Datasets:
Upload folder using huggingface_hub
Browse files- .gitignore +2 -1
- README.md +261 -82
- wanfall.py +222 -5
.gitignore
CHANGED
|
@@ -4,4 +4,5 @@ create_splits.py
|
|
| 4 |
export_via_to_csv.py
|
| 5 |
extract_jsonl_metadata.py
|
| 6 |
test_wanfall_builder.py
|
| 7 |
-
|
|
|
|
|
|
| 4 |
export_via_to_csv.py
|
| 5 |
extract_jsonl_metadata.py
|
| 6 |
test_wanfall_builder.py
|
| 7 |
+
.claude
|
| 8 |
+
test_framewise_complete.py
|
README.md
CHANGED
|
@@ -16,8 +16,7 @@ configs:
|
|
| 16 |
- config_name: labels
|
| 17 |
data_files:
|
| 18 |
- labels/wanfall.csv
|
| 19 |
-
|
| 20 |
-
description: "Temporal segment labels for all videos. Load splits to get train/val/test paths."
|
| 21 |
|
| 22 |
- config_name: metadata
|
| 23 |
data_files:
|
|
@@ -32,6 +31,7 @@ configs:
|
|
| 32 |
path: "splits/random/val.csv"
|
| 33 |
- split: test
|
| 34 |
path: "splits/random/test.csv"
|
|
|
|
| 35 |
description: "Random 80/10/10 train/val/test split (seed 42)"
|
| 36 |
|
| 37 |
- config_name: cross_age
|
|
@@ -63,6 +63,9 @@ configs:
|
|
| 63 |
- split: test
|
| 64 |
path: "splits/cross_bmi/test.csv"
|
| 65 |
description: "Cross-BMI evaluation: train on normal/underweight, val on overweight, test on obese"
|
|
|
|
|
|
|
|
|
|
| 66 |
---
|
| 67 |
[](https://creativecommons.org/licenses/by-nc/4.0/)
|
| 68 |
|
|
@@ -91,11 +94,13 @@ WanFall is a large-scale synthetic dataset designed for activity recognition res
|
|
| 91 |
- **Video duration**: 5.0625 seconds per clip
|
| 92 |
- **Frame count**: 81 frames per video
|
| 93 |
- **Frame rate**: 16 fps
|
| 94 |
-
- **
|
|
|
|
| 95 |
- `random`: 80/10/10 train/val/test split (seed 42) - 9,600/1,200/1,200 videos
|
| 96 |
- `cross_age`: Cross-age evaluation - 4,000/2,000/6,000 videos
|
| 97 |
- `cross_ethnicity`: Cross-ethnicity evaluation - 5,178/1,741/5,081 videos
|
| 98 |
- `cross_bmi`: Cross-BMI evaluation - 6,066/2,962/2,972 videos
|
|
|
|
| 99 |
- **Metadata fields**: 12 demographic and scene attributes per video
|
| 100 |
|
| 101 |
## Activity Categories
|
|
@@ -174,71 +179,267 @@ fall/fall_ch_002
|
|
| 174 |
...
|
| 175 |
```
|
| 176 |
|
| 177 |
-
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
```python
|
| 180 |
from datasets import load_dataset
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
#
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
]
|
| 230 |
-
|
|
|
|
| 231 |
```
|
| 232 |
|
| 233 |
-
### Label
|
|
|
|
|
|
|
| 234 |
|
| 235 |
```python
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
```
|
| 243 |
|
| 244 |
### Cross-Demographic Evaluation Splits
|
|
@@ -263,28 +464,6 @@ Evaluates model performance across different body types:
|
|
| 263 |
- **Validation** (2,962 videos): Overweight
|
| 264 |
- **Test** (2,972 videos): Obese
|
| 265 |
|
| 266 |
-
**Usage Example:**
|
| 267 |
-
```python
|
| 268 |
-
from datasets import load_dataset
|
| 269 |
-
import pandas as pd
|
| 270 |
-
|
| 271 |
-
# Load cross-age splits
|
| 272 |
-
cross_age = load_dataset("simplexsigil2/wanfall", "cross_age")
|
| 273 |
-
labels = load_dataset("simplexsigil2/wanfall", "labels")["train"]
|
| 274 |
-
|
| 275 |
-
# Merge labels with splits
|
| 276 |
-
labels_df = pd.DataFrame(labels)
|
| 277 |
-
train_df = pd.DataFrame(cross_age["train"])
|
| 278 |
-
train_labels = pd.merge(train_df, labels_df, on="path", how="left")
|
| 279 |
-
|
| 280 |
-
print(f"Cross-age train: {len(train_labels)} segments")
|
| 281 |
-
print(f"Age groups: {train_labels['age_group'].unique()}")
|
| 282 |
-
|
| 283 |
-
# Similarly for cross_ethnicity and cross_bmi configs
|
| 284 |
-
cross_ethnicity = load_dataset("simplexsigil2/wanfall", "cross_ethnicity")
|
| 285 |
-
cross_bmi = load_dataset("simplexsigil2/wanfall", "cross_bmi")
|
| 286 |
-
```
|
| 287 |
-
|
| 288 |
## Technical Properties
|
| 289 |
|
| 290 |
### Video Specifications
|
|
|
|
| 16 |
- config_name: labels
|
| 17 |
data_files:
|
| 18 |
- labels/wanfall.csv
|
| 19 |
+
description: "All temporal segment labels (19,228 segments) in a single split."
