diff --git "a/related_34K/test_related_short_2404.16260v1.json" "b/related_34K/test_related_short_2404.16260v1.json" new file mode 100644--- /dev/null +++ "b/related_34K/test_related_short_2404.16260v1.json" @@ -0,0 +1,1443 @@ +[ + { + "url": "http://arxiv.org/abs/2404.16260v1", + "title": "OmniSearchSage: Multi-Task Multi-Entity Embeddings for Pinterest Search", + "abstract": "In this paper, we present OmniSearchSage, a versatile and scalable system for\nunderstanding search queries, pins, and products for Pinterest search. We\njointly learn a unified query embedding coupled with pin and product\nembeddings, leading to an improvement of $>8\\%$ relevance, $>7\\%$ engagement,\nand $>5\\%$ ads CTR in Pinterest's production search system. The main\ncontributors to these gains are improved content understanding, better\nmulti-task learning, and real-time serving. We enrich our entity\nrepresentations using diverse text derived from image captions from a\ngenerative LLM, historical engagement, and user-curated boards. Our multitask\nlearning setup produces a single search query embedding in the same space as\npin and product embeddings and compatible with pre-existing pin and product\nembeddings. We show the value of each feature through ablation studies, and\nshow the effectiveness of a unified model compared to standalone counterparts.\nFinally, we share how these embeddings have been deployed across the Pinterest\nsearch stack, from retrieval to ranking, scaling to serve $300k$ requests per\nsecond at low latency. Our implementation of this work is available at\nhttps://github.com/pinterest/atg-research/tree/main/omnisearchsage.", + "authors": "Prabhat Agarwal, Minhazul Islam Sk, Nikil Pancha, Kurchi Subhra Hazra, Jiajing Xu, Chuck Rosenberg", + "published": "2024-04-25", + "updated": "2024-04-25", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.AI", + "cs.LG", + "H.3.3" + ], + "label": "Original Paper", + "paper_cat": "LLM Fairness", + "gt": "Our work to build multi-task multi-entity embeddings for search draws upon broad areas of work. Our representation of pins and products extends existing work on multi-modal learning and two tower models for search retrieval. These have been extensively applied in the context of search and recommendation systems as an efficient way to retrieve results not purely related to the search query based on text. In OmniSearchSage, we demonstrate that the embeddings generated by these models can also serve as features in ranking and relevance models. Additionally, we offer a brief examination of specific embeddings within the Pinterest ecosystem. 2.1 Model-based Search Retrieval Historically, search systems have been powered by two stages: token-based matching, or candidate generation, and then scoring with a complex model. These have drawbacks, especially when users make complex queries or content is not primarily textual. This has led to the exploration of two tower models, which encode a query into a single embedding or a small set of embeddings, and then use those to retrieve relevant documents with approximate or exact nearest neighbor search [5, 11, 18, 20, 21, 24, 40]. Two natural topics in learning embeddings for search are document representation, and query representation. Depending on the learning objective, this query representation could be personalized, or it could be a pure text embedding model. Many architectures for query embeddings in industry have been proposed based on simple CNNs [12], bag of words models [11, 23], transformers [19], and more, but they share a basic structure involving query understanding and sometimes context understanding. Document representation is also a major challenge. The text associated directly with an item is popular as a key feature, but depending on the task, other sources have been found to provide great value, including queries where other users have engaged with a given item [5, 24, 25] and image content embeddings [19]. 2.2 Multi-task, multi-modal, and multi-entity embeddings The area of learning embeddings isn\u2019t exclusive to the realm of recommendation systems and has been studied extensively [4, 6, 29, 30]. Multi-task learning is a technique commonly utilized in ranking models to optimize for multiple objectives concurrently, aiming for enhanced performance or more efficient information sharing [33, 41]. A less frequently encountered approach involves the joint learning of embeddings for more than two entities. Though this methodology is sometimes implemented in graph learning scenarios, it can also be perceived as an extension of multi-task learning [39]. Multi-modal embeddings are of substantial interest in the industry since the majority of web content is multi-modal, typically including at both text and images [18, 19, 38]. One can take embeddings or raw data from each modality as inputs, and merge them at any stage of the model. The methodology typically involves utilizing embeddings or raw data from each mode as inputs, which are then merge at different stages in the model. Early-stage fusion can pose computational hurdles; therefore, in cases where performance is indifferent, utilizing embeddings instead of raw data is generally the preferred course of action [38]. 2.3 Embeddings at Pinterest PinSage [37] is a scalable GNN-based embedding representing pins. It is based on the GraphSage GCN algorithm [10], sampling neighborhoods with personalized PageRank to augment pin understanding, instead of simple heuristics like \ud835\udc5b-hop neighbors. It aggregates some basic visual [2] and text information into a single dense representation, and is a critical feature in many models. To represent products, we have an embedding, ItemSage [1], which aggregates raw data about products, including metadata from product pages, and potentially many images of the product. ItemSage is trained for compatibility with PinSage, and the search query embedding preceding OmniSearchSage, meaning that the distance between ItemSage and these two embeddings can be used for retrieving or ranking content [27].", + "pre_questions": [], + "main_content": "INTRODUCTION Pinterest\u2019s mission is to bring everyone the inspiration to create a life they love. Search is one of the key surfaces on Pinterest where users seek inspiration spanning a wide range of interests, such as decorating their homes, planning weddings, or keeping up with the latest trends in beauty and fashion. In order to enhance the search experience, modern search systems aim to incorporate various types of content such as web documents, news, shopping items, videos, and more. Similarly, Pinterest\u2019s search feed encompasses a diverse range of content, including pins, shopping items, video pins, and related queries. To construct an inspiring feed for each of the more than 6 billion searches per month on Pinterest we must uncover relevant content from billions of pins and products. We must also find relevant queries to help users refine their queries and navigate their search journey. As an additional challenge, Pinterest search is global and multilingual with searchers using more than 45 languages to find inspirational content. Embeddings are useful building blocks in recommendation systems, especially search, where natural language understanding is key [11, 23, 24]. Embeddings can power retrieval use cases via approximate nearest neighbor (ANN) search [14, 22], enable detailed content and query understanding in ranking models without the overhead of processing raw data, and serve as a strong base to learn in low-data use-cases [31]. Despite their utility, embeddings come with their own challenges: if we learn a separate embedding for every use-case, there is an explosion of potentially expensive models that must be inferred on every request and used in downstream models. This also may lead to suboptimal recommendation quality \u2013 some use-cases may not have enough labels to learn an optimal representation. In practice, it could entail additional maintenance costs and technical debt for upgrading to new versions of embeddings in certain applications, as some data may have been collected over the course of months or years. Through rigorous offline experimentation, we show the impact of our key decisions in building embeddings for web-scale search at Pinterest: \u2022 Pin and product representations can be substantially enriched using diverse text derived from image captions from arXiv:2404.16260v1 [cs.IR] 25 Apr 2024 WWW \u201924 Companion, May 13\u201317, 2024, Singapore, Singapore Prabhat Agarwal et al. a generative LLM, historical engagement, and user-curated boards. A single query embedding can be used to retrieve queries, boards. \u2022 A single query embedding can be used to retrieve queries, products, and Pins with nearly the same effectiveness as task-specific embeddings. A single query embedding can learn compatibility with multitask-specific embeddings. \u2022 A single query embedding can learn compatibility with multiple pre-existing embeddings and learned entity embeddings, and perform well when compared across tasks. OmniSearchSage has been deployed at Pinterest and is an integral component of the search stack. It powers embedding-based retrieval for standard and product pins, queries and ads. It is also one of the most important feature in multi-stage ranking models and various query classification models. These gains all arise despite the existence of other features enabling pin and product understanding, which highlights the importance optimizing embeddings end-to-end for search. In order to enhance the search experience, modern search systems aim to incorporate various types of content such as web documents, news, shopping items, videos, and more. Similarly, Pinterest\u2019s search feed encompasses a diverse range of content, including pins, shopping items, video pins, and related queries. Training separate query embedding models for each content type and its representation proves to be resource-intensive and inefficient. To address this issue, we introduce OmniSearchSage, which offers a unified query embedding model that jointly trains query embeddings for query-query, query-pin, and query-product retrieval and ranking. Another requirement in production systems is compatibility with existing embeddings, which is essential for purposes such as cost-efficiency and simplified migration. Hence we also train the query embeddings to be compatible with the corresponding preexisting embeddings for the entities. As a side effect, we also get compatibility with some embeddings due to the triangle inequality property inherent to cosine similarity. OmniSearchSage: Multi-Task Multi-Entity Embeddings for Pinterest Search WWW \u201924 Companion, May 13\u201317, 2024, Singapore, Singapore 3.2 Enriching Entity Representations On Pinterest, each pin or product is associated with an image and title, along with an optional text (known as description) and link. Beyond these typical attributes, products may carry additional metadata, such as brand information, color description, and more. Document expansion techniques has been empirically demonstrated to significantly enhance the performance of not just token-based, but also embedding-based search retrieval systems [8, 25, 26, 28, 34]. Hence, in OmniSearchSage, we enrich our entity representations using diverse text derived from image captions from a generative LLM, historical engagement, and user-curated boards as described below. In the dataset, 71% of pins and products feature a title or description, 91% include non-empty board titles, and 65% contain non-empty engaged queries. Synthetic GenAI captions are generated for all pins and products, ensuring full coverage. Section 4.3.2 discusses the importance of each of these enrichment. 3.2.1 Synthetic GenAI Captions. On our platform, a substantial volume of pins (about 30%) lack associated titles or descriptions, or possess noisy and/or irrelevant title or description. We address this issue by employing an off-the-shelf image captioning model, BLIP [17], to generate synthetic descriptions for these images. To assess the quality of these synthetically generated descriptions, we enlisted human evaluators to judge their relevance and quality. For a robust assessment, three distinct ratings were collected for each image within a sample of 10\ud835\udc58images, curated uniformly across various broad pin categories. The results indicated that an overwhelming 87.84% of the generated descriptions were both relevant and of high quality, while a meager 1.16% were deemed irrelevant and of poor quality. These synthetically generated descriptions serve as an added feature in our model, enriching the diversity of data associated with each entity. Despite not being directly visible to the users, their addition significantly contributes to a deeper understanding of the pins\u2019 content. 3.2.2 Board Titles. On Pinterest, users explore and save pins to their personal collections, referred to as boards. Each board carries an associated title, reflecting the topic or theme of the collection. Most often, these user-crafted boards are meticulously organized, each focusing on a distinct theme or purpose. A user might, for instance, create discrete boards for \u201cSocial Media Marketing\" and \u201cGraphic Design\u2019\u00a8. Consequently, these board titles provide valuable, user-generated descriptors for the pins within the respective boards. We exploit this user-curated information by accumulating the titles of all boards each pin has been saved to. We limit our selection to a maximum of 10 unique board titles for each pin/product, systematically eliminating any potentially noisy or redundant titles as described next. First, each title is assigned a score influenced by two factors: its frequency of occurrence and the prevalence of its comprising words. Following this, titles are then ranked based on a hierarchy of their score (ascending), word count (descending), and character length (descending). The resulting top 10 board titles are subsequently incorporated as a feature in our model. This process eliminates any potentially noisy or redundant titles from the feature. Query Encoder Query Encoder Unified Pin-Product Encoder PinSage Unified Pin-Product Encoder ItemSage Query Pin Item Query L(query, query) L(query, pin) L(query, pin_c) L(query, product) L(query, product_c) Pretrained and Frozen Trained from scratch Figure 1: Diagrammatic Representation of OmniSearchSage\u2019s Multi-Entity, Multi-Task Architecture. 3.2.3 Engaged Queries. When multiple users interact with a specific pin or product for a certain query within a search feed, it signifies that pin\u2019s relevance to that query. We can use these queries to expand our understanding of the pin/product. For every pin, we generate a list of queries that have attracted user engagements, along with the counts and types of such engagements. This list of queries is then sorted using a function based on the count for each type of engagement. We use the top 20 queries from these sorted lists as a feature in our model. Through experimentation with diverse time-windows of query logs for feature creation, we discovered that larger windows yield superior performance. Consequently, we have opted for a twoyear window for feature calculation. However, the complexity of computing this from scratch every time presents a challenge. To mitigate this, we deploy an incremental approach. Every \ud835\udc5bdays, we examine new query logs, create a list of queries for every pin, and then blend it with the previously existing top 20 queries, thereby updating the latest value of the feature. 3.3 Entity Features The features we incorporate include PinSage [37] and unified image embeddings [2] to capture the essence of each pin. Additionally, for product pins, we use ItemSage [1] given its capability in effectively representing product-related pins. Text-based features such as the title and description of each pin are also integral to our feature set. Furthermore, we augment the text associated with each pin with the inclusion of synthetic captions, board titles, and engagement queries as outlined earlier. By integrating all these features, we attain a comprehensive and multi-dimensional representation of each pin, hence facilitating enhanced learning of representations. 3.4 Encoders In our work, we consider 3 entity types, namely, pin, product and query. Our model consists of an encoder for query, a unified learned encoder for both pin and product, and dedicated compatibility encoders for pin and product, respectively. 3.4.1 Query Encoder. The query encoder in our model (depicted in Figure 2) is based on a multilingual version of the DistilBERT WWW \u201924 Companion, May 13\u201317, 2024, Singapore, Singapore Prabhat Agarwal et al. Multilingual DistilBERT [CLS] antique copper bat ##hro ##om sin ##k Project and L2 Normalize Figure 2: Overview of the query encoder architecture. The encoder takes the output from the last layer associated with the \u2018CLS\u2019 token, projects it onto a 256-dimensional vector space, and finally L2-normalizes the output to generate the final embedding. (distilbert-base-multilingual-cased2) [32]. This choice facilitates efficient handling of queries across a variety of languages. The encoder utilizes the output from the last layer corresponding to the \ud835\udc36\ud835\udc3f\ud835\udc46token and thereafter projects it to a 256-dimensional vector space. Post projection, we apply a \ud835\udc3f2 normalization on the 256-dimensional vectors to obtain the final embedding. This normalization greatly simplifies the calculation of cosine-distance in downstream applications, allowing for a straightforward dot product operation. 3.4.2 Unified Pin and Product Encoder. In our model, we utilize a single unified encoder for both pins and products (depicted in Figure 3), and this encoder is jointly trained with the query embeddings. Designed to process both textual features and continuous features, it plays a crucial role in learning the respective embeddings of pins and products. In cases where certain features are defined for one entity but not the other, we substitute them with zero, ensuring a consistent data input. As detailed in section 3.5, we utilize in-batch negatives to train our model. Prior research [9, 15, 16, 29] has empirically demonstrated that larger batches with a substantial number of negatives help in learning better representations. Therefore, to accommodate a larger batch size in the GPU memory, we employ a simple pin encoder model. The following encoder design has been determined through numerous ablation studies. These studies have allowed us to select the most effective configuration for each of the components, while still considering the importance of both training and serving efficiencies. The encoder uses three distinct tokenizers to process the textual features associated with a pin [1, 13, 23]. These include (i) a word unigram tokenizer that uses a vocabulary encompassing the 200\ud835\udc58most frequent word unigrams, (ii) a word bigram tokenizer that makes use of a vocabulary comprising the 1\ud835\udc40most frequent word bigrams, and (iii) a character trigram tokenizer that utilizes a vocabulary of 64\ud835\udc58character trigrams. The tokens are mapped to their respective IDs in the vocabulary V which constitute all three 2https://huggingface.co/distilbert-base-multilingual-cased Image Encoder PinSAGE ItemSAGE MLP & L2 Normalize Hash Embedder Word Unigram Tokenizer Word Bigram Tokenizer Character Trigram Tokenizer Tokenizer Pin Text Board Titles Engaged Queries Synthetic GenAI Captions Figure 3: Schematic of the unified encoder model for pins and products, illustrating the use of three different tokenizers, a hash embedding table, and an MLP layer for combining text embeddings with other continuous features. tokenizers. Any token that falls out of this combined vocabulary gets discarded. The use of these combined tokenizers effectively helps in capturing the semantics of various texts associated with a pin/product. For token embedding learning, we use a 2-hash hash embedding table of size 100, 000 [1, 35]. Each identified token\u2019s ID \ud835\udc56is hashed into two places within the embedding table using hash functions \u210e1(\ud835\udc56) and \u210e2(\ud835\udc56). The ultimate embedding of a token with ID \ud835\udc56is a weighted interpolation of the two locations: \ud835\udc4a1\ud835\udc56\u210e1(\ud835\udc56) +\ud835\udc4a2\ud835\udc56\u210e2(\ud835\udc56), where \ud835\udc4a1 and \ud835\udc4a2 are learned weight vectors of size |V| each. The sum of all token embeddings and the embedding features are concatenated and fed into a 3-layer MLP, with layer sizes of 1024, 1024, 256. Following this, the output of the MLP layer undergoes L2-normalization just like the query embedding. 3.4.3 Compatibility Encoders. In our model, we employ two discrete compatibility encoders individually dedicated to pins and products. These encoders leverages the pre-existing pin and product embeddings, represented by PinSage for pins and ItemSage for products. This allows the model to adeptly learn query embeddings that align effectively with PinSage and ItemSage embeddings. 