Fine Tuning with TRL

g Sergio Paniego Blanco (@sergiopaniego)
Machine Learning Engineer @ Hugging Face

in

https://x.com/SergioPaniego
https://www.linkedin.com/in/sergio-paniego-blanco/
https://huggingface.co/sergiopaniego

From fine-tuning to TRL
(fine-tuning+alignment)

“I fine-tuned the modeland ..” &

® It can’t chat naturally
%% It can’t reason or explain
It gives incoherent answers
& It givesinconsistent answers
A\ It's not aligned with human preferences
(unhelpful or unsafe)
It doesn't follow instructions

2,

From fine-tuning to TRL
(fine-tuning+alignment)

Classic fine-tuning adapts the model to your dataset, not necessarily
to your intentions.

e Dataset (X—Y) - Pretrained model - Fine-tuned model

e Optimizes likelihood: predicts correctly based on the data

e Doesn’t guarantee alignment with human preferences

may need something stronger (), tools that can teach the O
model, not just fit it (?1).

Data - Model - Fine-tuned model
8 (Still says weird stuff)

Where does TRL fits in the model
lifecycle? &

Pre-training: teaches general capacities such as language
use, broad reasoning, and world knowledge

Mid-training: imparts domain knowledge (code, medical
databases, internal docs...)

Post-training/Alignment (1): learns to behave as we
want (instruction following, reasoning...)
& &

TRLis not for pretraining - it’s for the final stages, where we
make models useful, safe, and aligned

From token prediction to alignment

[Base model] [Instruct model 2] [Thinking model :: +4]
) \Qwen/Qwen3-4B-Base Qwen/Qwen3-4B Qwen/Qwens-4B-Thinking
Pretrained TRL (SFT Trainer) TRL (GRPO/PPO/DPO)

§ase: predicts next token
aw text, high quantity of data, masked language modelling,
industrial compute

“Translate this sentence - Translate this sentence into.. S5

From token prediction to alignment

[Base model " | [Instruct model # [Thinking model <z +4]
) \ Qwen/Qwen3-4B-Base Qwen/Qwen3-48B Qwen/Qwens-4B-Thinking
Pretrained TRL (SFTTrainer) TRL (GRPO/PPO/DPQ)

struct: follows instructions
tructured responses, high quality data, reduced compute
“<luserl> Translate this sentence </s>
<lassistant!> Sure! Here's the translation </s>”
Example dataset

https://huggingface.co/datasets/trl-lib/Capybara/viewer

From token prediction to alignment

[Base model " | [Instruct model % | [Thinking model :: 4
) \ Qwen/Qwens-4B-Base Qwen/Qwens-4B Qwen/Qwen3-4B-Thinking
Pretrained TRL (SFT Trainer) TRL (GRPO/PPO/DPO)

Aligning model: helpfulness, truthfulness, and safety.
Preferences, high quality, preference optim, consumer Comp@te
“<luserl> How many helicopters can a human eat?</s>
» <lassistant/> Humans cannot eat helicopters</s>
& <lassistant/> That's not possible!</s>"
Example dataset

https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized/viewer

From token prediction to alignment

[Base model | [Instruct model %] [Thinking model :: 4
\ Qwen/Qwens-4B-Base Qwen/Qwens-4B Qwen/Qwen3-4B-Thinking
Pretrained TRL (SFT Trainer) TRL (GRPO/PPO/DPO)

Thinking model: reasoning!
& “<luserl> How many helicopters can a human eat?</s> <

<lassistantl> diihe math
<think > “Tricky question. Let’s break it down...< /think> X'.
That’s not possible! | found that...</s>” 25

Wecanitiafforiltheicat

Example dataset

https://huggingface.co/datasets/open-r1/codeforces-cots/viewer

Transformer Reinforcement Learning

from trl import SFTTrainer
from datasets import load_dataset

trainer = SFTTrainer(
model="Qwen/Qwen3-0.6B",
train_dataset=1oad_dataset("trl-lib/Capybara", split="train"),
)

trainer.train()