|
|
|
|
| 20 |
|
| 21 |
- config_name: metadata
|
| 22 |
data_files:
|
|
|
|
| 31 |
path: "splits/random/val.csv"
|
| 32 |
- split: test
|
| 33 |
path: "splits/random/test.csv"
|
| 34 |
+
default: true
|
| 35 |
description: "Random 80/10/10 train/val/test split (seed 42)"
|
| 36 |
|
| 37 |
- config_name: cross_age
|
|
|
|
| 63 |
- split: test
|
| 64 |
path: "splits/cross_bmi/test.csv"
|
| 65 |
description: "Cross-BMI evaluation: train on normal/underweight, val on overweight, test on obese"
|
| 66 |
+
|
| 67 |
+
- config_name: framewise
|
| 68 |
+
description: "Frame-wise labels (81 per video). Use framewise=True parameter with any split config instead."
|
| 69 |
---
|
| 70 |
[](https://creativecommons.org/licenses/by-nc/4.0/)
|
| 71 |
|
|
|
|
| 94 |
- **Video duration**: 5.0625 seconds per clip
|
| 95 |
- **Frame count**: 81 frames per video
|
| 96 |
- **Frame rate**: 16 fps
|
| 97 |
+
- **Annotation formats**: Temporal segments (start/end times) OR frame-wise labels (81 per video)
|
| 98 |
+
- **Split configurations**: 4 split configs + framewise support
|
| 99 |
- `random`: 80/10/10 train/val/test split (seed 42) - 9,600/1,200/1,200 videos
|
| 100 |
- `cross_age`: Cross-age evaluation - 4,000/2,000/6,000 videos
|
| 101 |
- `cross_ethnicity`: Cross-ethnicity evaluation - 5,178/1,741/5,081 videos
|
| 102 |
- `cross_bmi`: Cross-BMI evaluation - 6,066/2,962/2,972 videos
|
| 103 |
+
- `framewise=True`: Add frame-wise labels (81 per video) to any split
|
| 104 |
- **Metadata fields**: 12 demographic and scene attributes per video
|
| 105 |
|
| 106 |
## Activity Categories
|
|
|
|
| 179 |
...
|
| 180 |
```
|
| 181 |
|
| 182 |
+
## Usage
|
| 183 |
+
|
| 184 |
+
The WanFall dataset provides a flexible Python API through the HuggingFace `datasets` library with multiple configurations and loading modes.
|
| 185 |
+
|
| 186 |
+
### Quick Start
|
| 187 |
+
|
| 188 |
+
```python
|
| 189 |
+
from datasets import load_dataset
|
| 190 |
+
|
| 191 |
+
# Load with random 80/10/10 split (temporal segments, default)
|
| 192 |
+
dataset = load_dataset("simplexsigil2/wanfall", "random")
|
| 193 |
+
|
| 194 |
+
print(f"Train: {len(dataset['train'])} segments")
|
| 195 |
+
print(f"Validation: {len(dataset['validation'])} segments")
|
| 196 |
+
print(f"Test: {len(dataset['test'])} segments")
|
| 197 |
+
|
| 198 |
+
# Access example
|
| 199 |
+
example = dataset['train'][0]
|
| 200 |
+
print(f"Video: {example['path']}")
|
| 201 |
+
print(f"Activity: {example['label']} ({example['start']:.2f}s - {example['end']:.2f}s)")
|
| 202 |
+
print(f"Age group: {example['age_group']}")
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
### Dataset Configurations
|
| 206 |
+
|
| 207 |
+
WanFall provides **7 configurations** for different use cases:
|
| 208 |
+
|
| 209 |
+
**Key Distinction: Segment-Level vs Video-Level**
|
| 210 |
+
|
| 211 |
+
| Configuration | Sample Unit | Train Size | Has start/end? | Has frame_labels? |
|
| 212 |
+
|--------------|-------------|------------|----------------|-------------------|
|
| 213 |
+
| `random` | **Segment** | 15,344 segments | ✅ Yes | ❌ No |
|
| 214 |
+
| `random` + `framewise=True` | **Video** | 9,600 videos | ❌ No | ✅ Yes (81 labels) |
|
| 215 |
+
| `cross_age` | **Segment** | 6,267 segments | ✅ Yes | ❌ No |
|
| 216 |
+
| `cross_age` + `framewise=True` | **Video** | 4,000 videos | ❌ No | ✅ Yes (81 labels) |
|
| 217 |
+
| `labels` | **Segment** | 19,228 segments | ✅ Yes | ❌ No |
|
| 218 |
+
| `framewise` | **Video** | 12,000 videos | ❌ No | ✅ Yes (81 labels) |
|
| 219 |
+
|
| 220 |
+
#### 1. **Temporal Segments** (Default)
|
| 221 |
+
|
| 222 |
+
Load temporal segment annotations where **each sample is a segment** with start/end times:
|
| 223 |
+
|
| 224 |
+
```python
|
| 225 |
+
# Default: random split with temporal segments
|
| 226 |
+
dataset = load_dataset("simplexsigil2/wanfall") # or "random"
|
| 227 |
+
|
| 228 |
+
# Each example is a SEGMENT (not a video)
|
| 229 |
+
example = dataset['train'][0]
|
| 230 |
+
print(example['path']) # "fall/fall_ch_001"
|
| 231 |
+
print(example['label']) # 1 (activity class ID)
|
| 232 |
+
print(example['start']) # 0.0 (start time in seconds)
|
| 233 |
+
print(example['end']) # 1.006 (end time in seconds)