3.5 Multi-Task Sampled Softmax Loss Taking inspiration from Itemsage [1], the problem of learning query and entity embeddings is treated as an extreme classification problem, with the aim of predicting entities relevant to a given query [7]. We employ the sampled softmax loss with logQ correction [36] to train our model. We use multitasking to jointly train entity embeddings and train the query embeddings to be compatible with existing entity embeddings. Formally, we define a task \ud835\udc47\u2208T as a tuple of a dataset of query-entity pairs (D = {(\ud835\udc65,\ud835\udc66)\ud835\udc56}) and an entity encoder E. \ud835\udc47\u225c{D, E}. For a batch of data, B = {(\ud835\udc65,\ud835\udc66)\ud835\udc56} \u2282D, for task\ud835\udc47\u2208T, the aim is to learn query embedding \ud835\udc5e\ud835\udc65\ud835\udc56and entity embedding \ud835\udc5d\ud835\udc66\ud835\udc56= E(\ud835\udc66\ud835\udc56) such that the cosine similarity of the embeddings \ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc66\ud835\udc56is maximized. OmniSearchSage: Multi-Task Multi-Entity Embeddings for Pinterest Search WWW \u201924 Companion, May 13\u201317, 2024, Singapore, Singapore This is achieved by minimizing the softmax loss: \ud835\udc3f\ud835\udc47= \u22121 |B| |B| \u2211\ufe01 \ud835\udc56=1 log exp(\ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc66\ud835\udc56) \u00cd \ud835\udc66\u2208\ud835\udc36exp(\ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc66) , (1) where C is the catalog of all entities of the same type as\ud835\udc66\ud835\udc56. To ensure problem tractability, the normalization term in the denominator is approximated using a sample of the catalog \ud835\udc36. We use (i) positives in the batch, \ud835\udc35\ud835\udc41= {\ud835\udc66\ud835\udc56|(\ud835\udc65\ud835\udc56,\ud835\udc66\ud835\udc56) \u2208B}, and (ii) a random sample of the catalog, \ud835\udc36\u2032. To rectify any bias that might have been introduced through sampling, we utilize the logQ correction technique. This method operates by deducting the sampling probability of the negative, represented as log\ud835\udc44(\ud835\udc66|\ud835\udc65\ud835\udc56), from the existing logits. This is crucial to ensure that popular entities aren\u2019t disproportionately penalized. \ud835\udc3f\ud835\udc47= \ud835\udc3f\ud835\udc46\ud835\udc4f\ud835\udc5b \ud835\udc47 + \ud835\udc3f\ud835\udc46\ud835\udc5f\ud835\udc5b \ud835\udc47 (2) \ud835\udc3f\ud835\udc46\ud835\udc4f\ud835\udc5b \ud835\udc47 = \u22121 |B| |B| \u2211\ufe01 \ud835\udc56=1 log exp(\ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc66\ud835\udc56\u2212log\ud835\udc44(\ud835\udc66\ud835\udc56|\ud835\udc65\ud835\udc56)) \u00cd \ud835\udc67\u2208\ud835\udc35\ud835\udc41exp(\ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc67\u2212log\ud835\udc44(\ud835\udc67|\ud835\udc65\ud835\udc56)) (3) \ud835\udc3f\ud835\udc46\ud835\udc5f\ud835\udc5b \ud835\udc47 = \u22121 |B| |B| \u2211\ufe01 \ud835\udc56=1 log exp(\ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc66\ud835\udc56\u2212log\ud835\udc44(\ud835\udc66\ud835\udc56|\ud835\udc65\ud835\udc56)) \u00cd \ud835\udc66\u2208\ud835\udc36\u2032 exp(\ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc66\u2212log\ud835\udc44(\ud835\udc66|\ud835\udc65\ud835\udc56)) (4) = \u22121 |B| |B| \u2211\ufe01 \ud835\udc56=1 log exp(\ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc66\ud835\udc56\u2212log\ud835\udc44(\ud835\udc66\ud835\udc56|\ud835\udc65\ud835\udc56)) \u00cd \ud835\udc66\u2208\ud835\udc36\u2032 exp(\ud835\udc5e\ud835\udc65\ud835\udc56\u00b7 \ud835\udc5d\ud835\udc66\u2212log\ud835\udc44\ud835\udc5b(\ud835\udc66)) , (5) since \ud835\udc66is sampled independently The total loss is defined as the sum of all individual task losses, \ud835\udc3f= \u2211\ufe01 \ud835\udc47\u2208T \ud835\udc3f\ud835\udc47. (6) We mix together different tasks together in one batch and control the influence of each task on the model through this composition. To increase training efficiency, we share the pairs in the batch across all tasks with the same dataset. 3.6 Model Serving OmniSearchSage query embeddings are integral to numerous applications in the search stack, which necessitates us to maintain a strict latency budget. For real-time inference with minimized latency, our query encoder is served on GPUs by our in-house C++based machine learning model server, the Scorpion Model Server (SMS). Factoring in that query distribution complies with Zipf\u2019s law, we have instituted a cache-based system to curb costs and shorten response times. The query embedding server first verifies if a query is cached before resorting to the query inference server should it be absent from the cache. After testing various Cache Time-To-Live (TTL) periods, a TTL of 30 days was established as optimal. The system is equipped for handling 300\ud835\udc58requests per second, maintaining a median (p50) latency of just 3ms, and 90 percentile (p90) latency of 20ms. The implementation of this cachebased system efficiently reduces the load on the inference server to approximately 500 QPS, leading to substantial cost and latency reductions. The pin and product embeddings are derived offline on a daily basis through batch inference on GPUs and are subsequently published to our signal store for consumption. Pair Source Actions Size Query-Pin Query Logs repin, longclick 1.5B Query-Product Query Logs repin, longclick 136M Query-Product Offsite logs add-to-cart, checkout 2.5M Query-Query Query Logs click 195M Table 1: Summary of the different training datasets. 4 EXPERIMENTS 4.1 Dataset Our dataset is primarily constructed by extracting unique queryentity pairs from one year of search query logs. We consider various forms of engagement on the platform when extracting these pairs, including \u2018saves\u2019 (when a user saves a pin to a board) and \u2018long clicks\u2019 (instances where users browse the linked page for more than 10 seconds before returning to Pinterest). For products, we enrich our dataset by incorporating offsite actions as well. Thus, we also include anonymized pairs tied to significant actions like \u2018add to cart\u2019 and \u2018checkout\u2019. A common challenge in recommendation systems is the popularity bias, where certain pins are overrepresented due to their high appeal. To counteract this bias, we impose a limit on the number of times the same pin can be paired. This limit is capped at 50 pairs for pins and is extended to 200 pairs for products (since products have lower volume and engagement). By adopting this strategy, we ensure our dataset is robust and truly representative of the user\u2019s activity on the platform. Our model training is further extended to encompass queryquery pairs. On Pinterest, users are presented with similar query suggestions, and engagements with these recommendations are recorded in the search logs. We leverage these records, extracting such pairs from an entire year\u2019s logs, thus enriching our training dataset. A detailed breakdown of the positive labels in the dataset is provided in Table 1. 4.2 Offline Evaluation Metrics Our evaluation of the model encompasses both user engagement data and human-labeled relevance data. Relevance gets measured using human-labeled pairs of queries and pins, sampled from production traffic from four distinct countries: US, UK, France, and Germany. This strategy serves to assess the model\u2019s performance in handling multiple languages and cultural contexts. Evaluation of user engagement considers a selected 7-day period. We ensure no data leakage\u2014possible due to the inclusion of engagement features such as engaged queries\u2014by maintaining a 15-day separation between the end of the training dataset and the beginning of the evaluation phase. We sample 80\ud835\udc58pairs from the defined evaluation duration to represent repins and long clicks for both pins and products. Another 80\ud835\udc58pairs, corresponding to clicks for queries, are also included for comprehensive performance evaluation. The primary metric we used for evaluation is named \u2018Recall@10\u2019. This metric denotes the likelihood of the occurrence of the engaged entity within the top 10 entities when these entities are sorted in descending order based on their similarity to the query. WWW \u201924 Companion, May 13\u201317, 2024, Singapore, Singapore Prabhat Agarwal et al. Metric SearchSage OmniSearchSage Gain Pin Save 0.39 0.65 +67% Long-Click 0.45 0.73 +62% Relevance (US) 0.25 0.45 +80% Relevance (UK) 0.29 0.51 +76% Relevance (FR) 0.23 0.43 +87% Relevance (DE) 0.28 0.46 +64% Product Save 0.57 0.73 +28% Long-Click 0.58 0.73 +26% Query Click 0.54 0.78 +44% Table 2: Comparative analysis of OmniSearchSage and the baseline SearchSage across various tasks Pin, Product, and Query. Consider a dataset \ud835\udc37= (\ud835\udc5e\ud835\udc56,\ud835\udc52\ud835\udc56)\ud835\udc5b \ud835\udc56=1, where each (\ud835\udc5e\ud835\udc56,\ud835\udc52\ud835\udc56) denotes a query-engaged entity pair, and also consider a random corpus \ud835\udc36 with \ud835\udc5aentities. The Recall@10 metric can then be defined as the average over all queries of the indicator function 1, where 1 equals 1 if the engaged entity \ud835\udc52\ud835\udc56is amongst the top 10 entities in \ud835\udc36when ranked by their dot product with the query \ud835\udc5e\ud835\udc56. Recall@10 = 1 |\ud835\udc37| |\ud835\udc37| \u2211\ufe01 \ud835\udc56=1 1[( \u2211\ufe01 \ud835\udc66\u2208\ud835\udc36 \ud835\udc65\ud835\udc56\u00b7 \ud835\udc66> \ud835\udc65\ud835\udc56\u00b7 \ud835\udc66\ud835\udc56) > 10] For every pin, query, and product, we employ a uniformly distributed random sample of \ud835\udc5a= 1.5\ud835\udc40entities from our corpus. 4.3 Offline Results In this section, we provide a comprehensive comparison between our proposed model, OmniSearchSage, and the existing baselines, which helps showcase its performance enhancements. Subsequently, we undertake an in-depth exploration of key influential aspects such as the significance of text enrichments, the pros and cons of adopting multitasking approaches, and the operational efficacy of compatibility encoders in the context of our model. 4.3.1 Comparison with Baselines. In this study, the existing version of SearchSage [27] serves as our comparison baseline. It operates using fixed PinSage and ItemSage embeddings for pins and products, respectively. For OmniSearchSage, we utilize the query encoder to derive query embeddings and the unified pin and product encoder to generate pin and product embeddings. In Table 2, comparisons are drawn between OmniSearchSage and SearchSage, with both models being trained and evaluated on the same dataset. It is important to highlight that the baseline model, SearchSage, does not involve query-query pairs for training purposes. On the pin dataset, OmniSearchSage shows a significant gain, between 60% and 90%, over SearchSage across all metrics. Recall is relatively consistent across different countries, reflecting the multilingual robustness of OmniSearchSage. Analysis of the product dataset reveals that OmniSearchSage outperforms the baseline model by about 27% in predicting product save long-click relevance No captions 0.51 0.60 0.36 With captions 0.66 0.76 0.36 Improvement +30.43% +25.58% 0% Table 3: Comparative assessment displaying the influence of Synthetic GenAI Captions on pins lacking titles and descriptions. engagement. This increment is less prominent as compared to the pins dataset, mainly because ItemSage, upon which this comparison is based, has already undergone training on search tasks. Nevertheless, the observed improvement shows the positive impact of incorporating new features as well as the benefit of multi-tasking. Interestingly, SearchSage is able to predict related query clicks substantially better than random despite not being trained on this task. However, when we directly optimize for this objective in OmniSearchSage, we see a substantial +44% improvement. We show this improvement can be attributed to both training on related queries, and multi-task learning in Section 4.3.3. 4.3.2 Importance of content enrichment. In this section, we delve into an analysis of the importance of various text enhancements described in Section 3.2. To maintain brevity, the evaluation focuses solely on the metrics related to the query-pin task. Our first direction of investigation centers around the impact of integrating synthetic captions for pins that lack both a title and description. For this purpose, we extracted pairs from the evaluation dataset in which the engaged pin was missing a title or a description. This resulted in a narrowed evaluation dataset of 24\ud835\udc58pairs. The model\u2019s performance, initially based on solely continuous features and native text, was then compared to a model additionally enriched with captions. Table 3 presents the results of this comparison. When synthetic captions were added, both \u2018save\u2019 and \u2018long-click\u2019 metrics saw substantial improvements \u2014 approximately +30% and +26% respectively. However, the relevance metric remained unchanged. This suggests that adding synthetic captions can significantly enhance the model\u2019s performance for certain metrics when representing pins that lack a title and description. Table 4 illustrates the impact of adding different text enrichments on the model\u2019s performance. Each percentage increase is relative to the previous row, displaying the additional improvement from each additional feature. Our baseline model utilizes only continuous features for training and its performance values are reflected in the first row. Upon adding \u2018Title\u2019, \u2018Description\u2019, and \u2018Synthetic GenAI Captions\u2019 to the baseline model, we notice a robust improvement across all metrics. save long-click relevance Continuous Features Only 0.43 0.53 0.30 Adding Title, Description and Synthetic GenAI Captions 0.52 (+21%) 0.63 (+19%) 0.39 (+30%) Adding Board Titles 0.61 (+17%) 0.68 (+8%) 0.44 (+13%) Adding Engaged Queries 0.65 (+7%) 0.73 (+7%) 0.46 (+5%) Table 4: Impact of adding different text enrichments on the model\u2019s performance. Each percentage increase is relative to the previous row, displaying the additional improvement from each additional feature. OmniSearchSage: Multi-Task Multi-Entity Embeddings for Pinterest Search WWW \u201924 Companion, May 13\u201317, 2024, Singapore, Singapore Dataset Pin Only Product only Query Only OmniSearchSage pin save 0.68 0.65 long-click 0.75 0.73 avg relevance 0.45 0.46 product save 0.73 0.73 long-click 0.73 0.73 query click 0.73 0.78 Table 5: Comparative analysis illustrating the contrasts between our unified multi-task model and models trained individually for each task pin, product, and query. There is a 20% improvement in the engagement datasets, while the relevance metric improves by a notable 30%, demonstrating the substantial impact of these text features. The model enhancement continues with adding board titles to the feature set, leading to a further increase of 8 \u221215% in different metrics. This affirms the relevance of board titles in improving predictive accuracy. Finally, we incorporated engaged queries feature into the model, resulting in a consistent, albeit smaller growth across all three metrics. Although the incremental relative gain appears smaller, it still constitutes a significant improvement when compared to the baseline model. In summary, each text enrichment feature contributes significantly to improving model performance as seen by the increment in metrics compared to their immediate preceding state. 4.3.3 Effect of multi-tasking. In Table 5, we present a comparative analysis between models trained independently for each task (pin, product, and query) and our consolidated multitask model. For this comparison, both the independent and multitask models were trained under equivalent conditions with matching batch sizes, computational power, and iterations. The datasets used for both training and evaluation were also identical, with the sole difference that the individual models were trained on their respective subset of pairs from the dataset. This systematic approach ensures the fair and accurate assessment of the performance of the multitask model in relation to the independent task models. On the pin task, we see slight degradation in quality from multitask learning, but, on product and query tasks, results are neutral to positive. This aligns with general notions about multi-task learning: low-data tasks are unlikely to see regressions from multi-task learning, while the pin task using 1.5\ud835\udc35pairs sees a very slight drop in performance. Despite this drop, the simplification benefits of multi-task learning outweigh the metric loss. 4.3.4 Effect of compatibility encoders. We examine the influence of incorporating compatibility encoders on the effectiveness of the learned pin/product embeddings. We train a model that comprises only the query and unified pin and product encoder. Subsequently, this model is compared with another model that fully incorporates all the encoders. Interestingly, there is almost no noticeable degradation in the metrics of the learned encoder, thereby essentially achieving seamless compatibility of the query embedding with pre-existing embeddings at no substantial cost. Furthermore, as demonstrated in Table 6, the performance of the compatibility encoders in the OmniSearchSage model is either on par with or surpasses that of the SearchSage model, which is trained utilising only compatibility encoders. Dataset SearchSage OmniSearchSage pin save 0.39 0.39 long-click 0.45 0.43 avg relevance 0.26 0.26 product save 0.57 0.57 long-click 0.58 0.57 Table 6: Comparison of co-trained compatibility encoders with independently trained compatibility encoders. Product Embedding Index (HNSW) Ads Embedding Index (HNSW) Pin Embedding Index (HNSW) Pin Inverted Token Index Product Inverted Token Index Ads Inverted Token Index L1 Scoring Model User Input Query Query Understanding L2 Scoring Model Query Embedding Server User, Query, Pin Features Figure 4: A simplified depiction of the search retrieval and ranking stack at Pinterest highlighting the integration points for OmniSearchSage embeddings. 5 APPLICATIONS IN PINTEREST SEARCH OmniSearchSage embeddings find wide applications throughout the Pinterest search stack, primarily in retrieval and ranking tasks. Figure 4 presents a simplified depiction of the search retrieval and ranking stack at Pinterest and highlights the integration points for OmniSearchSage embeddings. These embeddings are employed to power the retrieval of pins and products using HNSW [22]. They are also instrumental in the L1 scoring model, where they enhance the efficiency of token-based retrieval sources. Moreover, OmniSearchSage embeddings serve as one of the most critical features in the L2 scoring and relevance models. In this section, we delineate the results derived from the A/B tests we conducted. In these tests, production SearchSage embeddings were replaced with OmniSearchSage embeddings, resulting in boosted performance in both organic and promoted content (Ads) in search. Additionally, we provide results from a human relevance assessment conducted on actual production-sampled traffic. This evaluation further confirms the improved performance derived from the utilization of OmniSearchSage embeddings. Finally, we demonstrate how employing query embeddings also enhances performance in other tasks, such as classification, particularly in situations where data availability is limited. This highlights the ability of the OmniSearchSage model to generalize to tasks different from its original training objectives. 5.1 Human Relevance Evaluation To understand advantages of OmniSearchSage, we enlisted human evaluators to assess the relevance of candidates retrieved via two WWW \u201924 Companion, May 13\u201317, 2024, Singapore, Singapore Prabhat Agarwal et al. (a) Token-based (b) OmniSearchSage-based Figure 5: Comparative display of pins retrieved in response to the query \u2019antique copper bathroom sink\u2019 from the tokenbased system and the OmniSearchSage-based system. Pins deemed relevant are outlined in green, while those considered irrelevant are encircled in red. methods: OmniSearchSage embeddings-based pin retrieval and token-based pin retrieval. For this evaluation, we selected a set of 300 queries, deliberately stratified across both head and tail queries. The top 8 candidate pins were then retrieved from each system using these queries, and human evaluators determined the relevance of the pins to the corresponding query. Every query-pin pair received three judgements, with an inter-annotator agreement rate of 0.89. Evaluation results revealed a noticeable improvement with OmniSearchSage, showing a 10% increase in relevance compared to the token-based system. Figure 5 offers a distinct comparison of retrieved pins for the query \u2018antique copper bathroom sink\u2019 between the candidates retrieved by the token-based system and the OmniSearchSage-based system. The token-based retrieval system often fetches pins related to only part of the query and fails to fetch consistently relevant results. In striking contrast, nearly all pins retrieved by the OmniSearchSage-based system are highly relevant to the specified query, underlining the efficacy of the OmniSearchSage model in understanding the query and aligning similar pins and queries in the same space together. 5.2 Organic Search In this section, we outline the results of the A/B testing conducted to substitute the existing production SearchSage query and entity embeddings with OmniSearchSage embeddings for organic content within Pinterest search. Within the context of search experiments at Pinterest, our attention is largely concentrated on two key metrics: the search fulfillment rate and relevance. The search fulfillment rate is defined as the proportion of searches that result in a user engagement action of significance. Relevance is calculated as the weighted average relevance of the top eight pins for each query, assessed across different query segments. This is measured through human evaluation. The impact on these two metrics, from replacing SearchSage with OmniSearchSage, is presented in Table 7. The table provides data drawn from experiments for three distinct use-cases: (i) retrieval of pins and products, (ii) L1 scoring model, and (iii) L2 scoring model and relevance model. Search Fulfilment Rate Relevance Pin and Product Retrieval +4.1% +0.5% L1 Scoring +0.5% +0.0% L2 Scoring and Relevance Model +2.8% +3.0% Table 7: Online A/B experiment results of OmniSearchSage in Organic Search. gCTR Product Ads Retrieval +5.27% Ads Search Engagement Model +2.96% Ads Search Relevance Model +1.55% Table 8: Online A/B experiment results of OmniSearchSage for Ads in Search. 5.3 Ads in Search The OmniSearchSage embeddings have also successfully replaced the SearchSage embeddings in various applications within Ads on Search surface. We present the results of three use cases: search engagement model, search relevance model, and product ads retrieval. Uniformly, we noted substantial improvements in engagement and relevance within Ads across all use cases. These increments, specifically in the long clickthrough rate (gCTR), are outlined in Table 8. Furthermore, OmniSearchSage led to a noteworthy 4.95% increase in Ads relevance within the Search Ads relevance model. These gains highlight the positive impact of transitioning to OmniSearchSage embeddings for Ads on Search. 