cat_data",
  ")",
  ":",
  "plt",
  ".",
  "scatter",
  "(",
  "cat_data",
  "[",
  "cat",
  "]",
  "[",
  "\"pc1\"",
  "]",
  ",",
  "cat_data",
  "[",
  "cat",
  "]",
  "[",
  "\"pc2\"",
  "]",
  ",",
  "cat_data",
  "[",
  "cat",
  "]",
  "[",
  "\"size\"",
  "]",
  ",",
  "color",
  "=",
  "colors",
  "[",
  "cat",
  "]",
  ",",
  "alpha",
  "=",
  "0.85",
  ",",
  "marker",
  "=",
  "\"o\"",
  ",",
  "edgecolor",
  "=",
  "\"black\"",
  ",",
  "label",
  "=",
  "cat",
  ")",
  "lgnd",
  "=",
  "plt",
  ".",
  "legend",
  "(",
  "loc",
  "=",
  "\"best\"",
  ",",
  "scatterpoints",
  "=",
  "3",
  ",",
  "fontsize",
  "=",
  "13",
  ")",
  "for",
  "i",
  "in",
  "range",
  "(",
  "len",
  "(",
  "colors",
  ".",
  "keys",
  "(",
  ")",
  ")",
  ")",
  ":",
  "lgnd",
  ".",
  "legendHandles",
  "[",
  "i",
  "]",
  ".",
  "_sizes",
  "=",
  "[",
  "80",
  "]",
  "# Change the legend marker size manually",
  "plt",
  ".",
  "title",
  "(",
  "\" \"",
  ".",
  "join",
  "(",
  "otu_name",
  ".",
  "split",
  "(",
  "\"_\"",
  ")",
  ")",
  ",",
  "style",
  "=",
  "\"italic\"",
  ")",
  "plt",
  ".",
  "ylabel",
  "(",
  "\"PC2 (Percent Explained Variance {:.3f}%)\"",
  ".",
  "format",
  "(",
  "float",
  "(",
  "unifrac",
  "[",
  "\"varexp\"",
  "]",
  "[",
  "1",
  "]",
  ")",
  ")",
  ")",
  "plt",
  ".",
  "xlabel",
  "(",
  "\"PC1 (Percent Explained Variance {:.3f}%)\"",
  ".",
  "format",
  "(",
  "float",
  "(",
  "unifrac",
  "[",
  "\"varexp\"",
  "]",
  "[",
  "0",
  "]",
  ")",
  ")",
  ")",
  "plt",
  ".",
  "xlim",
  "(",
  "round",
  "(",
  "xr",
  "[",
  "0",
  "]",
  "*",
  "1.5",
  ",",
  "1",
  ")",
  ",",
  "round",
  "(",
  "xr",
  "[",
  "1",
  "]",
  "*",
  "1.5",
  ",",
  "1",
  ")",
  ")",
  "plt",
  ".",
  "ylim",
  "(",
  "round",
  "(",
  "yr",
  "[",
  "0",
  "]",
  "*",
  "1.5",
  ",",
  "1",
  ")",
  ",",
  "round",
  "(",
  "yr",
  "[",
  "1",
  "]",
  "*",
  "1.5",
  ",",
  "1",
  ")",
  ")",
  "if",
  "plot_style",
  ":",
  "gu",
  ".",
  "ggplot2_style",
  "(",
  "ax",
  ")",
  "fc",
  "=",
  "\"0.8\"",
  "else",
  ":",
  "fc",
  "=",
  "\"none\"",
  "fig",
  ".",
  "savefig",
  "(",
  "os",
  ".",
  "path",
  ".",
  "join",
  "(",
  "outDir",
  ",",
  "\"_\"",
  ".",
  "join",
  "(",
  "otu_name",
  ".",
  "split",
  "(",
  ")",
  ")",
  ")",
  "+",
  "\".\"",
  "+",
  "save_as",
  ",",
  "facecolor",
  "=",
  "fc",
  ",",
  "edgecolor",
  "=",
  "\"none\"",
  ",",
  "format",
  "=",
  "save_as",
  ",",
  "bbox_inches",
  "=",
  "\"tight\"",
  ",",
  "pad_inches",
  "=",
  "0.2",
  ")",
  "plt",
  ".",
  "close",
  "(",
  "fig",
  ")"
] | 
	Plot PCoA principal coordinates scaled by the relative abundances of
    otu_name. | 
	[
  "Plot",
  "PCoA",
  "principal",
  "coordinates",
  "scaled",
  "by",
  "the",
  "relative",
  "abundances",
  "of",
  "otu_name",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/PCoA_bubble.py#L36-L65 | 
	train | 
| 
	smdabdoub/phylotoast | 
	bin/transpose_biom.py | 
	split_by_category | 
	def split_by_category(biom_cols, mapping, category_id):
    """
    Split up the column data in a biom table by mapping category value.