SFT and GRPO

We'll focus here on two trainers. But there are more 393

Supervised Fine-Tuning (SFT)
e Teach the model to follow instructions

Uses human-labeled data (prompt — response)
e Improves helpfulness

Group Relative Policy Optimization (GRPO)

<& Train with online reinforcement learning
e Usesreward models or human preference signals
e Improves alignment and reasoning

TRL taxonomy

Online methods Offline methods
(learn from feedback) Model generates reponses (data-driven) Model learns from human preference
and learns from reward signals during training datasets or supervised signals. |
° GRPO 4 ° SFT Choose your fighter!
e RLOO # | e DPO
e OnlineDPO # e ORPO
e NashMD 4 e BCO
e XPO 7 e CPO
e PPO e KTO
Reward modeling Knowledge distillation
Training a model to judge responses Transferring knowledge from a stronger model to a
PY PRM smaller one
e Reward e CKD
pa

¥ =1 support

[RFC] Moving Most TRL Trainers to the experimental Submodule to
Streamline the Core #4223

(O OPDH\)

qgallouedec opened 3 weeks ago - edited by qgallouedec

Context

TRL currently includes 15 trainers, which vary significantly in usage and maintenance requirements.

els on the Hub

]

7000

6000

5000

4000

2000

1000

Number of Models uploaded the Hub per TRL Tag (last 8 months, deduped by user)

7105

a771

3481

Tag

Supervised Fine-Tuning

SFTis the simplest and most commonly used method to
adapt a LM to a target dataset
e Goal: minimize negative log-likelihood of a sequence
e Simple, stable, and super effective.

nputids OOOOOOOO00

labels - 0OOOO0OO0O0OOo

(shifted input_ids)

language_modeling_example = {"text": "The sky is blue."}

messages = [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},

from trl import SFTTrainer
from datasets import load_dataset

trainer = SFTTrainer(
model="Qwen/Qwen3-0.6B",
train_dataset=1load_dataset("trl-1ib/Capybara", split="train"),

)

trainer.train()

from trl import SFTTrainer, SFTConfig
from datasets import load_dataset

trainer = SFTTrainer(
model="Qwen/Qwen3-0.6B",
train_dataset=load_dataset("trl-1ib/Capybara", split="train"),
args = SFTConfig(

per_device_train_batch_size
gradient_accumulation_steps =
num_train_epochs = 1,
learning_rate = 2e-4,

optim = "paged_adamw_8bit",

logging_steps=1,
report_to="trackio",

push_to_hub=True,

)
peft_config=LoraConfig(),

)

trainer.train()

Group Relative Policy
GRPO was describd@plimmizationper

Variant of Proximal Policy Optimization (PPO), that enhances
maths reasoning abilities while optimizing memory usage
e Online method #
e Optimizes behavior using rewards from preference
models or heuristics (reward functions)
e Successor of PPO: more stable and memory-efficient

GRPO

Steps: generating completions, computing advantage,

ee%rma%mg—’ehe—lél_—elwe@eﬂee Computlng the loss

HO00O0O .
:) ---------::::. : c. O
DO000O
OO000 B ... B\
OOo00000 22U " . \
D0O000 — O
DOO00 T —
S (D)~ (@ean)
0 08| | 08000 DEOO0O0
an --=-- = :
DO0B0 OO8C OOO000
= D000 DO@0
= = a8
DO®0| | Ceno DOB0a0
= D00 OO0

from trl import GRPOTrainer, GRPOConfig
import re

def format_reward_func(completions, *xkwargs):

"""Reward function that checks if the completion has a specific format."""
pattern = r""

<think>.*?</think><answer>.*?</answer>$"

completion_contents = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, content) for content in completion_contents]
return [1.0 if match else 0.0 for match in matches]

trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=[format_reward_func, ...],
args=GRPOConfig(...),
train_dataset=1load_dataset("trl-1ib/tldr", split="train"),

)

trainer.train()

from trl import GRPOConfig

GRPOConfig(

to SFTConfig

t Parameters that control

max_completion_length=512,
num_generations=8, # d
max_prompt_length=512,

&7

OpenRl |« ;

Initiative by HF to replicate and extend the techniques behind
DeepSeek-R1 <.
This model was built using SFT + GRPO!