|
| 234 |
+
print(example['age_group']) # Demographic metadata
|
| 235 |
+
|
| 236 |
+
# Dataset contains multiple segments per video
|
| 237 |
+
print(f"Total segments in train: {len(dataset['train'])}") # 15,344 segments
|
| 238 |
+
print(f"Unique videos: {len(set([ex['path'] for ex in dataset['train']]))}") # 9,600 videos
|
| 239 |
+
```
|
| 240 |
+
|
| 241 |
+
**Key characteristics:**
|
| 242 |
+
- **Sample = Temporal Segment** (one video can have multiple segments)
|
| 243 |
+
- Each segment has `start` and `end` times
|
| 244 |
+
- Train: 15,344 segments from 9,600 videos
|
| 245 |
+
- Val: 1,927 segments from 1,200 videos
|
| 246 |
+
- Test: 1,957 segments from 1,200 videos
|
| 247 |
+
|
| 248 |
+
**Available split configs:**
|
| 249 |
+
- `random` - 80/10/10 split (15,344/1,927/1,957 segments)
|
| 250 |
+
- `cross_age` - Cross-age evaluation (6,267/3,762/9,199 segments)
|
| 251 |
+
- `cross_ethnicity` - Cross-ethnicity evaluation (8,267/2,762/8,199 segments)
|
| 252 |
+
- `cross_bmi` - Cross-BMI evaluation (9,675/4,701/4,852 segments)
|
| 253 |
+
|
| 254 |
+
#### 2. **Frame-Wise Labels**
|
| 255 |
+
|
| 256 |
+
Load dense frame-level labels where **each sample is a video** with 81 labels:
|
| 257 |
+
|
| 258 |
+
```python
|
| 259 |
+
# Standalone: all 12,000 videos with frame-wise labels
|
| 260 |
+
dataset = load_dataset("simplexsigil2/wanfall", "framewise")
|
| 261 |
+
|
| 262 |
+
# With splits: random split with frame-wise labels
|
| 263 |
+
dataset = load_dataset("simplexsigil2/wanfall", "random", framewise=True)
|
| 264 |
+
|
| 265 |
+
# Each example is a VIDEO (not a segment)
|
| 266 |
+
example = dataset['train'][0]
|
| 267 |
+
print(example['path']) # "fall/fall_ch_001"
|
| 268 |
+
print(example['frame_labels']) # [1, 1, 1, ..., 11, 11] (81 labels)
|
| 269 |
+
print(len(example['frame_labels'])) # 81 frames
|
| 270 |
+
print(example['age_group']) # Demographic metadata included
|
| 271 |
+
|
| 272 |
+
# Dataset contains one sample per video
|
| 273 |
+
print(f"Total videos in train: {len(dataset['train'])}") # 9,600 videos
|
| 274 |
+
```
|
| 275 |
+
|
| 276 |
+
**Key characteristics:**
|
| 277 |
+
- **Sample = Video** (one sample per video, no segments)
|
| 278 |
+
- Each video has 81 frame labels (no start/end times)
|
| 279 |
+
- Train: 9,600 videos
|
| 280 |
+
- Val: 1,200 videos
|
| 281 |
+
- Test: 1,200 videos
|
| 282 |
+
|
| 283 |
+
**Key features:**
|
| 284 |
+
- **81 labels per video** (one per frame @ 16fps)
|
| 285 |
+
- **Works with all split configs**: Add `framewise=True` to any split
|
| 286 |
+
- **Efficient**: 348KB compressed archive, automatically cached
|
| 287 |
+
- **Complete metadata**: All demographic attributes included
|
| 288 |
+
|
| 289 |
+
#### 3. **Paths Only Mode**
|
| 290 |
+
|
| 291 |
+
Load only video paths for custom video loading:
|
| 292 |
+
|
| 293 |
+
```python
|
| 294 |
+
# Minimal loading: only video paths
|
| 295 |
+
dataset = load_dataset("simplexsigil2/wanfall", "random", paths_only=True)
|
| 296 |
+
|
| 297 |
+
# Only contains paths
|
| 298 |
+
example = dataset['train'][0]
|
| 299 |
+
print(example) # {'path': 'fall/fall_ch_001'}
|
| 300 |
+
```
|
| 301 |
+
|
| 302 |
+
#### 4. **All Segments** (No Splits)
|
| 303 |
+
|
| 304 |
+
Load all 19,228 temporal segments without split partitions:
|
| 305 |
+
|
| 306 |
+
```python
|
| 307 |
+
dataset = load_dataset("simplexsigil2/wanfall", "labels")
|
| 308 |
+
all_segments = dataset['train'] # Single split with all segments
|
| 309 |
+
print(f"Total segments: {len(all_segments)}") # 19,228 segments
|
| 310 |
+
|
| 311 |
+
# Each sample is a segment (like config 1, but no train/val/test split)
|
| 312 |
+
example = all_segments[0]
|
| 313 |
+
print(f"Path: {example['path']}")
|
| 314 |
+
print(f"Segment: {example['start']:.2f}s - {example['end']:.2f}s")
|
| 315 |
+
print(f"Label: {example['label']}")
|
| 316 |
+
```
|
| 317 |
+
|
| 318 |
+
#### 5. **Video Metadata Only**
|
| 319 |
+
|
| 320 |
+
Load only video-level metadata (12,000 videos):
|
| 321 |
+
|
| 322 |
+
```python
|
| 323 |
+
dataset = load_dataset("simplexsigil2/wanfall", "metadata")
|
| 324 |
+
metadata = dataset['train'] # 12,000 videos
|
| 325 |
+
print(f"Columns: {metadata.column_names}")
