Datasets:
File size: 12,034 Bytes
419eed7 3d8fd0b 419eed7 3d8fd0b 419eed7 1c681cc 419eed7 1c681cc 7651c3e 1c681cc 419eed7 1c681cc 81f0f41 419eed7 1c681cc 419eed7 1c681cc 419eed7 1c681cc 419eed7 1c681cc 419eed7 85c94b6 419eed7 1c681cc 419eed7 1c681cc 419eed7 8a9d717 419eed7 35b814e 1c681cc 419eed7 1c681cc 7651c3e 419eed7 1c681cc 419eed7 81f0f41 419eed7 1c681cc 419eed7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
license: cc-by-4.0
language:
- ru
- mdf
- myv
task_categories:
- translation
size_categories:
- 100K<n<1M
configs:
- config_name: default
data_files:
- split: train
path: data/subset=*/split=train/*.parquet
- split: validation
path: data/subset=*/split=dev/*.parquet
- split: test
path: data/subset=*/split=test/*.parquet
- config_name: mdf_rus
data_files:
- split: train
path: data/subset=mdf_rus/split=train/*.parquet
- split: validation
path: data/subset=mdf_rus/split=dev/*.parquet
- split: test
path: data/subset=mdf_rus/split=test/*.parquet
- config_name: myv_rus
data_files:
- split: train
path: data/subset=myv_rus/split=train/*.parquet
- split: validation
path: data/subset=myv_rus/split=dev/*.parquet
- split: test
path: data/subset=myv_rus/split=test/*.parquet
- config_name: myv_mdf
data_files:
- split: train
path: data/subset=myv_mdf/split=train/*.parquet
- split: validation
path: data/subset=myv_mdf/split=dev/*.parquet
- split: test
path: data/subset=myv_mdf/split=test/*.parquet
---
# "e-mordovia-articles-2024": a parallel news dataset for Russian, Erzya and Moksha
This is a semi-aligned dataset of Russian, Erzya and Moksha news articles, crawled from https://www.e-mordovia.ru.
## Dataset Description
### Dataset Summary
This is a dataset of news articles collected from https://www.e-mordovia.ru, the official portal of the state authorities of the Republic of Mordovia.
The articles have been paired by the following algorithm:
1. Calculate similarities between all articles of source and target languages
2. Filter pairs of articles with similarities bigger than 0.6
3. Filter pairs of articles where the publication dates differ by less than 30 days
4. Validate each pair of articles by native speakers.
Then articles have been split into sentences and automatically aligned on the sentence level.
The earliest publication date among the aligned articles is 2016-11-21, and the latest is 2024-10-02.
The publication dates of the source language articles were used to select the dev and test splits,
each approximately comprising 5% of the total articles. Articles published after 2024-02-01 form the
validation split; those after 2024-05-25 form the test split.
The dataset contains unaligned sentences and sentences that were aligned poorly.
To extract a relatively high-quality parallel part, it is recommended to filter the sentence pairs by `sim>=` ([TBA]).
Different paired articles contain duplicate aligned sentences so for processing it may be necessary to drop duplicates based on the src_sent and tgt_sent columns.
### Supported Tasks and Leaderboards
The dataset is intended to be used as training data for machine translation models.
### Languages
The languages are Russian (`rus`), Erzya (`myv`) and Moksha ('mdf').
Erzya and Moksha are languages from the Mordvinic branch of the Uralic family. They are two of the three official languages in Mordovia, alongside with Russian.
All languages are written in the Cyrillic script.
## Dataset Structure
### Data Instances
A typical datapoint is a pair sentences (if they were aligned) or a single sentence in one of the languages (if the algorithm failed to align them).
Each sentence is associated with a document (a news article).
A typical aligned instance may look like
```Python
{'src_sent_id': 0.0,
'src_sent': '16 апрельста Артём Здунов ётафтсь рабочай васедема "Сколково" Фондть Правлениянц Председателенц, Россиянь Федерациянь Советть видеса интеллектуальнай собственностень кизефкснень коряс Советть членонц Игорь Дроздовонь мархта.',
'tgt_sent_id': 0.0,
'tgt_sent': '16 апреля Артём Здунов провел рабочую встречу с Председателем Правления Фонда "Сколково", членом Совета по вопросам интеллектуальной собственности при Совете Федерации России Игорем Дроздовым.',
'sim': 0.7039214883531842,
'sim_pnlz': 0.34841506047894927,
'src_doc_link': 'https://www.e-mordovia.ru/mkh/for-smi/all-news/skolkovo-fondt-pravleniyants-predsedatelets-igor-drozdov-respublikat-potentsialots-pyak-otsyu-/',
'tgt_doc_link': 'https://www.e-mordovia.ru/glava-rm/novosti/predsedatel-pravleniya-fonda-skolkovo-igor-drozdov-potentsiafbddgn/',
'src_doc_hash': '4ef6081d024d9604',
'tgt_doc_hash': '91208a045de3de28',
'docs_sim': 0.6881643989786337,
'src_id': 2117}
```
An unaligned instance may look like
```Python
{'src_sent_id': 16.0,
'src_sent': 'Активисттне макссесть лама кизефкс.',
'tgt_sent_id': nan,
'tgt_sent': None,
'sim': nan,
'sim_pnlz': nan,
'src_doc_link': 'https://www.e-mordovia.ru/mkh/for-smi/all-news/1-iyuntsta-saranskyaysa-yetaftovs-od-lomanen-festival/',
'tgt_doc_link': 'https://www.e-mordovia.ru/glava-rm/novosti/1-iyunya-v-saranske-proshel-molodezhnyy-festival-/',
'src_doc_hash': '88deac0d4700895f',
'tgt_doc_hash': '231c20a5f989549e',
'docs_sim': 0.46148286872766453,
'src_id': 1052}
```
### Data Fields
- `src_sent_id`: id of the sentence in the source language of the pair (or empty)
- `src_sent`: the source language sentence (or empty)
- `tgt_sent_id`: id of the sentence the target language article (or empty)
- `tgt_sent`: the target language sentence (or empty)
- `sim`: similarity of the sentences (or empty): a product of their LaBSE cosine similarities and their shortest-to-longest ratio of character lengths.