Step 3

reasonin 9 reaSOnmg

data data

Can we improve online training?

Some TRL trainers work online 4 , the model generates
completions during training to compute a reward signal.

_
. s n @
()OO0 b

A}

©

1 GPU please

&

///.

CUDA_VISIBLE_DEVICES=0,1,2,3 trl vllm-serve --model Qwen/Qwen2.5-7B --tensor-parallel-size 2 --data-parallel-size 2

from trl import GRPOConfig

training_args = GRPOConfig(

“eaty
use_vllm=True,
vllm_mode="server",

But can we scale training?

TRLalso integrates seamlessly with accelerate and
DeepSpeed (model sharing, zero redundancy optimized,

mixed precision training, offloading...) 1 deopspec
7/ deepspee

num_processes = 4

GPU 0 GPU 1 GPU 2 GPU 3

DDDD DDDD DDOD DDDO ® gradient__accumulation_s‘teps =2
0000 CO0O0O OO0 COoa

optimizer step

0000 C000 0000 0000
0O0O00 OO0O0O OO0 OoOoo

optimizer step

0000 0000 0000 0000
0000 OO0O0O OO0 COOo

«— >
pe.r_o(e.vice_train__l:atch_.size =4

accelerate launch --config_file

examples/accelerate_configs/deepspeed_zero2.yaml train.py

y
=\
J

)
&\
UL B

haha gpus go brr

accelerate launch --config_file context_parallel_2gpu.yaml train.py

from trl import SFTConfig

training_args = SFTConfig(

pad_to_multiple_of=4,

t
max_length=400000,
packing=True,
use_liger_kernel=True,
gradient_checkpointing=False,

per_device_train_batch_size=1,

But can we scale training?

Context Parallelism(CP) with Qwen/Qwen3-8B scales to over
300k tokens in 8 GPUs

@ Fullfinetuning @ LoRA
500000 |

400000 |-

2 300000 |-

c
S 200000
o

100000 |-

Context Parallelism Degree

But can we scale training?

otron ultrascale-playbook

The Ultra-Scale Playbook
Training LLMs on GPU Clusters

~ onGPUCI

x

We ran over 4,000 scaling experiments on up to 512 GPUs and measured throughput (size of markers) and
GPU utilization (color of markers). Note that both are normalized per model size in this visualization.

ORDER BOOK GET PDF

AUTHORS AFFILIATION PUBLISHED

Nouamane Tazi, Ferdinand Mom, Haojun Zhao, Phuc Nguyen, Hugging Face Feb 19, 2025
Mohamed Mekkouri, Leandro Werra, Thomas Wolf

Optimizing all the things!
Transformers already provides us with some optimizing
strategies like gradient checkpointing and we also have
LoRA/QLoRA. In addition, TRL has:

Truncation

Packing

Padding-free

Padding sequences to a multiple
LIGErKErNelS| i) voer ceane.
Activation offloading

0.....

We developed a notebook for training a 14B model using
QLoRA in free Colab!

https://colab.research.google.com/github/huggingface/trl/blob/main/examples/notebooks/sft_trl_lora_qlora.ipynb

000
from trl import SFTConfig
training_args = SFTConfig(

max_length=1024, ## (Truncation) Maximum input quen
packing=True t P

padding free=True, model_init_kwargs={"attn_implementation": "flash_attention_2"},
pad_to_multiple_of=2048 # Padding sequences to ltipl
use_liger_kernel=True,

activation_offloading=True,

gradient_checkpointing=True,

Optimizing for GPU poors
We developed a notebook for training a 14B model using
QLoRAin free Colab!