|
| 326 |
+
# ['path', 'dataset', 'age_group', 'gender_presentation', ...]
|
| 327 |
+
```
|
| 328 |
+
|
| 329 |
+
### Complete Usage Examples
|
| 330 |
+
|
| 331 |
+
#### Example 1: Training with Temporal Segments (Segment-Level)
|
| 332 |
+
|
| 333 |
+
When using temporal segments, **each sample is a segment** with start/end times. Multiple segments can come from the same video.
|
| 334 |
|
| 335 |
```python
|
| 336 |
from datasets import load_dataset
|
| 337 |
+
|
| 338 |
+
# Load random split (segment-level samples)
|
| 339 |
+
dataset = load_dataset("simplexsigil2/wanfall", "random")
|
| 340 |
+
|
| 341 |
+
print(f"Training on {len(dataset['train'])} segments") # 15,344 segments
|
| 342 |
+
|
| 343 |
+
# Training loop - each iteration is ONE SEGMENT
|
| 344 |
+
for example in dataset['train']:
|
| 345 |
+
video_path = example['path']
|
| 346 |
+
activity_label = example['label'] # 0-15
|
| 347 |
+
start_time = example['start']
|
| 348 |
+
end_time = example['end']
|
| 349 |
+
|
| 350 |
+
# Load only the frames for this segment
|
| 351 |
+
# frames = load_video_segment(video_path, start_time, end_time)
|
| 352 |
+
# model.train(frames, activity_label)
|
| 353 |
+
|
| 354 |
+
# Note: The same video can appear multiple times with different segments
|
| 355 |
+
# E.g., "fall/fall_ch_001" might have segments [0.0-1.0] and [1.0-5.0]
|
| 356 |
+
```
|
| 357 |
+
|
| 358 |
+
#### Example 2: Training with Frame-Wise Labels (Video-Level)
|
| 359 |
+
|
| 360 |
+
When using frame-wise labels, **each sample is a video** with 81 frame labels. Each video appears only once.
|
| 361 |
+
|
| 362 |
+
```python
|
| 363 |
+
from datasets import load_dataset
|
| 364 |
+
|
| 365 |
+
# Load random split with frame-wise labels (video-level samples)
|
| 366 |
+
dataset = load_dataset("simplexsigil2/wanfall", "random", framewise=True)
|
| 367 |
+
|
| 368 |
+
print(f"Training on {len(dataset['train'])} videos") # 9,600 videos
|
| 369 |
+
|
| 370 |
+
# Training loop - each iteration is ONE VIDEO
|
| 371 |
+
for example in dataset['train']:
|
| 372 |
+
video_path = example['path']
|
| 373 |
+
frame_labels = example['frame_labels'] # 81 labels (one per frame)
|
| 374 |
+
|
| 375 |
+
# Load all frames from the video
|
| 376 |
+
# frames = load_video(video_path) # Shape: (81, H, W, 3)
|
| 377 |
+
# model.train(frames, frame_labels)
|
| 378 |
+
|
| 379 |
+
# Note: Each video appears exactly once with its 81 frame labels
|
| 380 |
+
```
|
| 381 |
+
|
| 382 |
+
#### Example 3: Cross-Demographic Evaluation
|
| 383 |
+
|
| 384 |
+
```python
|
| 385 |
+
from datasets import load_dataset
|
| 386 |
+
|
| 387 |
+
# Train on young adults, test on elderly
|
| 388 |
+
cross_age = load_dataset("simplexsigil2/wanfall", "cross_age", framewise=True)
|
| 389 |
+
|
| 390 |
+
# Train
|
| 391 |
+
for example in cross_age['train']:
|
| 392 |
+
age = cross_age['train'].features['age_group'].int2str(example['age_group'])
|
| 393 |
+
print(f"Training on {age}") # "young_adults_18_34" or "middle_aged_35_64"
|
| 394 |
+
|
| 395 |
+
# Test
|
| 396 |
+
for example in cross_age['test']:
|
| 397 |
+
age = cross_age['test'].features['age_group'].int2str(example['age_group'])
|
| 398 |
+
print(f"Testing on {age}") # "elderly_65_plus", "children_5_12", etc.