5.4 Classification One of the primary advantages of developing robust query representation such as OmniSearchSage is its utility in powering downstream applications, particularly when there is a lack of labels for learning large models. One example of this at Pinterest is interest classification, where we classify queries into a hierarchical taxonomy. Using OmniSearchSage query embeddings for query representation, we were able to increase performance when compared to the baseline FastText [3] model. Precision increased by 30% on average across levels, with the larger gains coming from more granular levels. 6 CONCLUSION In this work, we presented OmniSearchSage, an end-to-end optimized set of query, pin, and product embeddings for Pinterest search, which have shown value across many applications. In contrast to other work focused on learning embeddings for search, we demonstrate the value of unified query, pin, and product embeddings as both candidate generators and features in Pinterest search. We show a great improvement over previous solutions at Pinterest can be attributed to rich document text representations, which improved offline evaluation metrics by > 50%. We also describe practical decisions enabling serving and adoption, including compatibilty encoders, multi-task learning, and long-TTL caching. Lastly, we summarize results from online A/B experiments across organic and ads applications, which have directly led to cumulative gains of +7.4% fulfilment rate on searches, and +3.5% relevance. OmniSearchSage: Multi-Task Multi-Entity Embeddings for Pinterest Search WWW \u201924 Companion, May 13\u201317, 2024, Singapore, Singapore" + }, + { + "url": "http://arxiv.org/abs/1908.10084v1", + "title": "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", + "abstract": "BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new\nstate-of-the-art performance on sentence-pair regression tasks like semantic\ntextual similarity (STS). However, it requires that both sentences are fed into\nthe network, which causes a massive computational overhead: Finding the most\nsimilar pair in a collection of 10,000 sentences requires about 50 million\ninference computations (~65 hours) with BERT. The construction of BERT makes it\nunsuitable for semantic similarity search as well as for unsupervised tasks\nlike clustering.\n In this publication, we present Sentence-BERT (SBERT), a modification of the\npretrained BERT network that use siamese and triplet network structures to\nderive semantically meaningful sentence embeddings that can be compared using\ncosine-similarity. This reduces the effort for finding the most similar pair\nfrom 65 hours with BERT / RoBERTa to about 5 seconds with SBERT, while\nmaintaining the accuracy from BERT.\n We evaluate SBERT and SRoBERTa on common STS tasks and transfer learning\ntasks, where it outperforms other state-of-the-art sentence embeddings methods.", + "authors": "Nils Reimers, Iryna Gurevych", + "published": "2019-08-27", + "updated": "2019-08-27", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/1705.02364v5", + "title": "Supervised Learning of Universal Sentence Representations from Natural Language Inference Data", + "abstract": "Many modern NLP systems rely on word embeddings, previously trained in an\nunsupervised manner on large corpora, as base features. Efforts to obtain\nembeddings for larger chunks of text, such as sentences, have however not been\nso successful. Several attempts at learning unsupervised representations of\nsentences have not reached satisfactory enough performance to be widely\nadopted. In this paper, we show how universal sentence representations trained\nusing the supervised data of the Stanford Natural Language Inference datasets\ncan consistently outperform unsupervised methods like SkipThought vectors on a\nwide range of transfer tasks. Much like how computer vision uses ImageNet to\nobtain features, which can then be transferred to other tasks, our work tends\nto indicate the suitability of natural language inference for transfer learning\nto other NLP tasks. Our encoder is publicly available.", + "authors": "Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, Antoine Bordes", + "published": "2017-05-05", + "updated": "2018-07-08", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2103.00020v1", + "title": "Learning Transferable Visual Models From Natural Language Supervision", + "abstract": "State-of-the-art computer vision systems are trained to predict a fixed set\nof predetermined object categories. This restricted form of supervision limits\ntheir generality and usability since additional labeled data is needed to\nspecify any other visual concept. Learning directly from raw text about images\nis a promising alternative which leverages a much broader source of\nsupervision. We demonstrate that the simple pre-training task of predicting\nwhich caption goes with which image is an efficient and scalable way to learn\nSOTA image representations from scratch on a dataset of 400 million (image,\ntext) pairs collected from the internet. After pre-training, natural language\nis used to reference learned visual concepts (or describe new ones) enabling\nzero-shot transfer of the model to downstream tasks. We study the performance\nof this approach by benchmarking on over 30 different existing computer vision\ndatasets, spanning tasks such as OCR, action recognition in videos,\ngeo-localization, and many types of fine-grained object classification. The\nmodel transfers non-trivially to most tasks and is often competitive with a\nfully supervised baseline without the need for any dataset specific training.\nFor instance, we match the accuracy of the original ResNet-50 on ImageNet\nzero-shot without needing to use any of the 1.28 million training examples it\nwas trained on. We release our code and pre-trained model weights at\nhttps://github.com/OpenAI/CLIP.", + "authors": "Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever", + "published": "2021-02-26", + "updated": "2021-02-26", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV", + "cs.LG" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/1907.00937v1", + "title": "Semantic Product Search", + "abstract": "We study the problem of semantic matching in product search, that is, given a\ncustomer query, retrieve all semantically related products from the catalog.\nPure lexical matching via an inverted index falls short in this respect due to\nseveral factors: a) lack of understanding of hypernyms, synonyms, and antonyms,\nb) fragility to morphological variants (e.g. \"woman\" vs. \"women\"), and c)\nsensitivity to spelling errors. To address these issues, we train a deep\nlearning model for semantic matching using customer behavior data. Much of the\nrecent work on large-scale semantic search using deep learning focuses on\nranking for web search. In contrast, semantic matching for product search\npresents several novel challenges, which we elucidate in this paper. We address\nthese challenges by a) developing a new loss function that has an inbuilt\nthreshold to differentiate between random negative examples, impressed but not\npurchased examples, and positive examples (purchased items), b) using average\npooling in conjunction with n-grams to capture short-range linguistic patterns,\nc) using hashing to handle out of vocabulary tokens, and d) using a model\nparallel training architecture to scale across 8 GPUs. We present compelling\noffline results that demonstrate at least 4.7% improvement in Recall@100 and\n14.5% improvement in mean average precision (MAP) over baseline\nstate-of-the-art semantic search methods using the same tokenization method.\nMoreover, we present results and discuss learnings from online A/B tests which\ndemonstrate the efficacy of our method.", + "authors": "Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian, Ding, Ankit Shingavi, Choon Hui Teo, Hao Gu, Bing Yin", + "published": "2019-07-01", + "updated": "2019-07-01", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.CL" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2205.11728v1", + "title": "ItemSage: Learning Product Embeddings for Shopping Recommendations at Pinterest", + "abstract": "Learned embeddings for products are an important building block for web-scale\ne-commerce recommendation systems. At Pinterest, we build a single set of\nproduct embeddings called ItemSage to provide relevant recommendations in all\nshopping use cases including user, image and search based recommendations. This\napproach has led to significant improvements in engagement and conversion\nmetrics, while reducing both infrastructure and maintenance cost. While most\nprior work focuses on building product embeddings from features coming from a\nsingle modality, we introduce a transformer-based architecture capable of\naggregating information from both text and image modalities and show that it\nsignificantly outperforms single modality baselines. We also utilize multi-task\nlearning to make ItemSage optimized for several engagement types, leading to a\ncandidate generation system that is efficient for all of the engagement\nobjectives of the end-to-end recommendation system. Extensive offline\nexperiments are conducted to illustrate the effectiveness of our approach and\nresults from online A/B experiments show substantial gains in key business\nmetrics (up to +7% gross merchandise value/user and +11% click volume).", + "authors": "Paul Baltescu, Haoyu Chen, Nikil Pancha, Andrew Zhai, Jure Leskovec, Charles Rosenberg", + "published": "2022-05-24", + "updated": "2022-05-24", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.LG" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2202.07247v1", + "title": "CommerceMM: Large-Scale Commerce MultiModal Representation Learning with Omni Retrieval", + "abstract": "We introduce CommerceMM - a multimodal model capable of providing a diverse\nand granular understanding of commerce topics associated to the given piece of\ncontent (image, text, image+text), and having the capability to generalize to a\nwide range of tasks, including Multimodal Categorization, Image-Text Retrieval,\nQuery-to-Product Retrieval, Image-to-Product Retrieval, etc. We follow the\npre-training + fine-tuning training regime and present 5 effective pre-training\ntasks on image-text pairs. To embrace more common and diverse commerce data\nwith text-to-multimodal, image-to-multimodal, and multimodal-to-multimodal\nmapping, we propose another 9 novel cross-modal and cross-pair retrieval tasks,\ncalled Omni-Retrieval pre-training. The pre-training is conducted in an\nefficient manner with only two forward/backward updates for the combined 14\ntasks. Extensive experiments and analysis show the effectiveness of each task.\nWhen combining all pre-training tasks, our model achieves state-of-the-art\nperformance on 7 commerce-related downstream tasks after fine-tuning.\nAdditionally, we propose a novel approach of modality randomization to\ndynamically adjust our model under different efficiency constraints.", + "authors": "Licheng Yu, Jun Chen, Animesh Sinha, Mengjiao MJ Wang, Hugo Chen, Tamara L. Berg, Ning Zhang", + "published": "2022-02-15", + "updated": "2022-02-15", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV", + "cs.AI", + "cs.CL", + "cs.MM", + "cs.SI" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2006.11632v2", + "title": "Embedding-based Retrieval in Facebook Search", + "abstract": "Search in social networks such as Facebook poses different challenges than in\nclassical web search: besides the query text, it is important to take into\naccount the searcher's context to provide relevant results. Their social graph\nis an integral part of this context and is a unique aspect of Facebook search.\nWhile embedding-based retrieval (EBR) has been applied in eb search engines for\nyears, Facebook search was still mainly based on a Boolean matching model. In\nthis paper, we discuss the techniques for applying EBR to a Facebook Search\nsystem. We introduce the unified embedding framework developed to model\nsemantic embeddings for personalized search, and the system to serve\nembedding-based retrieval in a typical search system based on an inverted\nindex. We discuss various tricks and experiences on end-to-end optimization of\nthe whole system, including ANN parameter tuning and full-stack optimization.\nFinally, we present our progress on two selected advanced topics about\nmodeling. We evaluated EBR on verticals for Facebook Search with significant\nmetrics gains observed in online A/B experiments. We believe this paper will\nprovide useful insights and experiences to help people on developing\nembedding-based retrieval systems in search engines.", + "authors": "Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padmanabhan, Giuseppe Ottaviano, Linjun Yang", + "published": "2020-06-20", + "updated": "2020-07-29", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2202.06212v1", + "title": "Uni-Retriever: Towards Learning The Unified Embedding Based Retriever in Bing Sponsored Search", + "abstract": "Embedding based retrieval (EBR) is a fundamental building block in many web\napplications. However, EBR in sponsored search is distinguished from other\ngeneric scenarios and technically challenging due to the need of serving\nmultiple retrieval purposes: firstly, it has to retrieve high-relevance ads,\nwhich may exactly serve user's search intent; secondly, it needs to retrieve\nhigh-CTR ads so as to maximize the overall user clicks. In this paper, we\npresent a novel representation learning framework Uni-Retriever developed for\nBing Search, which unifies two different training modes knowledge distillation\nand contrastive learning to realize both required objectives. On one hand, the\ncapability of making high-relevance retrieval is established by distilling\nknowledge from the ``relevance teacher model''. On the other hand, the\ncapability of making high-CTR retrieval is optimized by learning to\ndiscriminate user's clicked ads from the entire corpus. The two training modes\nare jointly performed as a multi-objective learning process, such that the ads\nof high relevance and CTR can be favored by the generated embeddings. Besides\nthe learning strategy, we also elaborate our solution for EBR serving pipeline\nbuilt upon the substantially optimized DiskANN, where massive-scale EBR can be\nperformed with competitive time and memory efficiency, and accomplished in\nhigh-quality. We make comprehensive offline and online experiments to evaluate\nthe proposed techniques, whose findings may provide useful insights for the\nfuture development of EBR systems. Uni-Retriever has been mainstreamed as the\nmajor retrieval path in Bing's production thanks to the notable improvements on\nthe representation and EBR serving quality.", + "authors": "Jianjin Zhang, Zheng Liu, Weihao Han, Shitao Xiao, Ruicheng Zheng, Yingxia Shao, Hao Sun, Hanqing Zhu, Premkumar Srinivasan, Denvy Deng, Qi Zhang, Xing Xie", + "published": "2022-02-13", + "updated": "2022-02-13", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.CL" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2108.05887v1", + "title": "Billion-Scale Pretraining with Vision Transformers for Multi-Task Visual Representations", + "abstract": "Large-scale pretraining of visual representations has led to state-of-the-art\nperformance on a range of benchmark computer vision tasks, yet the benefits of\nthese techniques at extreme scale in complex production systems has been\nrelatively unexplored. We consider the case of a popular visual discovery\nproduct, where these representations are trained with multi-task learning, from\nuse-case specific visual understanding (e.g. skin tone classification) to\ngeneral representation learning for all visual content (e.g. embeddings for\nretrieval). In this work, we describe how we (1) generate a dataset with over a\nbillion images via large weakly-supervised pretraining to improve the\nperformance of these visual representations, and (2) leverage Transformers to\nreplace the traditional convolutional backbone, with insights into both system\nand performance improvements, especially at 1B+ image scale. To support this\nbackbone model, we detail a systematic approach to deriving weakly-supervised\nimage annotations from heterogenous text signals, demonstrating the benefits of\nclustering techniques to handle the long-tail distribution of image labels.\nThrough a comprehensive study of offline and online evaluation, we show that\nlarge-scale Transformer-based pretraining provides significant benefits to\nindustry computer vision applications. The model is deployed in a production\nvisual shopping system, with 36% improvement in top-1 relevance and 23%\nimprovement in click-through volume. We conduct extensive experiments to better\nunderstand the empirical relationships between Transformer-based architectures,\ndataset scale, and the performance of production vision systems.", + "authors": "Josh Beal, Hao-Yu Wu, Dong Huk Park, Andrew Zhai, Dmitry Kislyuk", + "published": "2021-08-12", + "updated": "2021-08-12", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV", + "cs.AI", + "cs.LG" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/1706.02216v4", + "title": "Inductive Representation Learning on Large Graphs", + "abstract": "Low-dimensional embeddings of nodes in large graphs have proved extremely\nuseful in a variety of prediction tasks, from content recommendation to\nidentifying protein functions. However, most existing approaches require that\nall nodes in the graph are present during training of the embeddings; these\nprevious approaches are inherently transductive and do not naturally generalize\nto unseen nodes. Here we present GraphSAGE, a general, inductive framework that\nleverages node feature information (e.g., text attributes) to efficiently\ngenerate node embeddings for previously unseen data. Instead of training\nindividual embeddings for each node, we learn a function that generates\nembeddings by sampling and aggregating features from a node's local\nneighborhood. Our algorithm outperforms strong baselines on three inductive\nnode-classification benchmarks: we classify the category of unseen nodes in\nevolving information graphs based on citation and Reddit post data, and we show\nthat our algorithm generalizes to completely unseen graphs using a multi-graph\ndataset of protein-protein interactions.", + "authors": "William L. Hamilton, Rex Ying, Jure Leskovec", + "published": "2017-06-07", + "updated": "2018-09-10", + "primary_cat": "cs.SI", + "cats": [ + "cs.SI", + "cs.LG", + "stat.ML" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2106.09297v1", + "title": "Embedding-based Product Retrieval in Taobao Search", + "abstract": "Nowadays, the product search service of e-commerce platforms has become a\nvital shopping channel in people's life. The retrieval phase of products\ndetermines the search system's quality and gradually attracts researchers'\nattention. Retrieving the most relevant products from a large-scale corpus\nwhile preserving personalized user characteristics remains an open question.\nRecent approaches in this domain have mainly focused on embedding-based\nretrieval (EBR) systems. However, after a long period of practice on Taobao, we\nfind that the performance of the EBR system is dramatically degraded due to\nits: (1) low relevance with a given query and (2) discrepancy between the\ntraining and inference phases. Therefore, we propose a novel and practical\nembedding-based product retrieval model, named Multi-Grained Deep Semantic\nProduct Retrieval (MGDSPR). Specifically, we first identify the inconsistency\nbetween the training and inference stages, and then use the softmax\ncross-entropy loss as the training objective, which achieves better performance\nand faster convergence. Two efficient methods are further proposed to improve\nretrieval relevance, including smoothing noisy training data and generating\nrelevance-improving hard negative samples without requiring extra knowledge and\ntraining procedures. We evaluate MGDSPR on Taobao Product Search with\nsignificant metrics gains observed in offline experiments and online A/B tests.\nMGDSPR has been successfully deployed to the existing multi-channel retrieval\nsystem in Taobao Search. We also introduce the online deployment scheme and\nshare practical lessons of our retrieval system to contribute to the community.", + "authors": "Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming Wu, Qianli Ma", + "published": "2021-06-17", + "updated": "2021-06-17", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/1806.01973v1", + "title": "Graph Convolutional Neural Networks for Web-Scale Recommender Systems", + "abstract": "Recent advancements in deep neural networks for graph-structured data have\nled to state-of-the-art performance on recommender system benchmarks. However,\nmaking these methods practical and scalable to web-scale recommendation tasks\nwith billions of items and hundreds of millions of users remains a challenge.