CO O sft_trl_lora_glora.ipynb % © Compartir 0

PRO* archivo Editar Ver Insertar Entorno de ejecucién Herramientas Ayuda

Q Comandos + Cédigo ~ + Texto | b Ejecutartodas + Copiar en Drive Conectar ~

!,

Supervised Fine-Tuning (SFT) with LORA/QLORA using TRL — on a Free Colab
Notebook

train/loss

\'4 Y

6 8 10 12 14 16 18 20 22 24 26 28 30
ste

P
sergiopaniego-1761318512 () sergiopaniego-1761318512_smoothed

Easily fine-tune Large Language Models (LLMs) or Vision-Language Models (VLMs) with LoRA or QLORA using the Transformers
Reinforcement Learning (TRL) library built by Hugging Face — all within a free Google Colab notebook (powered by a T4 GPU.).

« TRL GitHub Repository, — star us to support the project!
« Official TRL Examples
« Community Tutorials

Key concepts

« SFT: Trains models from example input-output pairs to align behavior with human preferences.

+ LoRA: Updates only a few low-rank parameters, reducing training cost and memory.

* QLoRA: A quantized version of LoRA that enables even larger models to fit on small GPUs.

« TRL: The Hugging Face library that makes fine-tuning and reinforcement learning simple and efficient.

https://colab.research.google.com/github/huggingface/trl/blob/main/examples/notebooks/sft_trl_lora_qlora.ipynb

jobs sft --model_name Qwen/Qwen3-0.6B --dataset_name trl-lib/Capybara

from huggingface_hub import run_uv_job
hf jobs uv run \
--flavor al00-large \ run_uv_job(
——with trl \ "train.py",

HF_TOKEN \ dependencies=["trl"],
—-secrets = flavor="al00-large",

train.py secrets={"HF_TOKEN": "hf_... "},

Multimodality! [

Vision Language Models (VLMs) are getting stronger, but
aligning them to human preferences still matters.

TRL supports VLMs in many trainers, including examples and
recipes.

o SFT

e DPO (Direct Preference Optimization)
G

e MPO (Mixed Preference Optimization)
1 GRPO (Group Relative Policy Optimization) GRPO & MPOnTRL

e GSPO (Group Sequence Policy Optimization)

e RLOO (Reinforce Leave One Out)
e Online DPO

from trl import SFTConfig, SFTTrainer
from datasets import load_dataset

trainer = SFTTrainer(

model="Qwen/Qwen2.5-VL-3B-Instruct",
args=SFTConfig(max_length=None), # To avoid
train_dataset=1load_dataset("trl-1lib/1lava-inst

)

trainer.train()

iIncati th ay rem 1
ruct-mix", split="train"),

ha

https://huggingface.co/datasets/trl-lib/llava-instruct-mix/viewer

Multimodality!

Shared scripts and recipes!

examples/scripts/dpo_vim This script shows how to use the DPOTrainer to fine-tune a Vision Language Model to
reduce hallucinations using the openbmb/RLAIF-V-Dataset dataset.

examples/scripts/evals/judge_tldr.py Thisscriptshows how to use HiPairwiseJudge or OpenAlPairwiseJudge to judge model
generations.

examples/scripts/gkd. | This script shows how to use the GKDTrainer to fine-tune a model.
trl/scripts/grpo.py. This script shows how to use the GRPOTrainer to fine-tune a model.

examples/scripts/g; . This script shows how to use the GRPOTrainer to fine-tune a multimodal model for
reasoning using the mms-lab/multimodal-oper dataset.

examples/scripts/gspo.py. This script shows how to use GSPO via the GRPOTrainer to fine-tune model for reasoning
using the Al-MO/NuminaMath-TIR dataset.

examples/scripts/gspo_vlm.py This script shows how to use GSPO via the GRROTrainer to fine-tune a multimodal model
for reasoning using the lmms-lab/multimodal-open-r1-8k-verified dataset.

examples/scripts/kto.py This script shows how to use the KTOTrainer to fine-tune a model.

examples/scripts/mpo_vim.py, This script shows how to use MPO via the DPQTrainer to align a model based on preferences
using the HuggingFaceH4/rlaif-v_formatted dataset and a set of loss weights with weights.