|
| 399 |
+
```
|
| 400 |
+
|
| 401 |
+
#### Example 4: Filtering by Demographics
|
| 402 |
+
|
| 403 |
+
```python
|
| 404 |
+
from datasets import load_dataset
|
| 405 |
+
|
| 406 |
+
# Load all segments
|
| 407 |
+
dataset = load_dataset("simplexsigil2/wanfall", "labels")
|
| 408 |
+
segments = dataset['train']
|
| 409 |
+
|
| 410 |
+
# Access label feature for conversion
|
| 411 |
+
label_feature = segments.features['label']
|
| 412 |
+
age_feature = segments.features['age_group']
|
| 413 |
+
|
| 414 |
+
# Filter elderly fall segments
|
| 415 |
+
elderly_falls = [
|
| 416 |
+
ex for ex in segments
|
| 417 |
+
if age_feature.int2str(ex['age_group']) == 'elderly_65_plus'
|
| 418 |
+
and ex['label'] == 1 # fall
|
| 419 |
]
|
| 420 |
+
|
| 421 |
+
print(f"Found {len(elderly_falls)} elderly fall segments")
|
| 422 |
```
|
| 423 |
|
| 424 |
+
### Label Conversion
|
| 425 |
+
|
| 426 |
+
Labels are stored as integers (0-15) but can be converted to strings:
|
| 427 |
|
| 428 |
```python
|
| 429 |
+
dataset = load_dataset("simplexsigil2/wanfall", "random")
|
| 430 |
+
|
| 431 |
+
# Get label feature
|
| 432 |
+
label_feature = dataset['train'].features['label']
|
| 433 |
+
|
| 434 |
+
# Convert integer to string
|
| 435 |
+
label_name = label_feature.int2str(1) # "fall"
|
| 436 |
+
|
| 437 |
+
# Convert string to integer
|
| 438 |
+
label_id = label_feature.str2int("walk") # 0
|
| 439 |
+
|
| 440 |
+
# Access all label names
|
| 441 |
+
all_labels = label_feature.names
|
| 442 |
+
print(all_labels) # ['walk', 'fall', 'fallen', ...]
|
| 443 |
```
|
| 444 |
|
| 445 |
### Cross-Demographic Evaluation Splits
|
|
|
|
| 464 |
- **Validation** (2,962 videos): Overweight
|
| 465 |
- **Test** (2,972 videos): Obese
|
| 466 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
## Technical Properties
|
| 468 |
|
| 469 |
### Video Specifications
|
wanfall.py
CHANGED
|
@@ -9,7 +9,10 @@ robust activity recognition across diverse populations.
|
|
| 9 |
|
| 10 |
import pandas as pd
|
| 11 |
import datasets
|
| 12 |
-
from datasets import BuilderConfig, GeneratorBasedBuilder, Features, Value, ClassLabel, SplitGenerator, Split
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
# Dataset metadata
|
|
@@ -81,15 +84,17 @@ class WanFallConfig(BuilderConfig):
|
|
| 81 |
"""BuilderConfig for WanFall dataset.
|
| 82 |
|
| 83 |
Args:
|
| 84 |
-
split_type: Type of data to load ("labels", "metadata", or split name like "random")
|
| 85 |
paths_only: If True, only return video paths for split configs (no label merging)
|
|
|
|
| 86 |
**kwargs: Keyword arguments forwarded to super.
|
| 87 |
"""
|
| 88 |
|
| 89 |
-
def __init__(self, split_type="labels", paths_only=False, **kwargs):
|
| 90 |
super().__init__(**kwargs)
|
| 91 |
self.split_type = split_type
|
| 92 |
self.paths_only = paths_only
|
|
|
|
| 93 |
|
| 94 |
|
| 95 |
class WanFall(GeneratorBasedBuilder):
|
|
@@ -135,6 +140,13 @@ class WanFall(GeneratorBasedBuilder):
|
|
| 135 |
description="Cross-BMI evaluation: train on normal/underweight, test on obese",
|
| 136 |
split_type="cross_bmi",
|
| 137 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
]
|
| 139 |
|
| 140 |
DEFAULT_CONFIG_NAME = "random"
|
|
@@ -145,6 +157,8 @@ class WanFall(GeneratorBasedBuilder):
|
|
| 145 |
# Define features based on config type
|
| 146 |
if self.config.split_type == "metadata":
|
| 147 |
features = self._get_metadata_features()
|
|
|
|
|
|
|
| 148 |
elif self.config.paths_only:
|
| 149 |
features = self._get_paths_only_features()
|
| 150 |
else:
|
|
@@ -222,9 +236,83 @@ class WanFall(GeneratorBasedBuilder):
|
|
| 222 |
"path": Value("string"),
|
| 223 |
})
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
def _split_generators(self, dl_manager):
|
| 226 |
"""Define data splits and their source files."""
|
| 227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
# Handle different config types
|
| 229 |
if self.config.split_type == "labels":
|
| 230 |
# Labels config: single split with all temporal segments
|
|
@@ -289,8 +377,8 @@ class WanFall(GeneratorBasedBuilder):
|
|
| 289 |
]
|
| 290 |
|
| 291 |
def _generate_examples(self, filepath=None, split_file=None, labels_path=None,
|
| 292 |
-
split_name=None, split_dir=None):
|
| 293 |
-
"""Generate examples from CSV files.