    """
    columns = defaultdict(list)
    for i, col in enumerate(biom_cols):
        columns[mapping[col['id']][category_id]].append((i, col))
    return columns | 
	python | 
	def split_by_category(biom_cols, mapping, category_id):
    """
    Split up the column data in a biom table by mapping category value.
    """
    columns = defaultdict(list)
    for i, col in enumerate(biom_cols):
        columns[mapping[col['id']][category_id]].append((i, col))
    return columns | 
	[
  "def",
  "split_by_category",
  "(",
  "biom_cols",
  ",",
  "mapping",
  ",",
  "category_id",
  ")",
  ":",
  "columns",
  "=",
  "defaultdict",
  "(",
  "list",
  ")",
  "for",
  "i",
  ",",
  "col",
  "in",
  "enumerate",
  "(",
  "biom_cols",
  ")",
  ":",
  "columns",
  "[",
  "mapping",
  "[",
  "col",
  "[",
  "'id'",
  "]",
  "]",
  "[",
  "category_id",
  "]",
  "]",
  ".",
  "append",
  "(",
  "(",
  "i",
  ",",
  "col",
  ")",
  ")",
  "return",
  "columns"
] | 
	Split up the column data in a biom table by mapping category value. | 
	[
  "Split",
  "up",
  "the",
  "column",
  "data",
  "in",
  "a",
  "biom",
  "table",
  "by",
  "mapping",
  "category",
  "value",
  "."
] | 
	0b74ef171e6a84761710548501dfac71285a58a3 | 
	https://github.com/smdabdoub/phylotoast/blob/0b74ef171e6a84761710548501dfac71285a58a3/bin/transpose_biom.py#L17-L25 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/stockholm2oneline.py | 
	print_line | 
	def print_line(l):
    """
    print line if starts with ...
    """
    print_lines = ['# STOCKHOLM', '#=GF', '#=GS', ' ']
    if len(l.split()) == 0:
        return True
    for start in print_lines:
        if l.startswith(start):
            return True
    return False | 
	python | 
	def print_line(l):
    """
    print line if starts with ...
    """
    print_lines = ['# STOCKHOLM', '#=GF', '#=GS', ' ']
    if len(l.split()) == 0:
        return True
    for start in print_lines:
        if l.startswith(start):
            return True
    return False | 
	[
  "def",
  "print_line",
  "(",
  "l",
  ")",
  ":",
  "print_lines",
  "=",
  "[",
  "'# STOCKHOLM'",
  ",",
  "'#=GF'",
  ",",
  "'#=GS'",
  ",",
  "' '",
  "]",
  "if",
  "len",
  "(",
  "l",
  ".",
  "split",
  "(",
  ")",
  ")",
  "==",
  "0",
  ":",
  "return",
  "True",
  "for",
  "start",
  "in",
  "print_lines",
  ":",
  "if",
  "l",
  ".",
  "startswith",
  "(",
  "start",
  ")",
  ":",
  "return",
  "True",
  "return",
  "False"
] | 
	print line if starts with ... | 
	[
  "print",
  "line",
  "if",
  "starts",
  "with",
  "..."