\nHere we describe a large-scale deep recommendation engine that we developed and\ndeployed at Pinterest. We develop a data-efficient Graph Convolutional Network\n(GCN) algorithm PinSage, which combines efficient random walks and graph\nconvolutions to generate embeddings of nodes (i.e., items) that incorporate\nboth graph structure as well as node feature information. Compared to prior GCN\napproaches, we develop a novel method based on highly efficient random walks to\nstructure the convolutions and design a novel training strategy that relies on\nharder-and-harder training examples to improve robustness and convergence of\nthe model. We also develop an efficient MapReduce model inference algorithm to\ngenerate embeddings using a trained model. We deploy PinSage at Pinterest and\ntrain it on 7.5 billion examples on a graph with 3 billion nodes representing\npins and boards, and 18 billion edges. According to offline metrics, user\nstudies and A/B tests, PinSage generates higher-quality recommendations than\ncomparable deep learning and graph-based alternatives. To our knowledge, this\nis the largest application of deep graph embeddings to date and paves the way\nfor a new generation of web-scale recommender systems based on graph\nconvolutional architectures.", + "authors": "Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec", + "published": "2018-06-06", + "updated": "2018-06-06", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.LG", + "stat.ML" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2402.04489v1", + "title": "De-amplifying Bias from Differential Privacy in Language Model Fine-tuning", + "abstract": "Fairness and privacy are two important values machine learning (ML)\npractitioners often seek to operationalize in models. Fairness aims to reduce\nmodel bias for social/demographic sub-groups. Privacy via differential privacy\n(DP) mechanisms, on the other hand, limits the impact of any individual's\ntraining data on the resulting model. The trade-offs between privacy and\nfairness goals of trustworthy ML pose a challenge to those wishing to address\nboth. We show that DP amplifies gender, racial, and religious bias when\nfine-tuning large language models (LLMs), producing models more biased than\nones fine-tuned without DP. We find the cause of the amplification to be a\ndisparity in convergence of gradients across sub-groups. Through the case of\nbinary gender bias, we demonstrate that Counterfactual Data Augmentation (CDA),\na known method for addressing bias, also mitigates bias amplification by DP. As\na consequence, DP and CDA together can be used to fine-tune models while\nmaintaining both fairness and privacy.", + "authors": "Sanjari Srivastava, Piotr Mardziel, Zhikhun Zhang, Archana Ahlawat, Anupam Datta, John C Mitchell", + "published": "2024-02-07", + "updated": "2024-02-07", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.CR", + "cs.CY", + "stat.ME" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.03514v3", + "title": "Can Large Language Models Transform Computational Social Science?", + "abstract": "Large Language Models (LLMs) are capable of successfully performing many\nlanguage processing tasks zero-shot (without training data). If zero-shot LLMs\ncan also reliably classify and explain social phenomena like persuasiveness and\npolitical ideology, then LLMs could augment the Computational Social Science\n(CSS) pipeline in important ways. This work provides a road map for using LLMs\nas CSS tools. Towards this end, we contribute a set of prompting best practices\nand an extensive evaluation pipeline to measure the zero-shot performance of 13\nlanguage models on 25 representative English CSS benchmarks. On taxonomic\nlabeling tasks (classification), LLMs fail to outperform the best fine-tuned\nmodels but still achieve fair levels of agreement with humans. On free-form\ncoding tasks (generation), LLMs produce explanations that often exceed the\nquality of crowdworkers' gold references. We conclude that the performance of\ntoday's LLMs can augment the CSS research pipeline in two ways: (1) serving as\nzero-shot data annotators on human annotation teams, and (2) bootstrapping\nchallenging creative generation tasks (e.g., explaining the underlying\nattributes of a text). In summary, LLMs are posed to meaningfully participate\nin social science analysis in partnership with humans.", + "authors": "Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen, Zhehao Zhang, Diyi Yang", + "published": "2023-04-12", + "updated": "2024-02-26", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.14607v2", + "title": "Confronting LLMs with Traditional ML: Rethinking the Fairness of Large Language Models in Tabular Classifications", + "abstract": "Recent literature has suggested the potential of using large language models\n(LLMs) to make classifications for tabular tasks. However, LLMs have been shown\nto exhibit harmful social biases that reflect the stereotypes and inequalities\npresent in society. To this end, as well as the widespread use of tabular data\nin many high-stake applications, it is important to explore the following\nquestions: what sources of information do LLMs draw upon when making\nclassifications for tabular tasks; whether and to what extent are LLM\nclassifications for tabular data influenced by social biases and stereotypes;\nand what are the consequential implications for fairness?\n Through a series of experiments, we delve into these questions and show that\nLLMs tend to inherit social biases from their training data which significantly\nimpact their fairness in tabular classification tasks. Furthermore, our\ninvestigations show that in the context of bias mitigation, though in-context\nlearning and finetuning have a moderate effect, the fairness metric gap between\ndifferent subgroups is still larger than that in traditional machine learning\nmodels, such as Random Forest and shallow Neural Networks. This observation\nemphasizes that the social biases are inherent within the LLMs themselves and\ninherited from their pretraining corpus, not only from the downstream task\ndatasets. Besides, we demonstrate that label-flipping of in-context examples\ncan significantly reduce biases, further highlighting the presence of inherent\nbias within LLMs.", + "authors": "Yanchen Liu, Srishti Gautam, Jiaqi Ma, Himabindu Lakkaraju", + "published": "2023-10-23", + "updated": "2024-04-02", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.02839v1", + "title": "An Empirical Study of LLM-as-a-Judge for LLM Evaluation: Fine-tuned Judge Models are Task-specific Classifiers", + "abstract": "Recently, there has been a growing trend of utilizing Large Language Model\n(LLM) to evaluate the quality of other LLMs. Many studies have employed\nproprietary close-source models, especially GPT4, as the evaluator.\nAlternatively, other works have fine-tuned judge models based on open-source\nLLMs as the evaluator. In this study, we conduct an empirical study of\ndifferent judge models on their evaluation capability. Our findings indicate\nthat although the fine-tuned judge models achieve high accuracy on in-domain\ntest sets, even surpassing GPT4, they are inherently task-specific classifiers,\nand their generalizability and fairness severely underperform GPT4.", + "authors": "Hui Huang, Yingqi Qu, Jing Liu, Muyun Yang, Tiejun Zhao", + "published": "2024-03-05", + "updated": "2024-03-05", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2307.03838v2", + "title": "RADAR: Robust AI-Text Detection via Adversarial Learning", + "abstract": "Recent advances in large language models (LLMs) and the intensifying\npopularity of ChatGPT-like applications have blurred the boundary of\nhigh-quality text generation between humans and machines. However, in addition\nto the anticipated revolutionary changes to our technology and society, the\ndifficulty of distinguishing LLM-generated texts (AI-text) from human-generated\ntexts poses new challenges of misuse and fairness, such as fake content\ngeneration, plagiarism, and false accusations of innocent writers. While\nexisting works show that current AI-text detectors are not robust to LLM-based\nparaphrasing, this paper aims to bridge this gap by proposing a new framework\ncalled RADAR, which jointly trains a robust AI-text detector via adversarial\nlearning. RADAR is based on adversarial training of a paraphraser and a\ndetector. The paraphraser's goal is to generate realistic content to evade\nAI-text detection. RADAR uses the feedback from the detector to update the\nparaphraser, and vice versa. Evaluated with 8 different LLMs (Pythia, Dolly\n2.0, Palmyra, Camel, GPT-J, Dolly 1.0, LLaMA, and Vicuna) across 4 datasets,\nexperimental results show that RADAR significantly outperforms existing AI-text\ndetection methods, especially when paraphrasing is in place. We also identify\nthe strong transferability of RADAR from instruction-tuned LLMs to other LLMs,\nand evaluate the improved capability of RADAR via GPT-3.5-Turbo.", + "authors": "Xiaomeng Hu, Pin-Yu Chen, Tsung-Yi Ho", + "published": "2023-07-07", + "updated": "2023-10-24", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.09606v1", + "title": "Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey", + "abstract": "Causal inference has shown potential in enhancing the predictive accuracy,\nfairness, robustness, and explainability of Natural Language Processing (NLP)\nmodels by capturing causal relationships among variables. The emergence of\ngenerative Large Language Models (LLMs) has significantly impacted various NLP\ndomains, particularly through their advanced reasoning capabilities. This\nsurvey focuses on evaluating and improving LLMs from a causal view in the\nfollowing areas: understanding and improving the LLMs' reasoning capacity,\naddressing fairness and safety issues in LLMs, complementing LLMs with\nexplanations, and handling multimodality. Meanwhile, LLMs' strong reasoning\ncapacities can in turn contribute to the field of causal inference by aiding\ncausal relationship discovery and causal effect estimations. This review\nexplores the interplay between causal inference frameworks and LLMs from both\nperspectives, emphasizing their collective potential to further the development\nof more advanced and equitable artificial intelligence systems.", + "authors": "Xiaoyu Liu, Paiheng Xu, Junda Wu, Jiaxin Yuan, Yifan Yang, Yuhang Zhou, Fuxiao Liu, Tianrui Guan, Haoliang Wang, Tong Yu, Julian McAuley, Wei Ai, Furong Huang", + "published": "2024-03-14", + "updated": "2024-03-14", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.15451v1", + "title": "Towards Enabling FAIR Dataspaces Using Large Language Models", + "abstract": "Dataspaces have recently gained adoption across various sectors, including\ntraditionally less digitized domains such as culture. Leveraging Semantic Web\ntechnologies helps to make dataspaces FAIR, but their complexity poses a\nsignificant challenge to the adoption of dataspaces and increases their cost.\nThe advent of Large Language Models (LLMs) raises the question of how these\nmodels can support the adoption of FAIR dataspaces. In this work, we\ndemonstrate the potential of LLMs in dataspaces with a concrete example. We\nalso derive a research agenda for exploring this emerging field.", + "authors": "Benedikt T. Arnold, Johannes Theissen-Lipp, Diego Collarana, Christoph Lange, Sandra Geisler, Edward Curry, Stefan Decker", + "published": "2024-03-18", + "updated": "2024-03-18", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.06500v1", + "title": "MetaAgents: Simulating Interactions of Human Behaviors for LLM-based Task-oriented Coordination via Collaborative Generative Agents", + "abstract": "Significant advancements have occurred in the application of Large Language\nModels (LLMs) for various tasks and social simulations. Despite this, their\ncapacities to coordinate within task-oriented social contexts are\nunder-explored. Such capabilities are crucial if LLMs are to effectively mimic\nhuman-like social behavior and produce meaningful results. To bridge this gap,\nwe introduce collaborative generative agents, endowing LLM-based Agents with\nconsistent behavior patterns and task-solving abilities. We situate these\nagents in a simulated job fair environment as a case study to scrutinize their\ncoordination skills. We propose a novel framework that equips collaborative\ngenerative agents with human-like reasoning abilities and specialized skills.\nOur evaluation demonstrates that these agents show promising performance.\nHowever, we also uncover limitations that hinder their effectiveness in more\ncomplex coordination tasks. Our work provides valuable insights into the role\nand evolution of LLMs in task-oriented social simulations.", + "authors": "Yuan Li, Yixuan Zhang, Lichao Sun", + "published": "2023-10-10", + "updated": "2023-10-10", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.18130v2", + "title": "DELPHI: Data for Evaluating LLMs' Performance in Handling Controversial Issues", + "abstract": "Controversy is a reflection of our zeitgeist, and an important aspect to any\ndiscourse. The rise of large language models (LLMs) as conversational systems\nhas increased public reliance on these systems for answers to their various\nquestions. Consequently, it is crucial to systematically examine how these\nmodels respond to questions that pertaining to ongoing debates. However, few\nsuch datasets exist in providing human-annotated labels reflecting the\ncontemporary discussions. To foster research in this area, we propose a novel\nconstruction of a controversial questions dataset, expanding upon the publicly\nreleased Quora Question Pairs Dataset. This dataset presents challenges\nconcerning knowledge recency, safety, fairness, and bias. We evaluate different\nLLMs using a subset of this dataset, illuminating how they handle controversial\nissues and the stances they adopt. This research ultimately contributes to our\nunderstanding of LLMs' interaction with controversial issues, paving the way\nfor improvements in their comprehension and handling of complex societal\ndebates.", + "authors": "David Q. Sun, Artem Abzaliev, Hadas Kotek, Zidi Xiu, Christopher Klein, Jason D. Williams", + "published": "2023-10-27", + "updated": "2023-11-07", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.HC" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2206.13757v1", + "title": "Flexible text generation for counterfactual fairness probing", + "abstract": "A common approach for testing fairness issues in text-based classifiers is\nthrough the use of counterfactuals: does the classifier output change if a\nsensitive attribute in the input is changed? Existing counterfactual generation\nmethods typically rely on wordlists or templates, producing simple\ncounterfactuals that don't take into account grammar, context, or subtle\nsensitive attribute references, and could miss issues that the wordlist\ncreators had not considered. In this paper, we introduce a task for generating\ncounterfactuals that overcomes these shortcomings, and demonstrate how large\nlanguage models (LLMs) can be leveraged to make progress on this task. We show\nthat this LLM-based method can produce complex counterfactuals that existing\nmethods cannot, comparing the performance of various counterfactual generation\nmethods on the Civil Comments dataset and showing their value in evaluating a\ntoxicity classifier.", + "authors": "Zee Fryer, Vera Axelrod, Ben Packer, Alex Beutel, Jilin Chen, Kellie Webster", + "published": "2022-06-28", + "updated": "2022-06-28", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.01964v1", + "title": "Don't Make Your LLM an Evaluation Benchmark Cheater", + "abstract": "Large language models~(LLMs) have greatly advanced the frontiers of\nartificial intelligence, attaining remarkable improvement in model capacity. To\nassess the model performance, a typical approach is to construct evaluation\nbenchmarks for measuring the ability level of LLMs in different aspects.\nDespite that a number of high-quality benchmarks have been released, the\nconcerns about the appropriate use of these benchmarks and the fair comparison\nof different models are increasingly growing. Considering these concerns, in\nthis paper, we discuss the potential risk and impact of inappropriately using\nevaluation benchmarks and misleadingly interpreting the evaluation results.\nSpecially, we focus on a special issue that would lead to inappropriate\nevaluation, \\ie \\emph{benchmark leakage}, referring that the data related to\nevaluation sets is occasionally used for model training. This phenomenon now\nbecomes more common since pre-training data is often prepared ahead of model\ntest. We conduct extensive experiments to study the effect of benchmark\nleverage, and find that it can dramatically boost the evaluation results, which\nwould finally lead to an unreliable assessment of model performance. To improve\nthe use of existing evaluation benchmarks, we finally present several\nguidelines for both LLM developers and benchmark maintainers. We hope this work\ncan draw attention to appropriate training and evaluation of LLMs.", + "authors": "Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong Wen, Jiawei Han", + "published": "2023-11-03", + "updated": "2023-11-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.01937v1", + "title": "Can Large Language Models Be an Alternative to Human Evaluations?", + "abstract": "Human evaluation is indispensable and inevitable for assessing the quality of\ntexts generated by machine learning models or written by humans. However, human\nevaluation is very difficult to reproduce and its quality is notoriously\nunstable, hindering fair comparisons among different natural language\nprocessing (NLP) models and algorithms. Recently, large language models (LLMs)\nhave demonstrated exceptional performance on unseen tasks when only the task\ninstructions are provided. In this paper, we explore if such an ability of the\nLLMs can be used as an alternative to human evaluation. We present the LLMs\nwith the exact same instructions, samples to be evaluated, and questions used\nto conduct human evaluation, and then ask the LLMs to generate responses to\nthose questions; we dub this LLM evaluation. We use human evaluation and LLM\nevaluation to evaluate the texts in two NLP tasks: open-ended story generation\nand adversarial attacks. We show that the result of LLM evaluation is\nconsistent with the results obtained by expert human evaluation: the texts\nrated higher by human experts are also rated higher by the LLMs. We also find\nthat the results of LLM evaluation are stable over different formatting of the\ntask instructions and the sampling algorithm used to generate the answer. We\nare the first to show the potential of using LLMs to assess the quality of\ntexts and discuss the limitations and ethical considerations of LLM evaluation.", + "authors": "Cheng-Han Chiang, Hung-yi Lee", + "published": "2023-05-03", + "updated": "2023-05-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.HC" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.12736v1", + "title": "Large Language Model Supply Chain: A Research Agenda", + "abstract": "The rapid advancements in pre-trained Large Language Models (LLMs) and Large\nMultimodal Models (LMMs) have ushered in a new era of intelligent applications,\ntransforming fields ranging from natural language processing to content\ngeneration. The LLM supply chain represents a crucial aspect of the\ncontemporary artificial intelligence landscape. It encompasses the entire\nlifecycle of pre-trained models, from its initial development and training to\nits final deployment and application in various domains. This paper presents a\ncomprehensive overview of the LLM supply chain, highlighting its three core\nelements: 1) the model infrastructure, encompassing datasets and toolchain for\ntraining, optimization, and deployment; 2) the model lifecycle, covering\ntraining, testing, releasing, and ongoing maintenance; and 3) the downstream\napplication ecosystem, enabling the integration of pre-trained models into a\nwide range of intelligent applications. However, this rapidly evolving field\nfaces numerous challenges across these key components, including data privacy\nand security, model interpretability and fairness, infrastructure scalability,\nand regulatory compliance. Addressing these challenges is essential for\nharnessing the full potential of LLMs and ensuring their ethical and\nresponsible use. This paper provides a future research agenda for the LLM\nsupply chain, aiming at driving the continued advancement and responsible\ndeployment of these transformative LLMs.", + "authors": "Shenao Wang, Yanjie Zhao, Xinyi Hou, Haoyu Wang", + "published": "2024-04-19", + "updated": "2024-04-19", + "primary_cat": "cs.SE", + "cats": [ + "cs.SE" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.02650v1", + "title": "Towards detecting unanticipated bias in Large Language Models", + "abstract": "Over the last year, Large Language Models (LLMs) like ChatGPT have become\nwidely available and have exhibited fairness issues similar to those in\nprevious machine learning systems. Current research is primarily focused on\nanalyzing and quantifying these biases in training data and their impact on the\ndecisions of these models, alongside developing mitigation strategies. This\nresearch largely targets well-known biases related to gender, race, ethnicity,\nand language. However, it is clear that LLMs are also affected by other, less\nobvious implicit biases. The complex and often opaque nature of these models\nmakes detecting such biases challenging, yet this is crucial due to their\npotential negative impact in various applications. In this paper, we explore\nnew avenues for detecting these unanticipated biases in LLMs, focusing\nspecifically on Uncertainty Quantification and Explainable AI methods. These\napproaches aim to assess the certainty of model decisions and to make the\ninternal decision-making processes of LLMs more transparent, thereby\nidentifying and understanding biases that are not immediately apparent. Through\nthis research, we aim to contribute to the development of fairer and more\ntransparent AI systems.", + "authors": "Anna Kruspe", + "published": "2024-04-03", + "updated": "2024-04-03", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.19465v1", + "title": "Towards Tracing Trustworthiness Dynamics: Revisiting Pre-training Period of Large Language Models", + "abstract": "Ensuring the trustworthiness of large language models (LLMs) is crucial. Most\nstudies concentrate on fully pre-trained LLMs to better understand and improve\nLLMs' trustworthiness. In this paper, to reveal the untapped potential of\npre-training, we pioneer the exploration of LLMs' trustworthiness during this\nperiod, focusing on five key dimensions: reliability, privacy, toxicity,\nfairness, and robustness. To begin with, we apply linear probing to LLMs. The\nhigh probing accuracy suggests that \\textit{LLMs in early pre-training can\nalready distinguish concepts in each trustworthiness dimension}. Therefore, to\nfurther uncover the hidden possibilities of pre-training, we extract steering\nvectors from a LLM's pre-training checkpoints to enhance the LLM's\ntrustworthiness. Finally, inspired by~\\citet{choi2023understanding} that mutual\ninformation estimation is bounded by linear probing accuracy, we also probe\nLLMs with mutual information to investigate the dynamics of trustworthiness\nduring pre-training. We are the first to observe a similar two-phase\nphenomenon: fitting and compression~\\citep{shwartz2017opening}. This research\nprovides an initial exploration of trustworthiness modeling during LLM\npre-training, seeking to unveil new insights and spur further developments in\nthe field. We will make our code publicly accessible at\n\\url{https://github.com/ChnQ/TracingLLM}.", + "authors": "Chen Qian, Jie Zhang, Wei Yao, Dongrui Liu, Zhenfei Yin, Yu Qiao, Yong Liu, Jing Shao", + "published": "2024-02-29", + "updated": "2024-02-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2307.11761v1", + "title": "Fairness of ChatGPT and the Role Of Explainable-Guided Prompts", + "abstract": "Our research investigates the potential of Large-scale Language Models\n(LLMs), specifically OpenAI's GPT, in credit risk assessment-a binary\nclassification task. Our findings suggest that LLMs, when directed by\njudiciously designed prompts and supplemented with domain-specific knowledge,\ncan parallel the performance of traditional Machine Learning (ML) models.