Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,171 +1,14 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
-
- ace
|
| 4 |
-
- bg
|
| 5 |
-
- da
|
| 6 |
-
- fur
|
| 7 |
-
- ilo
|
| 8 |
-
- lij
|
| 9 |
-
- mzn
|
| 10 |
-
- qu
|
| 11 |
-
- su
|
| 12 |
-
- vi
|
| 13 |
-
- af
|
| 14 |
-
- bh
|
| 15 |
- de
|
| 16 |
-
- fy
|
| 17 |
-
- io
|
| 18 |
-
- lmo
|
| 19 |
-
- nap
|
| 20 |
-
- rm
|
| 21 |
-
- sv
|
| 22 |
-
- vls
|
| 23 |
-
- als
|
| 24 |
-
- bn
|
| 25 |
-
- diq
|
| 26 |
-
- ga
|
| 27 |
-
- is
|
| 28 |
-
- ln
|
| 29 |
-
- nds
|
| 30 |
-
- ro
|
| 31 |
-
- sw
|
| 32 |
-
- vo
|
| 33 |
-
- am
|
| 34 |
-
- bo
|
| 35 |
-
- dv
|
| 36 |
-
- gan
|
| 37 |
-
- it
|
| 38 |
-
- lt
|
| 39 |
-
- ne
|
| 40 |
-
- ru
|
| 41 |
-
- szl
|
| 42 |
-
- wa
|
| 43 |
-
- an
|
| 44 |
-
- br
|
| 45 |
-
- el
|
| 46 |
-
- gd
|
| 47 |
-
- ja
|
| 48 |
-
- lv
|
| 49 |
-
- nl
|
| 50 |
-
- rw
|
| 51 |
-
- ta
|
| 52 |
-
- war
|
| 53 |
-
- ang
|
| 54 |
-
- bs
|
| 55 |
-
- eml
|
| 56 |
-
- gl
|
| 57 |
-
- jbo
|
| 58 |
-
- nn
|
| 59 |
-
- sa
|
| 60 |
-
- te
|
| 61 |
-
- wuu
|
| 62 |
-
- ar
|
| 63 |
-
- ca
|
| 64 |
- en
|
| 65 |
-
- gn
|
| 66 |
-
- jv
|
| 67 |
-
- mg
|
| 68 |
-
- no
|
| 69 |
-
- sah
|
| 70 |
-
- tg
|
| 71 |
-
- xmf
|
| 72 |
-
- arc
|
| 73 |
-
- eo
|
| 74 |
-
- gu
|
| 75 |
-
- ka
|
| 76 |
-
- mhr
|
| 77 |
-
- nov
|
| 78 |
-
- scn
|
| 79 |
-
- th
|
| 80 |
-
- yi
|
| 81 |
-
- arz
|
| 82 |
-
- cdo
|
| 83 |
- es
|
| 84 |
-
- hak
|
| 85 |
-
- kk
|
| 86 |
-
- mi
|
| 87 |
-
- oc
|
| 88 |
-
- sco
|
| 89 |
-
- tk
|
| 90 |
-
- yo
|
| 91 |
-
- as
|
| 92 |
-
- ce
|
| 93 |
-
- et
|
| 94 |
-
- he
|
| 95 |
-
- km
|
| 96 |
-
- min
|
| 97 |
-
- or
|
| 98 |
-
- sd
|
| 99 |
-
- tl
|
| 100 |
-
- zea
|
| 101 |
-
- ast
|
| 102 |
-
- ceb
|
| 103 |
-
- eu
|
| 104 |
-
- hi
|
| 105 |
-
- kn
|
| 106 |
-
- mk
|
| 107 |
-
- os
|
| 108 |
-
- sh
|
| 109 |
-
- tr
|
| 110 |
-
- ay
|
| 111 |
-
- ckb
|
| 112 |
-
- ext
|
| 113 |
-
- hr
|
| 114 |
-
- ko
|
| 115 |
-
- ml
|
| 116 |
-
- pa
|
| 117 |
-
- si
|
| 118 |
-
- tt
|
| 119 |
-
- az
|
| 120 |
-
- co
|
| 121 |
-
- fa
|
| 122 |
-
- hsb
|
| 123 |
-
- ksh
|
| 124 |
-
- mn
|
| 125 |
-
- pdc
|
| 126 |
-
- ug
|
| 127 |
-
- ba
|
| 128 |
-
- crh
|
| 129 |
-
- fi
|
| 130 |
-
- hu
|
| 131 |
-
- ku
|
| 132 |
-
- mr
|
| 133 |
-
- pl
|
| 134 |
-
- sk
|
| 135 |
-
- uk
|
| 136 |
-
- zh
|
| 137 |
-
- bar
|
| 138 |
-
- cs
|
| 139 |
-
- hy
|
| 140 |
-
- ky
|
| 141 |
-
- ms
|
| 142 |
-
- pms
|
| 143 |
-
- sl
|
| 144 |
-
- ur
|
| 145 |
-
- csb
|
| 146 |
-
- fo
|
| 147 |
-
- ia
|
| 148 |
-
- la
|
| 149 |
-
- mt
|
| 150 |
-
- pnb
|
| 151 |
-
- so
|
| 152 |
-
- uz
|
| 153 |
-
- cv
|
| 154 |
- fr
|
| 155 |
-
-
|
| 156 |
-
-
|
| 157 |
-
-
|
| 158 |
-
- ps
|
| 159 |
-
- sq
|
| 160 |
-
- vec
|
| 161 |
-
- be
|
| 162 |
-
- cy
|
| 163 |
-
- frr
|
| 164 |
-
- ig
|
| 165 |
-
- li
|
| 166 |
-
- my
|
| 167 |
- pt
|
| 168 |
-
-
|
| 169 |
multilinguality:
|
| 170 |
- multilingual
|
| 171 |
size_categories:
|
|
@@ -174,18 +17,18 @@ task_categories:
|
|
| 174 |
- token-classification
|
| 175 |
task_ids:
|
| 176 |
- named-entity-recognition
|
| 177 |
-
pretty_name:
|
| 178 |
---
|
| 179 |
|
| 180 |
-
# Dataset Card for "tner/
|
| 181 |
|
| 182 |
## Dataset Description
|
| 183 |
|
| 184 |
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
| 185 |
-
- **Paper:** [https://aclanthology.org/
|
| 186 |
-
- **Dataset:**
|
| 187 |
- **Domain:** Wikipedia
|
| 188 |
-
- **Number of Entity:**
|
| 189 |
|
| 190 |
|
| 191 |
### Dataset Summary
|
|
@@ -205,7 +48,7 @@ An example of `train` looks as follows.