- `sim_pnlz`: a penalized similarity of the sentences (or empty); based on whether this number is positive, the decision was made to align the sentences or not.
- `src_doc_link`: link to the source language article
- `tgt_doc_link`: link to the target language article
- `src_doc_hash`: unique identifier of the source language article
- `tgt_doc_hash`: unique identifier of the target language article
- `docs_sim`: the similarity between the documents, computed as the aggregated similarity of the individual sentences in them
- `src_id`: numeric id of the document pair
- `src_lang`: ISO 639-3 code for the source language in the pair (e.g., "myv" for Erzya, "mdf" for Moksha)
- `tgt_lang`: ISO 639-3 code for the target language in the pair (e.g., "rus" for Russian, "mdf" for Moksha)
### Data Splits
The dataset is separated in three subsets:
1. myv-rus
2. mdf-rus
3. myv-mdf
All subsets are split into test, validation and train subsets. The publication dates of the source language articles were used to select
the dev and test splits, each approximately comprising 5% of the total articles. Articles published after 2024-02-01 form the validation split;
those after 2024-05-25 form the test split.
## Dataset Creation
### Curation Rationale
The dataset has been curated in order to boost the quality of machine translation for Erzya or Moksha.
### Source Data
#### Initial Data Collection and Normalization
The data has been scraped from the https://www.e-mordovia.ru website.
The Erzya and Russian articles were considered as a possible pair if their included the same image.
Then each candidate pair of articles was split into sentences with the [razdel](https://github.com/natasha/razdel) Python package
and aligned using the [slone_nmt](https://github.com/slone-nlp/myv-nmt) package,
the [slone/LaBSE-en-ru-myv-v2](https://huggingface.co/slone/LaBSE-en-ru-myv-v2) and
and the `achapaev/LaBSE-en-ru-mdf-v1` [TBA] sentence encoders.
No other text preprocessing has been performed.
#### Who are the source language producers?
The language producers are the writers and the editors of the e-mordovia.ru portal, typically anonymous.
### Annotations
The dataset does not contain any additional annotations.
### Personal and Sensitive Information
The dataset may contain personal names of the people figurating in the news.
However, as all these news are public anyway, we do not see any additional risks in using this data for training NLP models.
## Considerations for Using the Data
### Social Impact of Dataset
We hope that by enabling better machine translation from and to Erzya and Moksha, this dataset would contribute to improve the digital presence and overall prestige of the Erzya and Moksha languages.
### Discussion of Biases
As a portal of a public authority in Russian Federation, a country not very famous for its freedom of speech,
*e-mordovia* may be presenting its own particular coverage and interpretation of some internal, federal and international events.
Therefore, while we recommend using the collected dataset for teaching the Erzya and Moksha languages to models (and maybe even to humans),
its usage as a source of non-linguistic knowledge should be approached with extreme caution.
### Other Known Limitations
The original articles were not originally intended to serve as parallel texts, and the writers who translated them between Erzya and Russian might have altered the content someitmes.
Our automatic metrics of sentence similarity were designed to filter out such cases, these metrics are error-prone themselves.
Therefore, whereas the aligned part of the dataset seems to be highly parallel, the translations should be treated as noisy rather than 100% accurate.
Filtering by the `sim` and `doc_sim` fields is recommended for obtaining a highly parallel subset.
## Additional Information
### Dataset Curators
The dataset was collected and aligned by Artem Chapaev using the data and algorithm from the [previous dataset](https://huggingface.co/datasets/slone/e-mordovia-articles-2023).
### Licensing Information
According to the note on the source website (https://www.e-mordovia.ru/podderzhka-portala/ob-ispolzovanii-informatsii-sayta/):
> All materials of the official website of the state authorities of the Republic of Mordovia can be reproduced in any media, on Internet servers or on any other media without any restrictions on the volume and timing of publication.
> This permission applies equally to newspapers, magazines, radio stations, TV channels, websites and Internet pages.
> The only condition for reprinting and retransmission is a link to the original source. No prior consent to reprint is required from the editorial board of the official website of the state authorities of the Republic of Mordovia.
Here is the original note in Russian:
> Все материалы официального сайта органов государственной власти Республики Мордовия могут быть воспроизведены в любых средствах массовой информации, на серверах сети Интернет или на любых иных носителях без каких-либо ограничений по объему и срокам публикации.
> Это разрешение в равной степени распространяется на газеты, журналы, радиостанции, телеканалы, сайты и страницы сети Интернет.
> Единственным условием перепечатки и ретрансляции является ссылка на первоисточник. Никакого предварительного согласия на перепечатку со стороны редакции официального сайта органов государственной власти Республики Мордовия не требуется.
In short, you can use and even redistribute the data, but when redistributing, you must give a reference to the original website, https://www.e-mordovia.ru.
Based on this note, we concluded that a CC-BY license would be appropriate for this dataset.
### Citation Information
[TBD] |