\nIntriguingly, they achieve this with significantly less data-40 times less,\nutilizing merely 20 data points compared to the ML's 800. LLMs particularly\nexcel in minimizing false positives and enhancing fairness, both being vital\naspects of risk analysis. While our results did not surpass those of classical\nML models, they underscore the potential of LLMs in analogous tasks, laying a\ngroundwork for future explorations into harnessing the capabilities of LLMs in\ndiverse ML tasks.", + "authors": "Yashar Deldjoo", + "published": "2023-07-14", + "updated": "2023-07-14", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.01349v1", + "title": "Fairness in Large Language Models: A Taxonomic Survey", + "abstract": "Large Language Models (LLMs) have demonstrated remarkable success across\nvarious domains. However, despite their promising performance in numerous\nreal-world applications, most of these algorithms lack fairness considerations.\nConsequently, they may lead to discriminatory outcomes against certain\ncommunities, particularly marginalized populations, prompting extensive study\nin fair LLMs. On the other hand, fairness in LLMs, in contrast to fairness in\ntraditional machine learning, entails exclusive backgrounds, taxonomies, and\nfulfillment techniques. To this end, this survey presents a comprehensive\noverview of recent advances in the existing literature concerning fair LLMs.\nSpecifically, a brief introduction to LLMs is provided, followed by an analysis\nof factors contributing to bias in LLMs. Additionally, the concept of fairness\nin LLMs is discussed categorically, summarizing metrics for evaluating bias in\nLLMs and existing algorithms for promoting fairness. Furthermore, resources for\nevaluating bias in LLMs, including toolkits and datasets, are summarized.\nFinally, existing research challenges and open questions are discussed.", + "authors": "Zhibo Chu, Zichong Wang, Wenbin Zhang", + "published": "2024-03-31", + "updated": "2024-03-31", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.11764v1", + "title": "ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs", + "abstract": "Large Language models (LLMs), while powerful, exhibit harmful social biases.\nDebiasing is often challenging due to computational costs, data constraints,\nand potential degradation of multi-task language capabilities. This work\nintroduces a novel approach utilizing ChatGPT to generate synthetic training\ndata, aiming to enhance the debiasing of LLMs. We propose two strategies:\nTargeted Prompting, which provides effective debiasing for known biases but\nnecessitates prior specification of bias in question; and General Prompting,\nwhich, while slightly less effective, offers debiasing across various\ncategories. We leverage resource-efficient LLM debiasing using adapter tuning\nand compare the effectiveness of our synthetic data to existing debiasing\ndatasets. Our results reveal that: (1) ChatGPT can efficiently produce\nhigh-quality training data for debiasing other LLMs; (2) data produced via our\napproach surpasses existing datasets in debiasing performance while also\npreserving internal knowledge of a pre-trained LLM; and (3) synthetic data\nexhibits generalizability across categories, effectively mitigating various\nbiases, including intersectional ones. These findings underscore the potential\nof synthetic data in advancing the fairness of LLMs with minimal retraining\ncost.", + "authors": "Pengrui Han, Rafal Kocielnik, Adhithya Saravanan, Roy Jiang, Or Sharir, Anima Anandkumar", + "published": "2024-02-19", + "updated": "2024-02-19", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "68T50", + "I.2.7; K.4.1" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.10199v3", + "title": "CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting", + "abstract": "As the utilization of large language models (LLMs) has proliferated\nworldwide, it is crucial for them to have adequate knowledge and fair\nrepresentation for diverse global cultures. In this work, we uncover culture\nperceptions of three SOTA models on 110 countries and regions on 8\nculture-related topics through culture-conditioned generations, and extract\nsymbols from these generations that are associated to each culture by the LLM.\nWe discover that culture-conditioned generation consist of linguistic \"markers\"\nthat distinguish marginalized cultures apart from default cultures. We also\ndiscover that LLMs have an uneven degree of diversity in the culture symbols,\nand that cultures from different geographic regions have different presence in\nLLMs' culture-agnostic generation. Our findings promote further research in\nstudying the knowledge and fairness of global culture perception in LLMs. Code\nand Data can be found in: https://github.com/huihanlhh/Culture-Gen/", + "authors": "Huihan Li, Liwei Jiang, Jena D. Huang, Hyunwoo Kim, Sebastin Santy, Taylor Sorensen, Bill Yuchen Lin, Nouha Dziri, Xiang Ren, Yejin Choi", + "published": "2024-04-16", + "updated": "2024-04-26", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.04892v2", + "title": "Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs", + "abstract": "Recent works have showcased the ability of LLMs to embody diverse personas in\ntheir responses, exemplified by prompts like 'You are Yoda. Explain the Theory\nof Relativity.' While this ability allows personalization of LLMs and enables\nhuman behavior simulation, its effect on LLMs' capabilities remains unclear. To\nfill this gap, we present the first extensive study of the unintended\nside-effects of persona assignment on the ability of LLMs to perform basic\nreasoning tasks. Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse\npersonas (e.g. an Asian person) spanning 5 socio-demographic groups. Our\nexperiments unveil that LLMs harbor deep rooted bias against various\nsocio-demographics underneath a veneer of fairness. While they overtly reject\nstereotypes when explicitly asked ('Are Black people less skilled at\nmathematics?'), they manifest stereotypical and erroneous presumptions when\nasked to answer questions while adopting a persona. These can be observed as\nabstentions in responses, e.g., 'As a Black person, I can't answer this\nquestion as it requires math knowledge', and generally result in a substantial\nperformance drop. Our experiments with ChatGPT-3.5 show that this bias is\nubiquitous - 80% of our personas demonstrate bias; it is significant - some\ndatasets show performance drops of 70%+; and can be especially harmful for\ncertain groups - some personas suffer statistically significant drops on 80%+\nof the datasets. Overall, all 4 LLMs exhibit this bias to varying extents, with\nGPT-4-Turbo showing the least but still a problematic amount of bias (evident\nin 42% of the personas). Further analysis shows that these persona-induced\nerrors can be hard-to-discern and hard-to-avoid. Our findings serve as a\ncautionary tale that the practice of assigning personas to LLMs - a trend on\nthe rise - can surface their deep-rooted biases and have unforeseeable and\ndetrimental side-effects.", + "authors": "Shashank Gupta, Vaishnavi Shrivastava, Ameet Deshpande, Ashwin Kalyan, Peter Clark, Ashish Sabharwal, Tushar Khot", + "published": "2023-11-08", + "updated": "2024-01-27", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.16343v2", + "title": "Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models", + "abstract": "Advancements in natural language generation (NLG) and large language models\n(LLMs) have led to proficient text generation in various tasks. However,\nintegrating intricate constraints into neural text generation, due to LLMs'\nopacity, remains challenging. This study investigates constrained text\ngeneration for LLMs, where predefined constraints are applied during LLM's\ngeneration process. Our research mainly focuses on mainstream open-source LLMs,\ncategorizing constraints into lexical, structural, and relation-based types. We\nalso present various benchmarks to facilitate fair evaluation. The study\naddresses some key research questions, including evaluating, understanding and\nimproving constrained text generation for LLMs. Results illuminate LLMs'\ncapacity and deficiency to incorporate constraints and provide insights for\nfuture developments in constrained text generation. Codes and datasets will be\nreleased upon acceptance.", + "authors": "Xiang Chen, Xiaojun Wan", + "published": "2023-10-25", + "updated": "2024-03-21", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.01262v2", + "title": "Fairness Certification for Natural Language Processing and Large Language Models", + "abstract": "Natural Language Processing (NLP) plays an important role in our daily lives,\nparticularly due to the enormous progress of Large Language Models (LLM).\nHowever, NLP has many fairness-critical use cases, e.g., as an expert system in\nrecruitment or as an LLM-based tutor in education. Since NLP is based on human\nlanguage, potentially harmful biases can diffuse into NLP systems and produce\nunfair results, discriminate against minorities or generate legal issues.\nHence, it is important to develop a fairness certification for NLP approaches.\nWe follow a qualitative research approach towards a fairness certification for\nNLP. In particular, we have reviewed a large body of literature on algorithmic\nfairness, and we have conducted semi-structured expert interviews with a wide\nrange of experts from that area. We have systematically devised six fairness\ncriteria for NLP, which can be further refined into 18 sub-categories. Our\ncriteria offer a foundation for operationalizing and testing processes to\ncertify fairness, both from the perspective of the auditor and the audited\norganization.", + "authors": "Vincent Freiberger, Erik Buchmann", + "published": "2024-01-02", + "updated": "2024-01-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG", + "68T50", + "I.2.7" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2304.03728v1", + "title": "Interpretable Unified Language Checking", + "abstract": "Despite recent concerns about undesirable behaviors generated by large\nlanguage models (LLMs), including non-factual, biased, and hateful language, we\nfind LLMs are inherent multi-task language checkers based on their latent\nrepresentations of natural and social knowledge. We present an interpretable,\nunified, language checking (UniLC) method for both human and machine-generated\nlanguage that aims to check if language input is factual and fair. While\nfairness and fact-checking tasks have been handled separately with dedicated\nmodels, we find that LLMs can achieve high performance on a combination of\nfact-checking, stereotype detection, and hate speech detection tasks with a\nsimple, few-shot, unified set of prompts. With the ``1/2-shot'' multi-task\nlanguage checking method proposed in this work, the GPT3.5-turbo model\noutperforms fully supervised baselines on several language tasks. The simple\napproach and results suggest that based on strong latent knowledge\nrepresentations, an LLM can be an adaptive and explainable tool for detecting\nmisinformation, stereotypes, and hate speech.", + "authors": "Tianhua Zhang, Hongyin Luo, Yung-Sung Chuang, Wei Fang, Luc Gaitskell, Thomas Hartvigsen, Xixin Wu, Danny Fox, Helen Meng, James Glass", + "published": "2023-04-07", + "updated": "2023-04-07", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.03852v2", + "title": "FLM-101B: An Open LLM and How to Train It with $100K Budget", + "abstract": "Large language models (LLMs) have achieved remarkable success in NLP and\nmultimodal tasks, among others. Despite these successes, two main challenges\nremain in developing LLMs: (i) high computational cost, and (ii) fair and\nobjective evaluations. In this paper, we report a solution to significantly\nreduce LLM training cost through a growth strategy. We demonstrate that a\n101B-parameter LLM with 0.31T tokens can be trained with a budget of 100K US\ndollars. Inspired by IQ tests, we also consolidate an additional range of\nevaluations on top of existing evaluations that focus on knowledge-oriented\nabilities. These IQ evaluations include symbolic mapping, rule understanding,\npattern mining, and anti-interference. Such evaluations minimize the potential\nimpact of memorization. Experimental results show that our model, named\nFLM-101B, trained with a budget of 100K US dollars, achieves performance\ncomparable to powerful and well-known models, e.g., GPT-3 and GLM-130B,\nespecially on the additional range of IQ evaluations. The checkpoint of\nFLM-101B is released at https://huggingface.co/CofeAI/FLM-101B.", + "authors": "Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi Fang, Xuying Meng, Siqi Fan, Peng Han, Jing Li, Li Du, Bowen Qin, Zheng Zhang, Aixin Sun, Yequan Wang", + "published": "2023-09-07", + "updated": "2023-09-17", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.11483v1", + "title": "Large Language Models Sensitivity to The Order of Options in Multiple-Choice Questions", + "abstract": "Large Language Models (LLMs) have demonstrated remarkable capabilities in\nvarious NLP tasks. However, previous works have shown these models are\nsensitive towards prompt wording, and few-shot demonstrations and their order,\nposing challenges to fair assessment of these models. As these models become\nmore powerful, it becomes imperative to understand and address these\nlimitations. In this paper, we focus on LLMs robustness on the task of\nmultiple-choice questions -- commonly adopted task to study reasoning and\nfact-retrieving capability of LLMs. Investigating the sensitivity of LLMs\ntowards the order of options in multiple-choice questions, we demonstrate a\nconsiderable performance gap of approximately 13% to 75% in LLMs on different\nbenchmarks, when answer options are reordered, even when using demonstrations\nin a few-shot setting. Through a detailed analysis, we conjecture that this\nsensitivity arises when LLMs are uncertain about the prediction between the\ntop-2/3 choices, and specific options placements may favor certain prediction\nbetween those top choices depending on the question caused by positional bias.\nWe also identify patterns in top-2 choices that amplify or mitigate the model's\nbias toward option placement. We found that for amplifying bias, the optimal\nstrategy involves positioning the top two choices as the first and last\noptions. Conversely, to mitigate bias, we recommend placing these choices among\nthe adjacent options. To validate our conjecture, we conduct various\nexperiments and adopt two approaches to calibrate LLMs' predictions, leading to\nup to 8 percentage points improvement across different models and benchmarks.", + "authors": "Pouya Pezeshkpour, Estevam Hruschka", + "published": "2023-08-22", + "updated": "2023-08-22", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2307.15997v1", + "title": "RoCar: A Relationship Network-based Evaluation Method to Large Language Models", + "abstract": "Large language models (LLMs) have received increasing attention. However, due\nto the complexity of its capabilities, how to rationally evaluate the\ncapabilities of LLMs is still a task to be solved. We propose the RoCar method,\nwhich utilizes the defined basic schemas to randomly construct a task graph and\ngenerates natural language evaluation tasks based on the task graph to evaluate\nthe reasoning and memory abilities of LLMs respectively. Due to the very large\nrandomness of the task construction process, it is possible to ensure that none\nof the LLMs to be tested has directly learned the evaluation tasks,\nguaranteeing the fairness of the evaluation method.", + "authors": "Ming Wang, Wenfang Wu, Chongyun Gao, Daling Wang, Shi Feng, Yifei Zhang", + "published": "2023-07-29", + "updated": "2023-07-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.12090v1", + "title": "UP5: Unbiased Foundation Model for Fairness-aware Recommendation", + "abstract": "Recent advancements in foundation models such as large language models (LLM)\nhave propelled them to the forefront of recommender systems (RS). Moreover,\nfairness in RS is critical since many users apply it for decision-making and\ndemand fulfillment. However, at present, there is a lack of understanding\nregarding the level of fairness exhibited by recommendation foundation models\nand the appropriate methods for equitably treating different groups of users in\nfoundation models. In this paper, we focus on user-side unfairness problem and\nshow through a thorough examination that there is unfairness involved in LLMs\nthat lead to unfair recommendation results. To eliminate bias from LLM for\nfairness-aware recommendation, we introduce a novel Unbiased P5 (UP5)\nfoundation model based on Counterfactually-Fair-Prompting (CFP) techniques. CFP\nincludes two sub-modules: a personalized prefix prompt that enhances fairness\nwith respect to individual sensitive attributes, and a Prompt Mixture that\nintegrates multiple counterfactually-fair prompts for a set of sensitive\nattributes. Experiments are conducted on two real-world datasets, MovieLens-1M\nand Insurance, and results are compared with both matching-based and\nsequential-based fairness-aware recommendation models. The results show that\nUP5 achieves better recommendation performance and meanwhile exhibits a high\nlevel of fairness.", + "authors": "Wenyue Hua, Yingqiang Ge, Shuyuan Xu, Jianchao Ji, Yongfeng Zhang", + "published": "2023-05-20", + "updated": "2023-05-20", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.AI", + "cs.CL", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.19118v1", + "title": "Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate", + "abstract": "Modern large language models (LLMs) like ChatGPT have shown remarkable\nperformance on general language tasks but still struggle on complex reasoning\ntasks, which drives the research on cognitive behaviors of LLMs to explore\nhuman-like problem-solving strategies. Along this direction, one representative\nstrategy is self-reflection, which asks an LLM to refine the solution with the\nfeedback generated by itself iteratively. However, our study shows that such\nreflection-style methods suffer from the Degeneration-of-Thought (DoT) problem:\nonce the LLM has established confidence in its solutions, it is unable to\ngenerate novel thoughts later through reflection even if its initial stance is\nincorrect. To address the DoT problem, we propose a Multi-Agent Debate (MAD)\nframework, in which multiple agents express their arguments in the state of\n\"tit for tat\" and a judge manages the debate process to obtain a final\nsolution. Clearly, our MAD framework encourages divergent thinking in LLMs\nwhich would be helpful for tasks that require deep levels of contemplation.