|
| 294 |
|
| 295 |
Args:
|
| 296 |
filepath: Direct path to CSV file (for labels/metadata configs)
|
|
@@ -298,8 +386,137 @@ class WanFall(GeneratorBasedBuilder):
|
|
| 298 |
labels_path: Path to labels file for merging (for split configs with full data)
|
| 299 |
split_name: Name of the split being generated
|
| 300 |
split_dir: Directory containing split files
|
|
|
|
|
|
|
| 301 |
"""
|
| 302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
# Case 1: Direct file loading (labels or metadata config)
|
| 304 |
if filepath is not None:
|
| 305 |
df = pd.read_csv(filepath)
|
|
|
|
| 9 |
|
| 10 |
import pandas as pd
|
| 11 |
import datasets
|
| 12 |
+
from datasets import BuilderConfig, GeneratorBasedBuilder, Features, Value, ClassLabel, SplitGenerator, Split, Sequence
|
| 13 |
+
import h5py
|
| 14 |
+
import tarfile
|
| 15 |
+
from pathlib import Path
|
| 16 |
|
| 17 |
|
| 18 |
# Dataset metadata
|
|
|
|
| 84 |
"""BuilderConfig for WanFall dataset.
|
| 85 |
|
| 86 |
Args:
|
| 87 |
+
split_type: Type of data to load ("labels", "metadata", "framewise", or split name like "random")
|
| 88 |
paths_only: If True, only return video paths for split configs (no label merging)
|
| 89 |
+
framewise: If True, load frame-wise labels from HDF5 files (81 labels per video)
|
| 90 |
**kwargs: Keyword arguments forwarded to super.
|
| 91 |
"""
|
| 92 |
|
| 93 |
+
def __init__(self, split_type="labels", paths_only=False, framewise=False, **kwargs):
|
| 94 |
super().__init__(**kwargs)
|
| 95 |
self.split_type = split_type
|
| 96 |
self.paths_only = paths_only
|
| 97 |
+
self.framewise = framewise
|
| 98 |
|
| 99 |
|
| 100 |
class WanFall(GeneratorBasedBuilder):
|
|
|
|
| 140 |
description="Cross-BMI evaluation: train on normal/underweight, test on obese",
|
| 141 |
split_type="cross_bmi",
|
| 142 |
),
|
| 143 |
+
WanFallConfig(
|
| 144 |
+
name="framewise",
|
| 145 |
+
version=VERSION,
|
| 146 |
+
description="Frame-wise labels for all videos (81 labels per video, one per frame)",
|
| 147 |
+
split_type="framewise",
|
| 148 |
+
framewise=True,
|
| 149 |
+
),
|
| 150 |
]
|
| 151 |
|
| 152 |
DEFAULT_CONFIG_NAME = "random"
|
|
|
|
| 157 |
# Define features based on config type
|
| 158 |
if self.config.split_type == "metadata":
|
| 159 |
features = self._get_metadata_features()
|
| 160 |
+
elif self.config.framewise:
|
| 161 |
+
features = self._get_framewise_features()
|
| 162 |
elif self.config.paths_only:
|
| 163 |
features = self._get_paths_only_features()
|
| 164 |
else:
|
|
|
|
| 236 |
"path": Value("string"),
|
| 237 |
})
|
| 238 |
|
| 239 |
+
def _get_framewise_features(self):
|
| 240 |
+
"""Feature schema for frame-wise labels (81 labels per video)."""
|
| 241 |
+
return Features({
|
| 242 |
+
# Core identity
|
| 243 |
+
"path": Value("string"),
|
| 244 |
+
"dataset": Value("string"),
|
| 245 |
+
|
| 246 |
+
# Frame-wise labels (81 frames @ 16fps = 5.0625 seconds)
|
| 247 |
+
"frame_labels": Sequence(ClassLabel(num_classes=16, names=_ACTIVITY_LABELS), length=81),
|
| 248 |
+
|
| 249 |
+
# Demographic metadata (same as metadata config)
|
| 250 |
+
"age_group": ClassLabel(num_classes=6, names=_AGE_GROUPS),
|
| 251 |
+
"gender_presentation": ClassLabel(num_classes=2, names=_GENDERS),
|
| 252 |
+
"monk_skin_tone": ClassLabel(num_classes=10, names=_SKIN_TONES),
|
| 253 |
+
"race_ethnicity_omb": ClassLabel(num_classes=7, names=_ETHNICITIES),
|
| 254 |
+
"bmi_band": ClassLabel(num_classes=4, names=_BMI_BANDS),
|
| 255 |
+
"height_band": ClassLabel(num_classes=3, names=_HEIGHT_BANDS),
|
| 256 |
+
|
| 257 |
+
# Scene metadata
|
| 258 |
+
"environment_category": ClassLabel(num_classes=2, names=_ENVIRONMENTS),
|
| 259 |
+
"camera_shot": ClassLabel(num_classes=2, names=_CAMERA_SHOTS),
|
| 260 |
+
"speed": ClassLabel(num_classes=4, names=_SPEEDS),
|
| 261 |
+
"camera_elevation": ClassLabel(num_classes=4, names=_CAMERA_ELEVATIONS),
|
| 262 |
+
"camera_azimuth": ClassLabel(num_classes=4, names=_CAMERA_AZIMUTHS),
|
| 263 |
+
"camera_distance": ClassLabel(num_classes=2, names=_CAMERA_DISTANCES),
|
| 264 |
+
})
|
| 265 |
+
|
| 266 |
def _split_generators(self, dl_manager):
|
| 267 |
"""Define data splits and their source files."""
