Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
License:
| # coding=utf-8 | |
| # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """IMDB movie reviews dataset.""" | |
| import os | |
| import datasets | |
| _DESCRIPTION = """\ | |
| Large Movie Review Dataset. | |
| This is a dataset for binary sentiment classification containing substantially \ | |
| more data than previous benchmark datasets. We provide a set of 25,000 highly \ | |
| polar movie reviews for training, and 25,000 for testing. There is additional \ | |
| unlabeled data for use as well.\ | |
| """ | |
| _CITATION = """\ | |
| @InProceedings{maas-EtAl:2011:ACL-HLT2011, | |
| author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher}, | |
| title = {Learning Word Vectors for Sentiment Analysis}, | |
| booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies}, | |
| month = {June}, | |
| year = {2011}, | |
| address = {Portland, Oregon, USA}, | |
| publisher = {Association for Computational Linguistics}, | |
| pages = {142--150}, | |
| url = {http://www.aclweb.org/anthology/P11-1015} | |
| } | |
| """ | |
| _DOWNLOAD_URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" | |
| class IMDBReviewsConfig(datasets.BuilderConfig): | |
| """BuilderConfig for IMDBReviews.""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for IMDBReviews. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |
| class Imdb(datasets.GeneratorBasedBuilder): | |
| """IMDB movie reviews dataset.""" | |
| BUILDER_CONFIGS = [ | |
| IMDBReviewsConfig( | |
| name="plain_text", | |
| description="Plain text", | |
| ) | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])} | |
| ), | |
| supervised_keys=None, | |
| homepage="http://ai.stanford.edu/~amaas/data/sentiment/", | |
| citation=_CITATION, | |
| ) | |
| def _vocab_text_gen(self, archive): | |
| for _, ex in self._generate_examples(archive, os.path.join("aclImdb", "train")): | |
| yield ex["text"] | |
| def _split_generators(self, dl_manager): | |
| arch_path = dl_manager.download_and_extract(_DOWNLOAD_URL) | |
| data_dir = os.path.join(arch_path, "aclImdb") | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train")} | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test")} | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split("unsupervised"), | |
| gen_kwargs={"directory": os.path.join(data_dir, "train"), "labeled": False}, | |
| ), | |
| ] | |
| def _generate_examples(self, directory, labeled=True): | |
| """Generate IMDB examples.""" | |
| # For labeled examples, extract the label from the path. | |
| if labeled: | |
| files = { | |
| "pos": sorted(os.listdir(os.path.join(directory, "pos"))), | |
| "neg": sorted(os.listdir(os.path.join(directory, "neg"))), | |
| } | |
| for key in files: | |
| for id_, file in enumerate(files[key]): | |
| filepath = os.path.join(directory, key, file) | |
| with open(filepath, encoding="UTF-8") as f: | |
| yield key + "_" + str(id_), {"text": f.read(), "label": key} | |
| else: | |
| unsup_files = sorted(os.listdir(os.path.join(directory, "unsup"))) | |
| for id_, file in enumerate(unsup_files): | |
| filepath = os.path.join(directory, "unsup", file) | |
| with open(filepath, encoding="UTF-8") as f: | |
| yield id_, {"text": f.read(), "label": -1} | |