|
|
| 205 |
```
|
| 206 |
|
| 207 |
### Label ID
|
| 208 |
-
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/
|
| 209 |
```python
|
| 210 |
{
|
| 211 |
"B-LOC": 0,
|
|
@@ -220,29 +63,26 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
|
|
| 220 |
|
| 221 |
### Data Splits
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|---------|----:|---------:|---:|
|
| 225 |
-
|btc | 6338| 1001|2000|
|
| 226 |
|
| 227 |
### Citation Information
|
| 228 |
|
| 229 |
```
|
| 230 |
-
@inproceedings{
|
| 231 |
-
title = "
|
| 232 |
-
author = "
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
address = "Vancouver, Canada",
|
| 242 |
publisher = "Association for Computational Linguistics",
|
| 243 |
-
url = "https://aclanthology.org/
|
| 244 |
-
doi = "10.18653/v1/
|
| 245 |
-
pages = "
|
| 246 |
-
abstract = "
|
| 247 |
}
|
| 248 |
```
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
- de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
- es
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
- fr
|
| 7 |
+
- it
|
| 8 |
+
- nl
|
| 9 |
+
- pl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
- pt
|
| 11 |
+
- ru
|
| 12 |
multilinguality:
|
| 13 |
- multilingual
|
| 14 |
size_categories:
|
|
|
|
| 17 |
- token-classification
|
| 18 |
task_ids:
|
| 19 |
- named-entity-recognition
|
| 20 |
+
pretty_name: WikiNeural
|
| 21 |
---
|
| 22 |
|
| 23 |
+
# Dataset Card for "tner/wikineural"
|
| 24 |
|
| 25 |
## Dataset Description
|
| 26 |
|
| 27 |
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
| 28 |
+
- **Paper:** [https://aclanthology.org/2021.findings-emnlp.215/](https://aclanthology.org/2021.findings-emnlp.215/)
|
| 29 |
+
- **Dataset:** WikiNeural
|
| 30 |
- **Domain:** Wikipedia
|
| 31 |
+
- **Number of Entity:** 16
|
| 32 |
|
| 33 |
|
| 34 |
### Dataset Summary
|
|
|
|
| 48 |
```
|
| 49 |
|
| 50 |
### Label ID
|
| 51 |
+
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikineural/raw/main/dataset/label.json).
|
| 52 |
```python
|
| 53 |
{
|
| 54 |
"B-LOC": 0,
|
|
|
|
| 63 |
|
| 64 |
### Data Splits
|
| 65 |
|
| 66 |
+
|
|
|
|
|
|
|
| 67 |
|
| 68 |
### Citation Information
|
| 69 |
|
| 70 |
```
|
| 71 |
+
@inproceedings{tedeschi-etal-2021-wikineural-combined,
|
| 72 |
+
title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
|
| 73 |
+
author = "Tedeschi, Simone and
|
| 74 |
+
Maiorca, Valentino and
|
| 75 |
+
Campolungo, Niccol{\`o} and
|
| 76 |
+
Cecconi, Francesco and
|
| 77 |
+
Navigli, Roberto",
|
| 78 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
|
| 79 |
+
month = nov,
|
| 80 |
+
year = "2021",
|
| 81 |
+
address = "Punta Cana, Dominican Republic",
|
|
|
|
| 82 |
publisher = "Association for Computational Linguistics",
|
| 83 |
+
url = "https://aclanthology.org/2021.findings-emnlp.215",
|
| 84 |
+
doi = "10.18653/v1/2021.findings-emnlp.215",
|
| 85 |
+
pages = "2521--2533",
|
| 86 |
+
abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
|
| 87 |
}
|
| 88 |
```
|