|
| 268 |
|
| 269 |
+
# Handle framewise config - needs to download and extract HDF5 files
|
| 270 |
+
if self.config.framewise:
|
| 271 |
+
# Download the frame-wise labels archive
|
| 272 |
+
archive_path = dl_manager.download_and_extract("data_files/frame_wise_labels.tar.zst")
|
| 273 |
+
|
| 274 |
+
# If split_type is "framewise", return all videos in one split
|
| 275 |
+
if self.config.split_type == "framewise":
|
| 276 |
+
return [
|
| 277 |
+
SplitGenerator(
|
| 278 |
+
name=Split.TRAIN,
|
| 279 |
+
gen_kwargs={
|
| 280 |
+
"hdf5_dir": archive_path,
|
| 281 |
+
"metadata_path": "videos/metadata.csv",
|
| 282 |
+
"split_file": None,
|
| 283 |
+
},
|
| 284 |
+
),
|
| 285 |
+
]
|
| 286 |
+
# Otherwise, use split files (random, cross_age, etc.)
|
| 287 |
+
else:
|
| 288 |
+
split_dir = f"splits/{self.config.split_type}"
|
| 289 |
+
return [
|
| 290 |
+
SplitGenerator(
|
| 291 |
+
name=Split.TRAIN,
|
| 292 |
+
gen_kwargs={
|
| 293 |
+
"hdf5_dir": archive_path,
|
| 294 |
+
"metadata_path": "videos/metadata.csv",
|
| 295 |
+
"split_file": f"{split_dir}/train.csv",
|
| 296 |
+
},
|
| 297 |
+
),
|
| 298 |
+
SplitGenerator(
|
| 299 |
+
name=Split.VALIDATION,
|
| 300 |
+
gen_kwargs={
|
| 301 |
+
"hdf5_dir": archive_path,
|
| 302 |
+
"metadata_path": "videos/metadata.csv",
|
| 303 |
+
"split_file": f"{split_dir}/val.csv",
|
| 304 |
+
},
|
| 305 |
+
),
|
| 306 |
+
SplitGenerator(
|
| 307 |
+
name=Split.TEST,
|
| 308 |
+
gen_kwargs={
|
| 309 |
+
"hdf5_dir": archive_path,
|
| 310 |
+
"metadata_path": "videos/metadata.csv",
|
| 311 |
+
"split_file": f"{split_dir}/test.csv",
|
| 312 |
+
},
|
| 313 |
+
),
|
| 314 |
+
]
|
| 315 |
+
|
| 316 |
# Handle different config types
|
| 317 |
if self.config.split_type == "labels":
|
| 318 |
# Labels config: single split with all temporal segments
|
|
|
|
| 377 |
]
|
| 378 |
|
| 379 |
def _generate_examples(self, filepath=None, split_file=None, labels_path=None,
|
| 380 |
+
split_name=None, split_dir=None, hdf5_dir=None, metadata_path=None):
|
| 381 |
+
"""Generate examples from CSV files or HDF5 files.
|
| 382 |
|
| 383 |
Args:
|
| 384 |
filepath: Direct path to CSV file (for labels/metadata configs)
|
|
|
|
| 386 |
labels_path: Path to labels file for merging (for split configs with full data)
|
| 387 |
split_name: Name of the split being generated
|
| 388 |
split_dir: Directory containing split files
|
| 389 |
+
hdf5_dir: Directory containing extracted HDF5 files (for framewise config)
|
| 390 |
+
metadata_path: Path to metadata CSV (for framewise config)
|
| 391 |
"""
|
| 392 |
|
| 393 |
+
# Case 0: Frame-wise labels from HDF5 files
|
| 394 |
+
if hdf5_dir is not None:
|
| 395 |
+
# Load metadata
|
| 396 |
+
metadata_df = pd.read_csv(metadata_path)
|
| 397 |
+
|
| 398 |
+
# If split_file is provided, load the video paths for this split
|
| 399 |
+
valid_paths = None
|
| 400 |
+
if split_file is not None:
|
| 401 |
+
split_df = pd.read_csv(split_file)
|
| 402 |
+
valid_paths = set(split_df['path'].tolist())
|
| 403 |
+
|
| 404 |
+
# hdf5_dir might be a tar file (if zst extraction only decompressed to tar)
|
| 405 |
+
# Check if it's a tar file and handle appropriately
|
| 406 |
+
hdf5_path = Path(hdf5_dir)
|
| 407 |
+
|
| 408 |
+
if hdf5_path.is_file() and (hdf5_path.suffix == '.tar' or tarfile.is_tarfile(str(hdf5_path))):
|
| 409 |
+
# It's a tar file - iterate through it directly
|
| 410 |
+
idx = 0
|
| 411 |
+
with tarfile.open(hdf5_path, 'r') as tar:
|
| 412 |
+
for member in tar.getmembers():
|
| 413 |
+
if not member.name.endswith('.h5'):
|
| 414 |
+
continue
|
| 415 |
+
|
| 416 |
+
# Extract path from tar member name
|
| 417 |
+
# e.g., "./lie_down/lie_down_yo_076.h5" or "lie_down/lie_down_yo_076.h5"
|
| 418 |
+