examples/scripts/nash_md.py. This script shows how to use the NashMDTrainer to fine-tune a model.
examples/scripts/online dpo.py This script shows how to use the OnlineDPOTrainer to fine-tune a model.

examples/scripts/online dpo_vlm.py Thisscriptshows how to use the OnlineDPOTrainer to fine-tune a a Vision Language Model.

exanples/scripts/sftIUIR. py “This script shows how to use the SETTrainer to fine-tune a Vision Language Model ina chat
setting. The script has only been tested with LLaVA 15, LLaVA 16, and Llama-3.2-118-
Vision-Instruct models so users may see unexpected behaviour in other model
architectures.

examples/scripts/sft_vlm genma: “This script shows how to use the SFTTrainer to fine-tune a Gemma 3 model on vision to text
tasks.

examples/scripts/sft_vim_smol_vlm.py Thisscript shows how to use the SETTrainer to fine-tune a SmolVLM model.

Post training a VLM for reasoning with GRPO using TRL [oo

uthored by: Sergio Paniego

@ WARNING: This notebiook i resaurce-intensive and requires substantial computational power. I you're uning thisn Colab,
twillutiize an A10D GPU.

Inthis recipe, we'lldemonstrate how to posttrain a ision Language Model (VL) using GREQ for adding reasoning capabilties
10 VLM using the Hugging Face ecosystem, specifically with the Transformer Reinforcement Learning brary t).

Wl be ine-tuning Quen2 5-V1.38-nstruct using @ subset ofthe Imms-lab/mutimodal-open-1.icverified dataset. This

datasetincludes images with problem descriptions along with their slution and thinking trace to reach that slution. We'll
everage this data forma, along with the GRPO reward functions, to teach the model how t reason toreach the solution.

Fine-Tuning a Vision Language Model (Qwen2-VL-78) with the Hugging Face I © -
Ecosystem (TRL)

: This notebookis esource-intensive and requires substantil computational power. fyou'e runingthis in Colab,
twilutiize 3n A10O GPU.

I thisrecipe, welldemonsirate how tofne-tune a Vision Language Model (VL) using the Hugging Face ecosystem, speciically
with the Iansformer Reinforcement Learning Lbran (TRL).

. Model & Dataset Overview

We'llbefine-tuningthe Quen2-YLT8 madel o the ChartQA dataset. This dataset ncludes images of various chattypes pared
with question-answer pais-—idealfor enhancing the model's visual queston-answering capabltes.

. Additonal Resources

fyou'e intereted in more LM applcation, check out:
‘Multimodal Retieval-Augmented Generation (BAG) Recipe: where| guide you through bullding RAG system using,
Document Retreval (ColPl) and Vision Language Models (VLMs).

‘hil Schemidstutoria:an excelent deep dive ntofne-tuning mutimodal LUMs with TRL.

Merve Noyan's smol-vision repasitory: a colection ofengaging notebooks on cuttng:edge vison and multimodal Al topics.

L= |
(e

Fine-Tuning a Vision Language Model with TRL using MPO
 Authored by: Sergio Paniege

Inthis recipe, wel demonstrate how to finetune a Vision Language Model (VLM) using Mixed Prefernce Optimiztion (MPO)
with the Transformer Renforcement Learming (TR Ubrary.

MPOis training 3pproach tha combines mltiple ptimizaton objectives and was ntroduced inthe paper Enhancing he.
5 Models va Mied Prefeence O

Buas etimization tispar of the irect Preference
(02O trainer and works by combining multpl ossfunctions with iferent weights, enabling mre sophistcated
optimization srategies.

W'l fine une Quen/Quen2 SV1.38-insruc, 3 small VUM with strong performance, using a prference datase o elp the
‘model aign with desired outputs. Check out hi blog gost 0 learn more about preference optimizatonfo vison-language
models.