\nExperiment results on two challenging datasets, commonsense machine translation\nand counter-intuitive arithmetic reasoning, demonstrate the effectiveness of\nour MAD framework. Extensive analyses suggest that the adaptive break of debate\nand the modest level of \"tit for tat\" state are required for MAD to obtain good\nperformance. Moreover, we find that LLMs might not be a fair judge if different\nLLMs are used for agents. Codes:\nhttps://github.com/Skytliang/Multi-Agents-Debate", + "authors": "Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, Shuming Shi", + "published": "2023-05-30", + "updated": "2023-05-30", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.02680v1", + "title": "Large Language Models are Geographically Biased", + "abstract": "Large Language Models (LLMs) inherently carry the biases contained in their\ntraining corpora, which can lead to the perpetuation of societal harm. As the\nimpact of these foundation models grows, understanding and evaluating their\nbiases becomes crucial to achieving fairness and accuracy. We propose to study\nwhat LLMs know about the world we live in through the lens of geography. This\napproach is particularly powerful as there is ground truth for the numerous\naspects of human life that are meaningfully projected onto geographic space\nsuch as culture, race, language, politics, and religion. We show various\nproblematic geographic biases, which we define as systemic errors in geospatial\npredictions. Initially, we demonstrate that LLMs are capable of making accurate\nzero-shot geospatial predictions in the form of ratings that show strong\nmonotonic correlation with ground truth (Spearman's $\\rho$ of up to 0.89). We\nthen show that LLMs exhibit common biases across a range of objective and\nsubjective topics. In particular, LLMs are clearly biased against locations\nwith lower socioeconomic conditions (e.g. most of Africa) on a variety of\nsensitive subjective topics such as attractiveness, morality, and intelligence\n(Spearman's $\\rho$ of up to 0.70). Finally, we introduce a bias score to\nquantify this and find that there is significant variation in the magnitude of\nbias across existing LLMs.", + "authors": "Rohin Manvi, Samar Khanna, Marshall Burke, David Lobell, Stefano Ermon", + "published": "2024-02-05", + "updated": "2024-02-05", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.13095v1", + "title": "Enhancing Logical Reasoning in Large Language Models to Facilitate Legal Applications", + "abstract": "Language serves as a vehicle for conveying thought, enabling communication\namong individuals. The ability to distinguish between diverse concepts,\nidentify fairness and injustice, and comprehend a range of legal notions\nfundamentally relies on logical reasoning. Large Language Models (LLMs) attempt\nto emulate human language understanding and generation, but their competency in\nlogical reasoning remains limited. This paper seeks to address the\nphilosophical question: How can we effectively teach logical reasoning to LLMs\nwhile maintaining a deep understanding of the intricate relationship between\nlanguage and logic? By focusing on bolstering LLMs' capabilities in logical\nreasoning, we aim to expand their applicability in law and other\nlogic-intensive disciplines. To this end, we propose a Reinforcement Learning\nfrom Logical Feedback (RLLF) approach, which serves as a potential framework\nfor refining LLMs' reasoning capacities. Through RLLF and a revised evaluation\nmethodology, we explore new avenues for research in this domain and contribute\nto the development of LLMs capable of handling complex legal reasoning tasks\nwhile acknowledging the fundamental connection between language and logic.", + "authors": "Ha-Thanh Nguyen, Wachara Fungwacharakorn, Ken Satoh", + "published": "2023-11-22", + "updated": "2023-11-22", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.08189v1", + "title": "Simulating Human Strategic Behavior: Comparing Single and Multi-agent LLMs", + "abstract": "When creating plans, policies, or applications for people, it is challenging\nfor designers to think through the strategic ways that different people will\nbehave. Recently, Large Language Models (LLMs) have been shown to create\nrealistic simulations of human-like behavior based on personas. We build on\nthis to investigate whether LLMs can simulate human strategic behavior. Human\nstrategies are complex because they take into account social norms in addition\nto aiming to maximize personal gain. The ultimatum game is a classic economics\nexperiment used to understand human strategic behavior in a social setting. It\nshows that people will often choose to \"punish\" other players to enforce social\nnorms rather than to maximize personal profits. We test whether LLMs can\nreplicate this complex behavior in simulations. We compare two architectures:\nsingle- and multi-agent LLMs. We compare their abilities to (1) simulate\nhuman-like actions in the ultimatum game, (2) simulate two player\npersonalities, greedy and fair, and (3) create robust strategies that are\nlogically complete and consistent with personality. Our evaluation shows the\nmulti-agent architecture is much more accurate than single LLMs (88% vs. 50%)\nin simulating human strategy creation and actions for personality pairs. Thus\nthere is potential to use LLMs to simulate human strategic behavior to help\ndesigners, planners, and policymakers perform preliminary exploration of how\npeople behave in systems.", + "authors": "Karthik Sreedhar, Lydia Chilton", + "published": "2024-02-13", + "updated": "2024-02-13", + "primary_cat": "cs.HC", + "cats": [ + "cs.HC" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.04205v2", + "title": "Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves", + "abstract": "Misunderstandings arise not only in interpersonal communication but also\nbetween humans and Large Language Models (LLMs). Such discrepancies can make\nLLMs interpret seemingly unambiguous questions in unexpected ways, yielding\nincorrect responses. While it is widely acknowledged that the quality of a\nprompt, such as a question, significantly impacts the quality of the response\nprovided by LLMs, a systematic method for crafting questions that LLMs can\nbetter comprehend is still underdeveloped. In this paper, we present a method\nnamed `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand\nquestions posed by humans and provide responses in a single prompt. This\napproach serves as a simple yet effective prompting method for improving\nperformance. We also introduce a two-step variant of RaR, where a rephrasing\nLLM first rephrases the question and then passes the original and rephrased\nquestions together to a different responding LLM. This facilitates the\neffective utilization of rephrased questions generated by one LLM with another.\nOur experiments demonstrate that our methods significantly improve the\nperformance of different models across a wide range to tasks. We further\nprovide a comprehensive comparison between RaR and the popular Chain-of-Thought\n(CoT) methods, both theoretically and empirically. We show that RaR is\ncomplementary to CoT and can be combined with CoT to achieve even better\nperformance. Our work not only contributes to enhancing LLM performance\nefficiently and effectively but also sheds light on a fair evaluation of LLM\ncapabilities. Data and codes are available at\nhttps://github.com/uclaml/Rephrase-and-Respond.", + "authors": "Yihe Deng, Weitong Zhang, Zixiang Chen, Quanquan Gu", + "published": "2023-11-07", + "updated": "2024-04-18", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.09447v2", + "title": "How Trustworthy are Open-Source LLMs? An Assessment under Malicious Demonstrations Shows their Vulnerabilities", + "abstract": "The rapid progress in open-source Large Language Models (LLMs) is\nsignificantly driving AI development forward. However, there is still a limited\nunderstanding of their trustworthiness. Deploying these models at scale without\nsufficient trustworthiness can pose significant risks, highlighting the need to\nuncover these issues promptly. In this work, we conduct an adversarial\nassessment of open-source LLMs on trustworthiness, scrutinizing them across\neight different aspects including toxicity, stereotypes, ethics, hallucination,\nfairness, sycophancy, privacy, and robustness against adversarial\ndemonstrations. We propose advCoU, an extended Chain of Utterances-based (CoU)\nprompting strategy by incorporating carefully crafted malicious demonstrations\nfor trustworthiness attack. Our extensive experiments encompass recent and\nrepresentative series of open-source LLMs, including Vicuna, MPT, Falcon,\nMistral, and Llama 2. The empirical outcomes underscore the efficacy of our\nattack strategy across diverse aspects. More interestingly, our result analysis\nreveals that models with superior performance in general NLP tasks do not\nalways have greater trustworthiness; in fact, larger models can be more\nvulnerable to attacks. Additionally, models that have undergone instruction\ntuning, focusing on instruction following, tend to be more susceptible,\nalthough fine-tuning LLMs for safety alignment proves effective in mitigating\nadversarial trustworthiness attacks.", + "authors": "Lingbo Mo, Boshi Wang, Muhao Chen, Huan Sun", + "published": "2023-11-15", + "updated": "2024-04-02", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.13343v1", + "title": "Challenges and Contributing Factors in the Utilization of Large Language Models (LLMs)", + "abstract": "With the development of large language models (LLMs) like the GPT series,\ntheir widespread use across various application scenarios presents a myriad of\nchallenges. This review initially explores the issue of domain specificity,\nwhere LLMs may struggle to provide precise answers to specialized questions\nwithin niche fields. The problem of knowledge forgetting arises as these LLMs\nmight find it hard to balance old and new information. The knowledge repetition\nphenomenon reveals that sometimes LLMs might deliver overly mechanized\nresponses, lacking depth and originality. Furthermore, knowledge illusion\ndescribes situations where LLMs might provide answers that seem insightful but\nare actually superficial, while knowledge toxicity focuses on harmful or biased\ninformation outputs. These challenges underscore problems in the training data\nand algorithmic design of LLMs. To address these issues, it's suggested to\ndiversify training data, fine-tune models, enhance transparency and\ninterpretability, and incorporate ethics and fairness training. Future\ntechnological trends might lean towards iterative methodologies, multimodal\nlearning, model personalization and customization, and real-time learning and\nfeedback mechanisms. In conclusion, future LLMs should prioritize fairness,\ntransparency, and ethics, ensuring they uphold high moral and ethical standards\nwhen serving humanity.", + "authors": "Xiaoliang Chen, Liangbin Li, Le Chang, Yunhe Huang, Yuxuan Zhao, Yuxiao Zhang, Dinuo Li", + "published": "2023-10-20", + "updated": "2023-10-20", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.06852v2", + "title": "ChemLLM: A Chemical Large Language Model", + "abstract": "Large language models (LLMs) have made impressive progress in chemistry\napplications. However, the community lacks an LLM specifically designed for\nchemistry. The main challenges are two-fold: firstly, most chemical data and\nscientific knowledge are stored in structured databases, which limits the\nmodel's ability to sustain coherent dialogue when used directly. Secondly,\nthere is an absence of objective and fair benchmark that encompass most\nchemistry tasks. Here, we introduce ChemLLM, a comprehensive framework that\nfeatures the first LLM dedicated to chemistry. It also includes ChemData, a\ndataset specifically designed for instruction tuning, and ChemBench, a robust\nbenchmark covering nine essential chemistry tasks. ChemLLM is adept at\nperforming various tasks across chemical disciplines with fluid dialogue\ninteraction. Notably, ChemLLM achieves results comparable to GPT-4 on the core\nchemical tasks and demonstrates competitive performance with LLMs of similar\nsize in general scenarios. ChemLLM paves a new path for exploration in chemical\nstudies, and our method of incorporating structured chemical knowledge into\ndialogue systems sets a new standard for developing LLMs in various scientific\nfields. Codes, Datasets, and Model weights are publicly accessible at\nhttps://hf.co/AI4Chem", + "authors": "Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang, Xiangyu Yue, Wanli Ouyang, Dongzhan Zhou, Shufei Zhang, Mao Su, Han-Sen Zhong, Yuqiang Li", + "published": "2024-02-10", + "updated": "2024-04-25", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.08656v1", + "title": "Linear Cross-document Event Coreference Resolution with X-AMR", + "abstract": "Event Coreference Resolution (ECR) as a pairwise mention classification task\nis expensive both for automated systems and manual annotations. The task's\nquadratic difficulty is exacerbated when using Large Language Models (LLMs),\nmaking prompt engineering for ECR prohibitively costly. In this work, we\npropose a graphical representation of events, X-AMR, anchored around individual\nmentions using a \\textbf{cross}-document version of \\textbf{A}bstract\n\\textbf{M}eaning \\textbf{R}epresentation. We then linearize the ECR with a\nnovel multi-hop coreference algorithm over the event graphs. The event graphs\nsimplify ECR, making it a) LLM cost-effective, b) compositional and\ninterpretable, and c) easily annotated. For a fair assessment, we first enrich\nan existing ECR benchmark dataset with these event graphs using an\nannotator-friendly tool we introduce. Then, we employ GPT-4, the newest LLM by\nOpenAI, for these annotations. Finally, using the ECR algorithm, we assess\nGPT-4 against humans and analyze its limitations. Through this research, we aim\nto advance the state-of-the-art for efficient ECR and shed light on the\npotential shortcomings of current LLMs at this task. Code and annotations:\n\\url{https://github.com/ahmeshaf/gpt_coref}", + "authors": "Shafiuddin Rehan Ahmed, George Arthur Baker, Evi Judge, Michael Regan, Kristin Wright-Bettner, Martha Palmer, James H. Martin", + "published": "2024-03-25", + "updated": "2024-03-25", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.00306v1", + "title": "Probing Explicit and Implicit Gender Bias through LLM Conditional Text Generation", + "abstract": "Large Language Models (LLMs) can generate biased and toxic responses. Yet\nmost prior work on LLM gender bias evaluation requires predefined\ngender-related phrases or gender stereotypes, which are challenging to be\ncomprehensively collected and are limited to explicit bias evaluation. In\naddition, we believe that instances devoid of gender-related language or\nexplicit stereotypes in inputs can still induce gender bias in LLMs. Thus, in\nthis work, we propose a conditional text generation mechanism without the need\nfor predefined gender phrases and stereotypes. This approach employs three\ntypes of inputs generated through three distinct strategies to probe LLMs,\naiming to show evidence of explicit and implicit gender biases in LLMs. We also\nutilize explicit and implicit evaluation metrics to evaluate gender bias in\nLLMs under different strategies. Our experiments demonstrate that an increased\nmodel size does not consistently lead to enhanced fairness and all tested LLMs\nexhibit explicit and/or implicit gender bias, even when explicit gender\nstereotypes are absent in the inputs.", + "authors": "Xiangjue Dong, Yibo Wang, Philip S. Yu, James Caverlee", + "published": "2023-11-01", + "updated": "2023-11-01", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.14208v2", + "title": "Content Conditional Debiasing for Fair Text Embedding", + "abstract": "Mitigating biases in machine learning models has gained increasing attention\nin Natural Language Processing (NLP). Yet, only a few studies focus on fair\ntext embeddings, which are crucial yet challenging for real-world applications.\nIn this paper, we propose a novel method for learning fair text embeddings. We\nachieve fairness while maintaining utility trade-off by ensuring conditional\nindependence between sensitive attributes and text embeddings conditioned on\nthe content. Specifically, we enforce that embeddings of texts with different\nsensitive attributes but identical content maintain the same distance toward\nthe embedding of their corresponding neutral text. Furthermore, we address the\nissue of lacking proper training data by using Large Language Models (LLMs) to\naugment texts into different sensitive groups. Our extensive evaluations\ndemonstrate that our approach effectively improves fairness while preserving\nthe utility of embeddings, representing a pioneering effort in achieving\nconditional independence for fair text embeddings.", + "authors": "Wenlong Deng, Blair Chen, Xiaoxiao Li, Christos Thrampoulidis", + "published": "2024-02-22", + "updated": "2024-02-23", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.14473v1", + "title": "The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)", + "abstract": "With the introduction of ChatGPT, Large Language Models (LLMs) have received\nenormous attention in healthcare. Despite their potential benefits, researchers\nhave underscored various ethical implications. While individual instances have\ndrawn much attention, the debate lacks a systematic overview of practical\napplications currently researched and ethical issues connected to them. Against\nthis background, this work aims to map the ethical landscape surrounding the\ncurrent stage of deployment of LLMs in medicine and healthcare. Electronic\ndatabases and preprint servers were queried using a comprehensive search\nstrategy. Studies were screened and extracted following a modified rapid review\napproach. Methodological quality was assessed using a hybrid approach. For 53\nrecords, a meta-aggregative synthesis was performed. Four fields of\napplications emerged and testify to a vivid exploration phase. Advantages of\nusing LLMs are attributed to their capacity in data analysis, personalized\ninformation provisioning, support in decision-making, mitigating information\nloss and enhancing information accessibility. However, we also identifies\nrecurrent ethical concerns connected to fairness, bias, non-maleficence,\ntransparency, and privacy. A distinctive concern is the tendency to produce\nharmful misinformation or convincingly but inaccurate content. A recurrent plea\nfor ethical guidance and human oversight is evident. Given the variety of use\ncases, it is suggested that the ethical guidance debate be reframed to focus on\ndefining what constitutes acceptable human oversight across the spectrum of\napplications. This involves considering diverse settings, varying potentials\nfor harm, and different acceptable thresholds for performance and certainty in\nhealthcare. In addition, a critical inquiry is necessary to determine the\nextent to which the current experimental use of LLMs is necessary and\njustified.", + "authors": "Joschka Haltaufderheide, Robert Ranisch", + "published": "2024-03-21", + "updated": "2024-03-21", + "primary_cat": "cs.CY", + "cats": [ + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.02294v1", + "title": "LLMs grasp morality in concept", + "abstract": "Work in AI ethics and fairness has made much progress in regulating LLMs to\nreflect certain values, such as fairness, truth, and diversity. However, it has\ntaken the problem of how LLMs might 'mean' anything at all for granted. Without\naddressing this, it is not clear what imbuing LLMs with such values even means.\nIn response, we provide a general theory of meaning that extends beyond humans.\nWe use this theory to explicate the precise nature of LLMs as meaning-agents.\nWe suggest that the LLM, by virtue of its position as a meaning-agent, already\ngrasps the constructions of human society (e.g. morality, gender, and race) in\nconcept. Consequently, under certain ethical frameworks, currently popular\nmethods for model alignment are limited at best and counterproductive at worst.\nMoreover, unaligned models may help us better develop our moral and social\nphilosophy.", + "authors": "Mark Pock, Andre Ye, Jared Moore", + "published": "2023-11-04", + "updated": "2023-11-04", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.07981v1", + "title": "Manipulating Large Language Models to Increase Product Visibility", + "abstract": "Large language models (LLMs) are increasingly being integrated into search\nengines to provide natural language responses tailored to user queries.\nCustomers and end-users are also becoming more dependent on these models for\nquick and easy purchase decisions. In this work, we investigate whether\nrecommendations from LLMs can be manipulated to enhance a product's visibility.\nWe demonstrate that adding a strategic text sequence (STS) -- a carefully\ncrafted message -- to a product's information page can significantly increase\nits likelihood of being listed as the LLM's top recommendation. To understand\nthe impact of STS, we use a catalog of fictitious coffee machines and analyze\nits effect on two target products: one that seldom appears in the LLM's\nrecommendations and another that usually ranks second. We observe that the\nstrategic text sequence significantly enhances the visibility of both products\nby increasing their chances of appearing as the top recommendation. This\nability to manipulate LLM-generated search responses provides vendors with a\nconsiderable competitive advantage and has the potential to disrupt fair market\ncompetition. Just as search engine optimization (SEO) revolutionized how\nwebpages are customized to rank higher in search engine results, influencing\nLLM recommendations could profoundly impact content optimization for AI-driven\nsearch services. Code for our experiments is available at\nhttps://github.com/aounon/llm-rank-optimizer.", + "authors": "Aounon Kumar, Himabindu Lakkaraju", + "published": "2024-04-11", + "updated": "2024-04-11", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.08472v1", + "title": "Selecting Shots for Demographic Fairness in Few-Shot Learning with Large Language Models", + "abstract": "Recently, work in NLP has shifted to few-shot (in-context) learning, with\nlarge language models (LLMs) performing well across a range of tasks. However,\nwhile fairness evaluations have become a standard for supervised methods,\nlittle is known about the fairness of LLMs as prediction systems. Further,\ncommon standard methods for fairness involve access to models weights or are\napplied during finetuning, which are not applicable in few-shot learning. Do\nLLMs exhibit prediction biases when used for standard NLP tasks? In this work,\nwe explore the effect of shots, which directly affect the performance of\nmodels, on the fairness of LLMs as NLP classification systems. We consider how\ndifferent shot selection strategies, both existing and new demographically\nsensitive methods, affect model fairness across three standard fairness\ndatasets. We discuss how future work can include LLM fairness evaluations.", + "authors": "Carlos Aguirre, Kuleen Sasse, Isabel Cachola, Mark Dredze", + "published": "2023-11-14", + "updated": "2023-11-14", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.08780v1", + "title": "\"Im not Racist but...