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/stockholm2oneline.py#L11-L21 | 
	train | 
| 
	christophertbrown/bioscripts | 
	ctbBio/stockholm2oneline.py | 
	stock2one | 
	def stock2one(stock):
    """
    convert stockholm to single line format
    """
    lines = {}
    for line in stock:
        line = line.strip()
        if print_line(line) is True:
            yield line
            continue
        if line.startswith('//'):
            continue
        ID, seq = line.rsplit(' ', 1)
        if ID not in lines:
            lines[ID] = ''
        else:
            # remove preceding white space
            seq = seq.strip()
        lines[ID] += seq
    for ID, line in lines.items():
        yield '\t'.join([ID, line])
    yield '\n//' | 
	python | 
	def stock2one(stock):
    """
    convert stockholm to single line format
    """
    lines = {}
    for line in stock:
        line = line.strip()
        if print_line(line) is True:
            yield line
            continue
        if line.startswith('//'):
            continue
        ID, seq = line.rsplit(' ', 1)
        if ID not in lines:
            lines[ID] = ''
        else:
            # remove preceding white space
            seq = seq.strip()
        lines[ID] += seq
    for ID, line in lines.items():
        yield '\t'.join([ID, line])
    yield '\n//' | 
	[
  "def",
  "stock2one",
  "(",
  "stock",
  ")",
  ":",
  "lines",
  "=",
  "{",
  "}",
  "for",
  "line",
  "in",
  "stock",
  ":",
  "line",
  "=",
  "line",
  ".",
  "strip",
  "(",
  ")",
  "if",
  "print_line",
  "(",
  "line",
  ")",
  "is",
  "True",
  ":",
  "yield",
  "line",
  "continue",
  "if",
  "line",
  ".",
  "startswith",
  "(",
  "'//'",
  ")",
  ":",
  "continue",
  "ID",
  ",",
  "seq",
  "=",
  "line",
  ".",
  "rsplit",
  "(",
  "' '",
  ",",
  "1",
  ")",
  "if",
  "ID",
  "not",
  "in",
  "lines",
  ":",
  "lines",
  "[",
  "ID",
  "]",
  "=",
  "''",
  "else",
  ":",
  "# remove preceding white space",
  "seq",
  "=",
  "seq",
  ".",
  "strip",
  "(",
  ")",
  "lines",
  "[",
  "ID",
  "]",
  "+=",
  "seq",
  "for",
  "ID",
  ",",
  "line",
  "in",
  "lines",
  ".",
  "items",
  "(",
  ")",
  ":",
  "yield",
  "'\\t'",
  ".",
  "join",
  "(",
  "[",
  "ID",
  ",",
  "line",
  "]",
  ")",
  "yield",
  "'\\n//'"
] | 
	convert stockholm to single line format | 
	[
  "convert",
  "stockholm",
  "to",
  "single",
  "line",
  "format"
] | 
	83b2566b3a5745437ec651cd6cafddd056846240 | 
	https://github.com/christophertbrown/bioscripts/blob/83b2566b3a5745437ec651cd6cafddd056846240/ctbBio/stockholm2oneline.py#L23-L44 | 
	train | 
| 
	elbow-jason/Uno-deprecated | 
	uno/helpers.py | 
	math_func | 
	def math_func(f):
    """
    Statics the methods. wut.
    """
    @wraps(f)
    def wrapper(*args, **kwargs):
        if len(args) > 0:
            return_type = type(args[0])
        if kwargs.has_key('return_type'):
            return_type = kwargs['return_type']
            kwargs.pop('return_type')
            return return_type(f(*args, **kwargs))
        args = list((setify(x) for x in args))
        return return_type(f(*args, **kwargs))
    return wrapper | 
	python | 
	def math_func(f):
    """
    Statics the methods. wut.
    """
    @wraps(f)
    def wrapper(*args, **kwargs):
        if len(args) > 0:
            return_type = type(args[0])
        if kwargs.has_key('return_type'):
            return_type = kwargs['return_type']
            kwargs.pop('return_type')
            return return_type(f(*args, **kwargs))
        args = list((setify(x) for x in args))
        return return_type(f(*args, **kwargs))
    return wrapper | 
	[
  "def",
  "math_func",
  "(",
  "f",
  ")",
  ":",
  "@",
  "wraps",
  "(",
  "f",
  ")",
  "def",
  "wrapper",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ":",
  "if",
  "len",
  "(",
  "args",
  ")",
  ">",
  "0",
  ":",
  "return_type",
  "=",
  "type",
  "(",
  "args",
  "[",
  "0",
  "]",
  ")",
  "if",
  "kwargs",
  ".",
  "has_key",
  "(",
  "'return_type'",
  ")",
  ":",
  "return_type",
  "=",
  "kwargs",
  "[",
  "'return_type'",
  "]",
  "kwargs",
  ".",
  "pop",
  "(",
  "'return_type'",
  ")",
  "return",
  "return_type",
  "(",
  "f",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ")",
  "args",
  "=",
  "list",
  "(",
  "(",
  "setify",
  "(",
  "x",
  ")",
  "for",
  "x",
  "in",
  "args",
  ")",
  ")",
  "return",
  "return_type",
  "(",
  "f",
  "(",
  "*",
  "args",
  ",",
  "*",
  "*",
  "kwargs",
  ")",
  ")",
  "return",
  "wrapper"
] | 
	Statics the methods. wut. | 
	[
  "Statics",
  "the",
  "methods",
  ".",
  "wut",
  "."
] | 
	4ad07d7b84e5b6e3e2b2c89db69448906f24b4e4 | 
	https://github.com/elbow-jason/Uno-deprecated/blob/4ad07d7b84e5b6e3e2b2c89db69448906f24b4e4/uno/helpers.py#L8-L22 | 
	train | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.