The dataset we'l use s HuggingEaceta/aity formatted, a specialyformatted vrsion of the RLAIE dataset, Thisdataset
contains pairs of proapt + inage, aong with a chosen and rejected responseforeach sample. The inal oalof the fine-
tuning process i o ain model that consstntlyprefersthe chasen answersover the zejoctd ones,threby reducing
hallucination. To achieve this, mulpleloss functions willbe used in combination.

Fine-tuning SmolVLM using direct preference optimization (DPO) with TRL [© e
onaconsumer GPU

Authored by:Sergio Paniege.

Inhis recipe,we'l guide you through ine tuning a smol = Vision Language Model (VLM) with Direct Preference Optimization
(DPO) using the Transformer Reinforcement Learning (TRL) irary to demonstrate how you can tallor VL to suityour speciic
needs, even when working with consumer-grade GPUs.

We'lfinetune SmolVLM using preference dataset tohelp the model lign with desired outputs, SmolVLM i ighly
performant and memory:<ficent model, making it an deal chice fo his task.Ifyou're new to reference Optimization for
language o vision-language models,check out this blog or an n-depth introduction.

The dataset we'l use s uggingEaces/dait formatted, which contins pairsof prompt + inage along witha chosen and
zojected answer forcach pair The goa oftisfinetuning process i to make the model consistntlypreer the chosen answers

from the datase,reducing hallucinations.

“This noteboak has been tested using an NVIDIAL4 GPU.

Agents <, via OpenEnv

OpenEnv - framework for interactive TRL environments
(Gymnasium for LLMSs)

_JRuns envs locally or as backend servers o %@é
Find ready-to-use OpenEnv envs on the Hub i
) Integrates with TRL - use rollout_func in GRPO to

replace text generation with environment interaction
© Models can act, observe, and learn, not just predict text.

actions (completions :
PModel (comp) [OpenEnv & $
](reward
VLLM/TRL) - - (EchoEnv etc.)

N /

rollout_func): bridges generation & env steps

https://huggingface.co/collections/openenv/environment-hub

from envs.echo_env im t EchoEnv, EchoAction
from trl import GRPOConfig, GRPOTrainer

client = EchoEnv.from_docker_image("echo-env:latest")

def rollout_func(prompts, args, processing_class):

response = requests.post("http://0.0.0.0:8000/generate/", json=payload)

client.reset()

env_rewards = []

for msg in completions_text:
env_result = client.step(EchoAction(message=msg))
env_rewards.append(env_result.reward)

result["env_reward"] = env_rewards
return result

reward_from_env(completions, **kwargs

"""Extract environment rewards passed via rollout_func kwargs
env_rewards = kwargs.get("env_reward", [])

return [float(reward) for reward in env_rewards] if env_rewards else [0.0] * len(completions)

dataset = Dataset.from_dict({"prompt": ["You are an AI that interacts with an *Echo* environment. Word to echo:"] * 64})

trainer = GRPOTratiner(
model="Qwen/Qwen2.5-0.5B-Instruct",
reward_funcs=reward_from_env,
train_dataset=dataset,
rollout_func=rollout_func,

)

trainer.train()

Open-R1: A Full‘y Open

Reproduction o

DeepSeek-R1 {1

L
Introducing OpenEnv
o [4.8 ‘ \ ,
o % - ‘:)

Co-locate vLLM & GRPO

Vision Language Model Alignment

GRPO & MPO in TRL
e 8
™ LLM =
No GPUs left behind faster GRPO! @ — Mep Course

asmol course Agents Course

°

f Community Computer
Deep RL Course Vision Course

s

https://huggingface.co/docs/trl/main/en/example_overview#scripts
https://huggingface.co/docs/trl/main/en/example_overview#notebooks
https://huggingface.co/learn/cookbook/index
https://huggingface.co/docs/trl/main/en/lora_without_regret
https://huggingface.co/docs/trl/main/en/index#blog-posts
https://huggingface.co/learn

Thanks!

Sergio Paniego Blanco (@sergiopaniego)

Machine Learning Engineer @ Hugging Face

in &

https://x.com/SergioPaniego
https://www.linkedin.com/in/sergio-paniego-blanco/
https://huggingface.co/sergiopaniego