\": Discovering Bias in the Internal Knowledge of Large Language Models", + "abstract": "Large language models (LLMs) have garnered significant attention for their\nremarkable performance in a continuously expanding set of natural language\nprocessing tasks. However, these models have been shown to harbor inherent\nsocietal biases, or stereotypes, which can adversely affect their performance\nin their many downstream applications. In this paper, we introduce a novel,\npurely prompt-based approach to uncover hidden stereotypes within any arbitrary\nLLM. Our approach dynamically generates a knowledge representation of internal\nstereotypes, enabling the identification of biases encoded within the LLM's\ninternal knowledge. By illuminating the biases present in LLMs and offering a\nsystematic methodology for their analysis, our work contributes to advancing\ntransparency and promoting fairness in natural language processing systems.", + "authors": "Abel Salinas, Louis Penafiel, Robert McCormack, Fred Morstatter", + "published": "2023-10-13", + "updated": "2023-10-13", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.00625v2", + "title": "Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models", + "abstract": "The burgeoning field of Large Language Models (LLMs), exemplified by\nsophisticated models like OpenAI's ChatGPT, represents a significant\nadvancement in artificial intelligence. These models, however, bring forth\nsubstantial challenges in the high consumption of computational, memory,\nenergy, and financial resources, especially in environments with limited\nresource capabilities. This survey aims to systematically address these\nchallenges by reviewing a broad spectrum of techniques designed to enhance the\nresource efficiency of LLMs. We categorize methods based on their optimization\nfocus: computational, memory, energy, financial, and network resources and\ntheir applicability across various stages of an LLM's lifecycle, including\narchitecture design, pretraining, finetuning, and system design. Additionally,\nthe survey introduces a nuanced categorization of resource efficiency\ntechniques by their specific resource types, which uncovers the intricate\nrelationships and mappings between various resources and corresponding\noptimization techniques. A standardized set of evaluation metrics and datasets\nis also presented to facilitate consistent and fair comparisons across\ndifferent models and techniques. By offering a comprehensive overview of the\ncurrent sota and identifying open research avenues, this survey serves as a\nfoundational reference for researchers and practitioners, aiding them in\ndeveloping more sustainable and efficient LLMs in a rapidly evolving landscape.", + "authors": "Guangji Bai, Zheng Chai, Chen Ling, Shiyu Wang, Jiaying Lu, Nan Zhang, Tingwei Shi, Ziyang Yu, Mengdan Zhu, Yifei Zhang, Carl Yang, Yue Cheng, Liang Zhao", + "published": "2024-01-01", + "updated": "2024-01-04", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.13862v2", + "title": "A Trip Towards Fairness: Bias and De-Biasing in Large Language Models", + "abstract": "Cheap-to-Build Very Large-Language Models (CtB-LLMs) with affordable training\nare emerging as the next big revolution in natural language processing and\nunderstanding. These CtB-LLMs are democratizing access to trainable Very\nLarge-Language Models (VLLMs) and, thus, may represent the building blocks of\nmany NLP systems solving downstream tasks. Hence, a little or a large bias in\nCtB-LLMs may cause huge harm. In this paper, we performed a large investigation\nof the bias of three families of CtB-LLMs, and we showed that debiasing\ntechniques are effective and usable. Indeed, according to current tests, the\nLLaMA and the OPT families have an important bias in gender, race, religion,\nand profession. In contrast to the analysis for other LLMs, we discovered that\nbias depends not on the number of parameters but on the perplexity. Finally,\nthe debiasing of OPT using LoRA reduces bias up to 4.12 points in the\nnormalized stereotype score.", + "authors": "Leonardo Ranaldi, Elena Sofia Ruzzetti, Davide Venditti, Dario Onorati, Fabio Massimo Zanzotto", + "published": "2023-05-23", + "updated": "2023-08-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.14769v3", + "title": "Large Language Model (LLM) Bias Index -- LLMBI", + "abstract": "The Large Language Model Bias Index (LLMBI) is a pioneering approach designed\nto quantify and address biases inherent in large language models (LLMs), such\nas GPT-4. We recognise the increasing prevalence and impact of LLMs across\ndiverse sectors. This research introduces a novel metric, LLMBI, to\nsystematically measure and mitigate biases potentially skewing model responses.\nWe formulated LLMBI using a composite scoring system incorporating multiple\ndimensions of bias, including but not limited to age, gender, and racial\nbiases. To operationalise this metric, we engaged in a multi-step process\ninvolving collecting and annotating LLM responses, applying sophisticated\nNatural Language Processing (NLP) techniques for bias detection, and computing\nthe LLMBI score through a specially crafted mathematical formula. The formula\nintegrates weighted averages of various bias dimensions, a penalty for dataset\ndiversity deficiencies, and a correction for sentiment biases. Our empirical\nanalysis, conducted using responses from OpenAI's API, employs advanced\nsentiment analysis as a representative method for bias detection. The research\nreveals LLMs, whilst demonstrating impressive capabilities in text generation,\nexhibit varying degrees of bias across different dimensions. LLMBI provides a\nquantifiable measure to compare biases across models and over time, offering a\nvital tool for systems engineers, researchers and regulators in enhancing the\nfairness and reliability of LLMs. It highlights the potential of LLMs in\nmimicking unbiased human-like responses. Additionally, it underscores the\nnecessity of continuously monitoring and recalibrating such models to align\nwith evolving societal norms and ethical standards.", + "authors": "Abiodun Finbarrs Oketunji, Muhammad Anas, Deepthi Saina", + "published": "2023-12-22", + "updated": "2023-12-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG", + "I.2.7" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.03192v1", + "title": "Do Large Language Models Rank Fairly? An Empirical Study on the Fairness of LLMs as Rankers", + "abstract": "The integration of Large Language Models (LLMs) in information retrieval has\nraised a critical reevaluation of fairness in the text-ranking models. LLMs,\nsuch as GPT models and Llama2, have shown effectiveness in natural language\nunderstanding tasks, and prior works (e.g., RankGPT) have also demonstrated\nthat the LLMs exhibit better performance than the traditional ranking models in\nthe ranking task. However, their fairness remains largely unexplored. This\npaper presents an empirical study evaluating these LLMs using the TREC Fair\nRanking dataset, focusing on the representation of binary protected attributes\nsuch as gender and geographic location, which are historically underrepresented\nin search outcomes. Our analysis delves into how these LLMs handle queries and\ndocuments related to these attributes, aiming to uncover biases in their\nranking algorithms. We assess fairness from both user and content perspectives,\ncontributing an empirical benchmark for evaluating LLMs as the fair ranker.", + "authors": "Yuan Wang, Xuyang Wu, Hsin-Tai Wu, Zhiqiang Tao, Yi Fang", + "published": "2024-04-04", + "updated": "2024-04-04", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.18276v1", + "title": "Bias Neutralization Framework: Measuring Fairness in Large Language Models with Bias Intelligence Quotient (BiQ)", + "abstract": "The burgeoning influence of Large Language Models (LLMs) in shaping public\ndiscourse and decision-making underscores the imperative to address inherent\nbiases within these AI systems. In the wake of AI's expansive integration\nacross sectors, addressing racial bias in LLMs has never been more critical.\nThis paper introduces a novel framework called Comprehensive Bias\nNeutralization Framework (CBNF) which embodies an innovative approach to\nquantifying and mitigating biases within LLMs. Our framework combines the Large\nLanguage Model Bias Index (LLMBI) [Oketunji, A., Anas, M., Saina, D., (2023)]\nand Bias removaL with No Demographics (BLIND) [Orgad, H., Belinkov, Y. (2023)]\nmethodologies to create a new metric called Bias Intelligence Quotient\n(BiQ)which detects, measures, and mitigates racial bias in LLMs without\nreliance on demographic annotations.\n By introducing a new metric called BiQ that enhances LLMBI with additional\nfairness metrics, CBNF offers a multi-dimensional metric for bias assessment,\nunderscoring the necessity of a nuanced approach to fairness in AI [Mehrabi et\nal., 2021]. This paper presents a detailed analysis of Latimer AI (a language\nmodel incrementally trained on black history and culture) in comparison to\nChatGPT 3.5, illustrating Latimer AI's efficacy in detecting racial, cultural,\nand gender biases through targeted training and refined bias mitigation\nstrategies [Latimer & Bender, 2023].", + "authors": "Malur Narayan, John Pasmore, Elton Sampaio, Vijay Raghavan, Gabriella Waters", + "published": "2024-04-28", + "updated": "2024-04-28", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "D.1; I.2" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.17553v1", + "title": "RuBia: A Russian Language Bias Detection Dataset", + "abstract": "Warning: this work contains upsetting or disturbing content.\n Large language models (LLMs) tend to learn the social and cultural biases\npresent in the raw pre-training data. To test if an LLM's behavior is fair,\nfunctional datasets are employed, and due to their purpose, these datasets are\nhighly language and culture-specific. In this paper, we address a gap in the\nscope of multilingual bias evaluation by presenting a bias detection dataset\nspecifically designed for the Russian language, dubbed as RuBia. The RuBia\ndataset is divided into 4 domains: gender, nationality, socio-economic status,\nand diverse, each of the domains is further divided into multiple fine-grained\nsubdomains. Every example in the dataset consists of two sentences with the\nfirst reinforcing a potentially harmful stereotype or trope and the second\ncontradicting it. These sentence pairs were first written by volunteers and\nthen validated by native-speaking crowdsourcing workers. Overall, there are\nnearly 2,000 unique sentence pairs spread over 19 subdomains in RuBia. To\nillustrate the dataset's purpose, we conduct a diagnostic evaluation of\nstate-of-the-art or near-state-of-the-art LLMs and discuss the LLMs'\npredisposition to social biases.", + "authors": "Veronika Grigoreva, Anastasiia Ivanova, Ilseyar Alimova, Ekaterina Artemova", + "published": "2024-03-26", + "updated": "2024-03-26", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.07884v2", + "title": "Fair Abstractive Summarization of Diverse Perspectives", + "abstract": "People from different social and demographic groups express diverse\nperspectives and conflicting opinions on a broad set of topics such as product\nreviews, healthcare, law, and politics. A fair summary should provide a\ncomprehensive coverage of diverse perspectives without underrepresenting\ncertain groups. However, current work in summarization metrics and Large\nLanguage Models (LLMs) evaluation has not explored fair abstractive\nsummarization. In this paper, we systematically investigate fair abstractive\nsummarization for user-generated data. We first formally define fairness in\nabstractive summarization as not underrepresenting perspectives of any groups\nof people, and we propose four reference-free automatic metrics by measuring\nthe differences between target and source perspectives. We evaluate nine LLMs,\nincluding three GPT models, four LLaMA models, PaLM 2, and Claude, on six\ndatasets collected from social media, online reviews, and recorded transcripts.\nExperiments show that both the model-generated and the human-written reference\nsummaries suffer from low fairness. We conduct a comprehensive analysis of the\ncommon factors influencing fairness and propose three simple but effective\nmethods to alleviate unfair summarization. Our dataset and code are available\nat https://github.com/psunlpgroup/FairSumm.", + "authors": "Yusen Zhang, Nan Zhang, Yixin Liu, Alexander Fabbri, Junru Liu, Ryo Kamoi, Xiaoxin Lu, Caiming Xiong, Jieyu Zhao, Dragomir Radev, Kathleen McKeown, Rui Zhang", + "published": "2023-11-14", + "updated": "2024-03-30", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.05668v1", + "title": "CFaiRLLM: Consumer Fairness Evaluation in Large-Language Model Recommender System", + "abstract": "In the evolving landscape of recommender systems, the integration of Large\nLanguage Models (LLMs) such as ChatGPT marks a new era, introducing the concept\nof Recommendation via LLM (RecLLM). While these advancements promise\nunprecedented personalization and efficiency, they also bring to the fore\ncritical concerns regarding fairness, particularly in how recommendations might\ninadvertently perpetuate or amplify biases associated with sensitive user\nattributes. In order to address these concerns, our study introduces a\ncomprehensive evaluation framework, CFaiRLLM, aimed at evaluating (and thereby\nmitigating) biases on the consumer side within RecLLMs.\n Our research methodically assesses the fairness of RecLLMs by examining how\nrecommendations might vary with the inclusion of sensitive attributes such as\ngender, age, and their intersections, through both similarity alignment and\ntrue preference alignment. By analyzing recommendations generated under\ndifferent conditions-including the use of sensitive attributes in user\nprompts-our framework identifies potential biases in the recommendations\nprovided. A key part of our study involves exploring how different detailed\nstrategies for constructing user profiles (random, top-rated, recent) impact\nthe alignment between recommendations made without consideration of sensitive\nattributes and those that are sensitive-attribute-aware, highlighting the bias\nmechanisms within RecLLMs.\n The findings in our study highlight notable disparities in the fairness of\nrecommendations, particularly when sensitive attributes are integrated into the\nrecommendation process, either individually or in combination. The analysis\ndemonstrates that the choice of user profile sampling strategy plays a\nsignificant role in affecting fairness outcomes, highlighting the complexity of\nachieving fair recommendations in the era of LLMs.", + "authors": "Yashar Deldjoo, Tommaso di Noia", + "published": "2024-03-08", + "updated": "2024-03-08", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.14345v2", + "title": "Bias Testing and Mitigation in LLM-based Code Generation", + "abstract": "Utilizing state-of-the-art Large Language Models (LLMs), automatic code\ngeneration models play a pivotal role in enhancing the productivity of software\ndevelopment procedures. As the adoption of LLMs becomes more widespread in\nsoftware coding ecosystems, a pressing issue has emerged: does the generated\ncode contain social bias and unfairness, such as those related to age, gender,\nand race? This issue concerns the integrity, fairness, and ethical foundation\nof software applications that depend on the code generated by these models, yet\nis under-explored in the literature. This paper presents a novel bias testing\nframework that is specifically designed for code generation tasks. Based on\nthis framework, we conduct an extensive evaluation of the bias in code\ngenerated by five state-of-the-art LLMs. Our findings reveal that 20.29% to\n44.93% code functions generated by the models under study are biased when\nhandling bias sensitive tasks (i.e., tasks that involve sensitive attributes\nsuch as age and gender). This indicates that the existing LLMs can be unfair in\ncode generation, posing risks of unintended and harmful software behaviors. To\nmitigate bias for code generation models, we evaluate five bias mitigation\nprompt strategies, i.e., utilizing bias testing results to refine the code\n(zero-shot), one-, few-shot, and two Chain-of-Thought (CoT) prompts. Our\nevaluation results illustrate that these strategies are all effective in\nmitigating bias. Overall, one-shot and few-shot learning are the two most\neffective. For GPT-4, 80% to 90% code bias can be removed with one-shot\nlearning.", + "authors": "Dong Huang, Qingwen Bu, Jie Zhang, Xiaofei Xie, Junjie Chen, Heming Cui", + "published": "2023-09-03", + "updated": "2024-01-09", + "primary_cat": "cs.SE", + "cats": [ + "cs.SE", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.00884v2", + "title": "Text classification of column headers with a controlled vocabulary: leveraging LLMs for metadata enrichment", + "abstract": "Traditional dataset retrieval systems index on metadata information rather\nthan on the data values. Thus relying primarily on manual annotations and\nhigh-quality metadata, processes known to be labour-intensive and challenging\nto automate. We propose a method to support metadata enrichment with topic\nannotations of column headers using three Large Language Models (LLMs):\nChatGPT-3.5, GoogleBard and GoogleGemini. We investigate the LLMs ability to\nclassify column headers based on domain-specific topics from a controlled\nvocabulary. We evaluate our approach by assessing the internal consistency of\nthe LLMs, the inter-machine alignment, and the human-machine agreement for the\ntopic classification task. Additionally, we investigate the impact of\ncontextual information (i.e. dataset description) on the classification\noutcomes. Our results suggest that ChatGPT and GoogleGemini outperform\nGoogleBard for internal consistency as well as LLM-human-alignment.\nInterestingly, we found that context had no impact on the LLMs performances.\nThis work proposes a novel approach that leverages LLMs for text classification\nusing a controlled topic vocabulary, which has the potential to facilitate\nautomated metadata enrichment, thereby enhancing dataset retrieval and the\nFindability, Accessibility, Interoperability and Reusability (FAIR) of research\ndata on the Web.", + "authors": "Margherita Martorana, Tobias Kuhn, Lise Stork, Jacco van Ossenbruggen", + "published": "2024-03-01", + "updated": "2024-03-05", + "primary_cat": "cs.DB", + "cats": [ + "cs.DB", + "cs.AI", + "cs.IR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.06003v1", + "title": "FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models", + "abstract": "The rapid development of large language model (LLM) evaluation methodologies\nand datasets has led to a profound challenge: integrating state-of-the-art\nevaluation techniques cost-effectively while ensuring reliability,\nreproducibility, and efficiency. Currently, there is a notable absence of a\nunified and adaptable framework that seamlessly integrates various evaluation\napproaches. Moreover, the reliability of evaluation findings is often\nquestionable due to potential data contamination, with the evaluation\nefficiency commonly overlooked when facing the substantial costs associated\nwith LLM inference. In response to these challenges, we introduce FreeEval, a\nmodular and scalable framework crafted to enable trustworthy and efficient\nautomatic evaluations of LLMs. Firstly, FreeEval's unified abstractions\nsimplify the integration and improve the transparency of diverse evaluation\nmethodologies, encompassing dynamic evaluation that demand sophisticated LLM\ninteractions. Secondly, the framework integrates meta-evaluation techniques\nlike human evaluation and data contamination detection, which, along with\ndynamic evaluation modules in the platform, enhance the fairness of the\nevaluation outcomes. Lastly, FreeEval is designed with a high-performance\ninfrastructure, including distributed computation and caching strategies,\nenabling extensive evaluations across multi-node, multi-GPU clusters for\nopen-source and proprietary LLMs.", + "authors": "Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Zhengran Zeng, Wei Ye, Jindong Wang, Yue Zhang, Shikun Zhang", + "published": "2024-04-09", + "updated": "2024-04-09", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.10149v2", + "title": "A Survey on Fairness in Large Language Models", + "abstract": "Large Language Models (LLMs) have shown powerful performance and development\nprospects and are widely deployed in the real world. However, LLMs can capture\nsocial biases from unprocessed training data and propagate the biases to\ndownstream tasks. Unfair LLM systems have undesirable social impacts and\npotential harms. In this paper, we provide a comprehensive review of related\nresearch on fairness in LLMs. Considering the influence of parameter magnitude\nand training paradigm on research strategy, we divide existing fairness\nresearch into oriented to medium-sized LLMs under pre-training and fine-tuning\nparadigms and oriented to large-sized LLMs under prompting paradigms. First,\nfor medium-sized LLMs, we introduce evaluation metrics and debiasing methods\nfrom the perspectives of intrinsic bias and extrinsic bias, respectively. Then,\nfor large-sized LLMs, we introduce recent fairness research, including fairness\nevaluation, reasons for bias, and debiasing methods. Finally, we discuss and\nprovide insight on the challenges and future directions for the development of\nfairness in LLMs.", + "authors": "Yingji Li, Mengnan Du, Rui Song, Xin Wang, Ying Wang", + "published": "2023-08-20", + "updated": "2024-02-21", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.07609v3", + "title": "Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation", + "abstract": "The remarkable achievements of Large Language Models (LLMs) have led to the\nemergence of a novel recommendation paradigm -- Recommendation via LLM\n(RecLLM). Nevertheless, it is important to note that LLMs may contain social\nprejudices, and therefore, the fairness of recommendations made by RecLLM\nrequires further investigation. To avoid the potential risks of RecLLM, it is\nimperative to evaluate the fairness of RecLLM with respect to various sensitive\nattributes on the user side. Due to the differences between the RecLLM paradigm\nand the traditional recommendation paradigm, it is problematic to directly use\nthe fairness benchmark of traditional recommendation. To address the dilemma,\nwe propose a novel benchmark called Fairness of Recommendation via LLM\n(FaiRLLM). This benchmark comprises carefully crafted metrics and a dataset\nthat accounts for eight sensitive attributes1 in two recommendation scenarios:\nmusic and movies. By utilizing our FaiRLLM benchmark, we conducted an\nevaluation of ChatGPT and discovered that it still exhibits unfairness to some\nsensitive attributes when generating recommendations. Our code and dataset can\nbe found at https://github.com/jizhi-zhang/FaiRLLM.", + "authors": "Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang, Fuli Feng, Xiangnan He", + "published": "2023-05-12", + "updated": "2023-10-17", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.CL", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.09219v5", + "title": "\"Kelly is a Warm Person, Joseph is a Role Model\": Gender Biases in LLM-Generated Reference Letters", + "abstract": "Large Language Models (LLMs) have recently emerged as an effective tool to\nassist individuals in writing various types of content, including professional\ndocuments such as recommendation letters. Though bringing convenience, this\napplication also introduces unprecedented fairness concerns. Model-generated\nreference letters might be directly used by users in professional scenarios. If\nunderlying biases exist in these model-constructed letters, using them without\nscrutinization could lead to direct societal harms, such as sabotaging\napplication success rates for female applicants. In light of this pressing\nissue, it is imminent and necessary to comprehensively study fairness issues\nand associated harms in this real-world use case. In this paper, we critically\nexamine gender biases in LLM-generated reference letters. Drawing inspiration\nfrom social science findings, we design evaluation methods to manifest biases\nthrough 2 dimensions: (1) biases in language style and (2) biases in lexical\ncontent. We further investigate the extent of bias propagation by analyzing the\nhallucination bias of models, a term that we define to be bias exacerbation in\nmodel-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs-\nChatGPT and Alpaca, we reveal significant gender biases in LLM-generated\nrecommendation letters. Our findings not only warn against using LLMs for this\napplication without scrutinization, but also illuminate the importance of\nthoroughly studying hidden biases and harms in LLM-generated professional\ndocuments.", + "authors": "Yixin Wan, George Pu, Jiao Sun, Aparna Garimella, Kai-Wei Chang, Nanyun Peng", + "published": "2023-10-13", + "updated": "2023-12-01", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.13925v1", + "title": "MARIO Eval: Evaluate Your Math LLM with your Math LLM--A mathematical dataset evaluation toolkit", + "abstract": "Large language models (LLMs) have been explored in a variety of reasoning\ntasks including solving of mathematical problems. Each math dataset typically\nincludes its own specially designed evaluation script, which, while suitable\nfor its intended use, lacks generalizability across different datasets.