video_path = member.name.lstrip('./').replace('.h5', '')
|
| 419 |
+
|
| 420 |
+
# Skip if not in this split
|
| 421 |
+
if valid_paths is not None and video_path not in valid_paths:
|
| 422 |
+
continue
|
| 423 |
+
|
| 424 |
+
try:
|
| 425 |
+
# Extract H5 file to memory
|
| 426 |
+
h5_file = tar.extractfile(member)
|
| 427 |
+
if h5_file is None:
|
| 428 |
+
continue
|
| 429 |
+
|
| 430 |
+
# h5py can't read from file-like object directly, need temp file
|
| 431 |
+
import tempfile
|
| 432 |
+
with tempfile.NamedTemporaryFile(suffix='.h5', delete=True) as tmp:
|
| 433 |
+
tmp.write(h5_file.read())
|
| 434 |
+
tmp.flush()
|
| 435 |
+
|
| 436 |
+
with h5py.File(tmp.name, 'r') as f:
|
| 437 |
+
frame_labels = f['label_indices'][:].tolist()
|
| 438 |
+
|
| 439 |
+
# Get metadata for this video
|
| 440 |
+
video_metadata = metadata_df[metadata_df['path'] == video_path]
|
| 441 |
+
|
| 442 |
+
if len(video_metadata) == 0:
|
| 443 |
+
continue
|
| 444 |
+
|
| 445 |
+
video_meta = video_metadata.iloc[0]
|
| 446 |
+
|
| 447 |
+
# Create example
|
| 448 |
+
example = {
|
| 449 |
+
"path": video_path,
|
| 450 |
+
"dataset": "wanfall",
|
| 451 |
+
"frame_labels": frame_labels,
|
| 452 |
+
}
|
| 453 |
+
|
| 454 |
+
# Add metadata fields
|
| 455 |
+
metadata_fields = [
|
| 456 |
+
"age_group", "gender_presentation", "monk_skin_tone",
|
| 457 |
+
"race_ethnicity_omb", "bmi_band", "height_band",
|
| 458 |
+
"environment_category", "camera_shot", "speed",
|
| 459 |
+
"camera_elevation", "camera_azimuth", "camera_distance"
|
| 460 |
+
]
|
| 461 |
+
for field in metadata_fields:
|
| 462 |
+
if field in video_meta and pd.notna(video_meta[field]):
|
| 463 |
+
example[field] = str(video_meta[field])
|
| 464 |
+
|
| 465 |
+
yield idx, example
|
| 466 |
+
idx += 1
|
| 467 |
+
|
| 468 |
+
except Exception as e:
|
| 469 |
+
print(f"Warning: Failed to process {member.name}: {e}")
|
| 470 |
+
continue
|
| 471 |
+
else:
|
| 472 |
+
# It's a directory - glob for H5 files
|
| 473 |
+
hdf5_files = sorted(hdf5_path.glob("**/*.h5"))
|
| 474 |
+
|
| 475 |
+
idx = 0
|
| 476 |
+
for h5_file in hdf5_files:
|
| 477 |
+
relative_path = h5_file.relative_to(hdf5_path)
|
| 478 |
+
video_path = str(relative_path.with_suffix(''))
|
| 479 |
+
|
| 480 |
+
# Skip if not in this split
|
| 481 |
+
if valid_paths is not None and video_path not in valid_paths:
|
| 482 |
+
continue
|
| 483 |
+
|
| 484 |
+
try:
|
| 485 |
+
with h5py.File(h5_file, 'r') as f:
|
| 486 |
+
frame_labels = f['label_indices'][:].tolist()
|
| 487 |
+
|
| 488 |
+
video_metadata = metadata_df[metadata_df['path'] == video_path]
|
| 489 |
+
|
| 490 |
+
if len(video_metadata) == 0:
|
| 491 |
+
continue
|
| 492 |
+
|
| 493 |
+
video_meta = video_metadata.iloc[0]
|
| 494 |
+
|
| 495 |
+
example = {
|
| 496 |
+
"path": video_path,
|
| 497 |
+
"dataset": "wanfall",
|
| 498 |
+
"frame_labels": frame_labels,
|
| 499 |
+
}
|
| 500 |
+
|
| 501 |
+
metadata_fields = [
|
| 502 |
+
"age_group", "gender_presentation", "monk_skin_tone",
|
| 503 |
+
"race_ethnicity_omb", "bmi_band", "height_band",
|
| 504 |
+
"environment_category", "camera_shot", "speed",
|
| 505 |
+
"camera_elevation", "camera_azimuth", "camera_distance"
|
| 506 |
+
]
|
| 507 |
+
for field in metadata_fields:
|
| 508 |
+
if field in video_meta and pd.notna(video_meta[field]):
|
| 509 |
+
example[field] = str(video_meta[field])
|
| 510 |
+
|
| 511 |
+
yield idx, example
|
| 512 |
+
idx += 1
|
| 513 |
+
|
| 514 |
+
except Exception as e:
|
| 515 |
+
print(f"Warning: Failed to process {h5_file}: {e}")
|
| 516 |
+
continue
|
| 517 |
+
|
| 518 |
+
return
|
| 519 |
+
|
| 520 |
# Case 1: Direct file loading (labels or metadata config)
|
| 521 |
if filepath is not None:
|
| 522 |
df = pd.read_csv(filepath)
|