\nConsequently, updates and adaptations to these evaluation tools tend to occur\nwithout being systematically reported, leading to inconsistencies and obstacles\nto fair comparison across studies. To bridge this gap, we introduce a\ncomprehensive mathematical evaluation toolkit that not only utilizes a python\ncomputer algebra system (CAS) for its numerical accuracy, but also integrates\nan optional LLM, known for its considerable natural language processing\ncapabilities. To validate the effectiveness of our toolkit, we manually\nannotated two distinct datasets. Our experiments demonstrate that the toolkit\nyields more robust evaluation results compared to prior works, even without an\nLLM. Furthermore, when an LLM is incorporated, there is a notable enhancement.\nThe code for our method will be made available at\n\\url{https://github.com/MARIO-Math-Reasoning/math_evaluation}.", + "authors": "Boning Zhang, Chengxi Li, Kai Fan", + "published": "2024-04-22", + "updated": "2024-04-22", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.06056v1", + "title": "METAL: Metamorphic Testing Framework for Analyzing Large-Language Model Qualities", + "abstract": "Large-Language Models (LLMs) have shifted the paradigm of natural language\ndata processing. However, their black-boxed and probabilistic characteristics\ncan lead to potential risks in the quality of outputs in diverse LLM\napplications. Recent studies have tested Quality Attributes (QAs), such as\nrobustness or fairness, of LLMs by generating adversarial input texts. However,\nexisting studies have limited their coverage of QAs and tasks in LLMs and are\ndifficult to extend. Additionally, these studies have only used one evaluation\nmetric, Attack Success Rate (ASR), to assess the effectiveness of their\napproaches. We propose a MEtamorphic Testing for Analyzing LLMs (METAL)\nframework to address these issues by applying Metamorphic Testing (MT)\ntechniques. This approach facilitates the systematic testing of LLM qualities\nby defining Metamorphic Relations (MRs), which serve as modularized evaluation\nmetrics. The METAL framework can automatically generate hundreds of MRs from\ntemplates that cover various QAs and tasks. In addition, we introduced novel\nmetrics that integrate the ASR method into the semantic qualities of text to\nassess the effectiveness of MRs accurately. Through the experiments conducted\nwith three prominent LLMs, we have confirmed that the METAL framework\neffectively evaluates essential QAs on primary LLM tasks and reveals the\nquality risks in LLMs. Moreover, the newly proposed metrics can guide the\noptimal MRs for testing each task and suggest the most effective method for\ngenerating MRs.", + "authors": "Sangwon Hyun, Mingyu Guo, M. Ali Babar", + "published": "2023-12-11", + "updated": "2023-12-11", + "primary_cat": "cs.SE", + "cats": [ + "cs.SE", + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.08836v2", + "title": "Bias and Fairness in Chatbots: An Overview", + "abstract": "Chatbots have been studied for more than half a century. With the rapid\ndevelopment of natural language processing (NLP) technologies in recent years,\nchatbots using large language models (LLMs) have received much attention\nnowadays. Compared with traditional ones, modern chatbots are more powerful and\nhave been used in real-world applications. There are however, bias and fairness\nconcerns in modern chatbot design. Due to the huge amounts of training data,\nextremely large model sizes, and lack of interpretability, bias mitigation and\nfairness preservation of modern chatbots are challenging. Thus, a comprehensive\noverview on bias and fairness in chatbot systems is given in this paper. The\nhistory of chatbots and their categories are first reviewed. Then, bias sources\nand potential harms in applications are analyzed. Considerations in designing\nfair and unbiased chatbot systems are examined. Finally, future research\ndirections are discussed.", + "authors": "Jintang Xue, Yun-Cheng Wang, Chengwei Wei, Xiaofeng Liu, Jonghye Woo, C. -C. Jay Kuo", + "published": "2023-09-16", + "updated": "2023-12-10", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2303.01248v3", + "title": "Can ChatGPT Assess Human Personalities? A General Evaluation Framework", + "abstract": "Large Language Models (LLMs) especially ChatGPT have produced impressive\nresults in various areas, but their potential human-like psychology is still\nlargely unexplored. Existing works study the virtual personalities of LLMs but\nrarely explore the possibility of analyzing human personalities via LLMs. This\npaper presents a generic evaluation framework for LLMs to assess human\npersonalities based on Myers Briggs Type Indicator (MBTI) tests. Specifically,\nwe first devise unbiased prompts by randomly permuting options in MBTI\nquestions and adopt the average testing result to encourage more impartial\nanswer generation. Then, we propose to replace the subject in question\nstatements to enable flexible queries and assessments on different subjects\nfrom LLMs. Finally, we re-formulate the question instructions in a manner of\ncorrectness evaluation to facilitate LLMs to generate clearer responses. The\nproposed framework enables LLMs to flexibly assess personalities of different\ngroups of people. We further propose three evaluation metrics to measure the\nconsistency, robustness, and fairness of assessment results from\nstate-of-the-art LLMs including ChatGPT and GPT-4. Our experiments reveal\nChatGPT's ability to assess human personalities, and the average results\ndemonstrate that it can achieve more consistent and fairer assessments in spite\nof lower robustness against prompt biases compared with InstructGPT.", + "authors": "Haocong Rao, Cyril Leung, Chunyan Miao", + "published": "2023-03-01", + "updated": "2023-10-13", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.15478v1", + "title": "A Group Fairness Lens for Large Language Models", + "abstract": "The rapid advancement of large language models has revolutionized various\napplications but also raised crucial concerns about their potential to\nperpetuate biases and unfairness when deployed in social media contexts.\nEvaluating LLMs' potential biases and fairness has become crucial, as existing\nmethods rely on limited prompts focusing on just a few groups, lacking a\ncomprehensive categorical perspective. In this paper, we propose evaluating LLM\nbiases from a group fairness lens using a novel hierarchical schema\ncharacterizing diverse social groups. Specifically, we construct a dataset,\nGFair, encapsulating target-attribute combinations across multiple dimensions.\nIn addition, we introduce statement organization, a new open-ended text\ngeneration task, to uncover complex biases in LLMs. Extensive evaluations of\npopular LLMs reveal inherent safety concerns. To mitigate the biases of LLM\nfrom a group fairness perspective, we pioneer a novel chain-of-thought method\nGF-Think to mitigate biases of LLMs from a group fairness perspective.\nExperimental results demonstrate its efficacy in mitigating bias in LLMs to\nachieve fairness.", + "authors": "Guanqun Bi, Lei Shen, Yuqiang Xie, Yanan Cao, Tiangang Zhu, Xiaodong He", + "published": "2023-12-24", + "updated": "2023-12-24", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.03033v1", + "title": "Beyond Words: A Mathematical Framework for Interpreting Large Language Models", + "abstract": "Large language models (LLMs) are powerful AI tools that can generate and\ncomprehend natural language text and other complex information. However, the\nfield lacks a mathematical framework to systematically describe, compare and\nimprove LLMs. We propose Hex a framework that clarifies key terms and concepts\nin LLM research, such as hallucinations, alignment, self-verification and\nchain-of-thought reasoning. The Hex framework offers a precise and consistent\nway to characterize LLMs, identify their strengths and weaknesses, and\nintegrate new findings. Using Hex, we differentiate chain-of-thought reasoning\nfrom chain-of-thought prompting and establish the conditions under which they\nare equivalent. This distinction clarifies the basic assumptions behind\nchain-of-thought prompting and its implications for methods that use it, such\nas self-verification and prompt programming.\n Our goal is to provide a formal framework for LLMs that can help both\nresearchers and practitioners explore new possibilities for generative AI. We\ndo not claim to have a definitive solution, but rather a tool for opening up\nnew research avenues. We argue that our formal definitions and results are\ncrucial for advancing the discussion on how to build generative AI systems that\nare safe, reliable, fair and robust, especially in domains like healthcare and\nsoftware engineering.", + "authors": "Javier Gonz\u00e1lez, Aditya V. Nori", + "published": "2023-11-06", + "updated": "2023-11-06", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.17916v2", + "title": "LLM-Resistant Math Word Problem Generation via Adversarial Attacks", + "abstract": "Large language models (LLMs) have significantly transformed the educational\nlandscape. As current plagiarism detection tools struggle to keep pace with\nLLMs' rapid advancements, the educational community faces the challenge of\nassessing students' true problem-solving abilities in the presence of LLMs. In\nthis work, we explore a new paradigm for ensuring fair evaluation -- generating\nadversarial examples which preserve the structure and difficulty of the\noriginal questions aimed for assessment, but are unsolvable by LLMs. Focusing\non the domain of math word problems, we leverage abstract syntax trees to\nstructurally generate adversarial examples that cause LLMs to produce incorrect\nanswers by simply editing the numeric values in the problems. We conduct\nexperiments on various open- and closed-source LLMs, quantitatively and\nqualitatively demonstrating that our method significantly degrades their math\nproblem-solving ability. We identify shared vulnerabilities among LLMs and\npropose a cost-effective approach to attack high-cost models. Additionally, we\nconduct automatic analysis on math problems and investigate the cause of\nfailure, offering a nuanced view into model's limitation.", + "authors": "Roy Xie, Chengxuan Huang, Junlin Wang, Bhuwan Dhingra", + "published": "2024-02-27", + "updated": "2024-03-30", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.11595v3", + "title": "Examining Inter-Consistency of Large Language Models Collaboration: An In-depth Analysis via Debate", + "abstract": "Large Language Models (LLMs) have shown impressive capabilities in various\napplications, but they still face various inconsistency issues. Existing works\nprimarily focus on the inconsistency issues within a single LLM, while we\ncomplementarily explore the inter-consistency among multiple LLMs for\ncollaboration. To examine whether LLMs can collaborate effectively to achieve a\nconsensus for a shared goal, we focus on commonsense reasoning, and introduce a\nformal debate framework (FORD) to conduct a three-stage debate among LLMs with\nreal-world scenarios alignment: fair debate, mismatched debate, and roundtable\ndebate. Through extensive experiments on various datasets, LLMs can effectively\ncollaborate to reach a consensus despite noticeable inter-inconsistencies, but\nimbalances in their abilities can lead to domination by superior LLMs.\nLeveraging a more advanced LLM like GPT-4 as an authoritative judge can boost\ncollaboration performance. Our work contributes to understanding the\ninter-consistency among LLMs and lays the foundation for developing future\ncollaboration methods. Codes and data are available at\nhttps://github.com/Waste-Wood/FORD", + "authors": "Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, Bing Qin", + "published": "2023-05-19", + "updated": "2023-10-18", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2405.01769v1", + "title": "A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law", + "abstract": "In the fast-evolving domain of artificial intelligence, large language models\n(LLMs) such as GPT-3 and GPT-4 are revolutionizing the landscapes of finance,\nhealthcare, and law: domains characterized by their reliance on professional\nexpertise, challenging data acquisition, high-stakes, and stringent regulatory\ncompliance. This survey offers a detailed exploration of the methodologies,\napplications, challenges, and forward-looking opportunities of LLMs within\nthese high-stakes sectors. We highlight the instrumental role of LLMs in\nenhancing diagnostic and treatment methodologies in healthcare, innovating\nfinancial analytics, and refining legal interpretation and compliance\nstrategies. Moreover, we critically examine the ethics for LLM applications in\nthese fields, pointing out the existing ethical concerns and the need for\ntransparent, fair, and robust AI systems that respect regulatory norms. By\npresenting a thorough review of current literature and practical applications,\nwe showcase the transformative impact of LLMs, and outline the imperative for\ninterdisciplinary cooperation, methodological advancements, and ethical\nvigilance. Through this lens, we aim to spark dialogue and inspire future\nresearch dedicated to maximizing the benefits of LLMs while mitigating their\nrisks in these precision-dependent sectors. To facilitate future research on\nLLMs in these critical societal domains, we also initiate a reading list that\ntracks the latest advancements under this topic, which will be continually\nupdated: \\url{https://github.com/czyssrs/LLM_X_papers}.", + "authors": "Zhiyu Zoey Chen, Jing Ma, Xinlu Zhang, Nan Hao, An Yan, Armineh Nourbakhsh, Xianjun Yang, Julian McAuley, Linda Petzold, William Yang Wang", + "published": "2024-05-02", + "updated": "2024-05-02", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.07420v1", + "title": "FairSISA: Ensemble Post-Processing to Improve Fairness of Unlearning in LLMs", + "abstract": "Training large language models (LLMs) is a costly endeavour in terms of time\nand computational resources. The large amount of training data used during the\nunsupervised pre-training phase makes it difficult to verify all data and,\nunfortunately, undesirable data may be ingested during training. Re-training\nfrom scratch is impractical and has led to the creation of the 'unlearning'\ndiscipline where models are modified to \"unlearn\" undesirable information\nwithout retraining. However, any modification can alter the behaviour of LLMs,\nespecially on key dimensions such as fairness. This is the first work that\nexamines this interplay between unlearning and fairness for LLMs. In\nparticular, we focus on a popular unlearning framework known as SISA [Bourtoule\net al., 2021], which creates an ensemble of models trained on disjoint shards.\nWe evaluate the performance-fairness trade-off for SISA, and empirically\ndemsontrate that SISA can indeed reduce fairness in LLMs. To remedy this, we\npropose post-processing bias mitigation techniques for ensemble models produced\nby SISA. We adapt the post-processing fairness improvement technique from\n[Hardt et al., 2016] to design three methods that can handle model ensembles,\nand prove that one of the methods is an optimal fair predictor for ensemble of\nmodels. Through experimental results, we demonstrate the efficacy of our\npost-processing framework called 'FairSISA'.", + "authors": "Swanand Ravindra Kadhe, Anisa Halimi, Ambrish Rawat, Nathalie Baracaldo", + "published": "2023-12-12", + "updated": "2023-12-12", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.18140v1", + "title": "ROBBIE: Robust Bias Evaluation of Large Generative Language Models", + "abstract": "As generative large language models (LLMs) grow more performant and\nprevalent, we must develop comprehensive enough tools to measure and improve\ntheir fairness. Different prompt-based datasets can be used to measure social\nbias across multiple text domains and demographic axes, meaning that testing\nLLMs on more datasets can potentially help us characterize their biases more\nfully, and better ensure equal and equitable treatment of marginalized\ndemographic groups. In this work, our focus is two-fold:\n (1) Benchmarking: a comparison of 6 different prompt-based bias and toxicity\nmetrics across 12 demographic axes and 5 families of generative LLMs. Out of\nthose 6 metrics, AdvPromptSet and HolisticBiasR are novel datasets proposed in\nthe paper. The comparison of those benchmarks gives us insights about the bias\nand toxicity of the compared models. Therefore, we explore the frequency of\ndemographic terms in common LLM pre-training corpora and how this may relate to\nmodel biases.\n (2) Mitigation: we conduct a comprehensive study of how well 3 bias/toxicity\nmitigation techniques perform across our suite of measurements. ROBBIE aims to\nprovide insights for practitioners while deploying a model, emphasizing the\nneed to not only measure potential harms, but also understand how they arise by\ncharacterizing the data, mitigate harms once found, and balance any trade-offs.\nWe open-source our analysis code in hopes of encouraging broader measurements\nof bias in future LLMs.", + "authors": "David Esiobu, Xiaoqing Tan, Saghar Hosseini, Megan Ung, Yuchen Zhang, Jude Fernandes, Jane Dwivedi-Yu, Eleonora Presani, Adina Williams, Eric Michael Smith", + "published": "2023-11-29", + "updated": "2023-11-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.15198v2", + "title": "Do LLM Agents Exhibit Social Behavior?", + "abstract": "The advances of Large Language Models (LLMs) are expanding their utility in\nboth academic research and practical applications. Recent social science\nresearch has explored the use of these ``black-box'' LLM agents for simulating\ncomplex social systems and potentially substituting human subjects in\nexperiments. Our study delves into this emerging domain, investigating the\nextent to which LLMs exhibit key social interaction principles, such as social\nlearning, social preference, and cooperative behavior (indirect reciprocity),\nin their interactions with humans and other agents. We develop a framework for\nour study, wherein classical laboratory experiments involving human subjects\nare adapted to use LLM agents. This approach involves step-by-step reasoning\nthat mirrors human cognitive processes and zero-shot learning to assess the\ninnate preferences of LLMs. Our analysis of LLM agents' behavior includes both\nthe primary effects and an in-depth examination of the underlying mechanisms.\nFocusing on GPT-4, our analyses suggest that LLM agents appear to exhibit a\nrange of human-like social behaviors such as distributional and reciprocity\npreferences, responsiveness to group identity cues, engagement in indirect\nreciprocity, and social learning capabilities. However, our analysis also\nreveals notable differences: LLMs demonstrate a pronounced fairness preference,\nweaker positive reciprocity, and a more calculating approach in social learning\ncompared to humans. These insights indicate that while LLMs hold great promise\nfor applications in social science research, such as in laboratory experiments\nand agent-based modeling, the subtle behavioral differences between LLM agents\nand humans warrant further investigation. Careful examination and development\nof protocols in evaluating the social behaviors of LLMs are necessary before\ndirectly applying these models to emulate human behavior.", + "authors": "Yan Leng, Yuan Yuan", + "published": "2023-12-23", + "updated": "2024-02-22", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.SI", + "econ.GN", + "q-fin.EC" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.08495v2", + "title": "Large Language Models Portray Socially Subordinate Groups as More Homogeneous, Consistent with a Bias Observed in Humans", + "abstract": "Large language models (LLMs) are becoming pervasive in everyday life, yet\ntheir propensity to reproduce biases inherited from training data remains a\npressing concern. Prior investigations into bias in LLMs have focused on the\nassociation of social groups with stereotypical attributes. However, this is\nonly one form of human bias such systems may reproduce. We investigate a new\nform of bias in LLMs that resembles a social psychological phenomenon where\nsocially subordinate groups are perceived as more homogeneous than socially\ndominant groups. We had ChatGPT, a state-of-the-art LLM, generate texts about\nintersectional group identities and compared those texts on measures of\nhomogeneity. We consistently found that ChatGPT portrayed African, Asian, and\nHispanic Americans as more homogeneous than White Americans, indicating that\nthe model described racial minority groups with a narrower range of human\nexperience. ChatGPT also portrayed women as more homogeneous than men, but\nthese differences were small. Finally, we found that the effect of gender\ndiffered across racial/ethnic groups such that the effect of gender was\nconsistent within African and Hispanic Americans but not within Asian and White\nAmericans. We argue that the tendency of LLMs to describe groups as less\ndiverse risks perpetuating stereotypes and discriminatory behavior.", + "authors": "Messi H. J. Lee, Jacob M. Montgomery, Calvin K. Lai", + "published": "2024-01-16", + "updated": "2024-04-26", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.15398v1", + "title": "Fairness-Aware Structured Pruning in Transformers", + "abstract": "The increasing size of large language models (LLMs) has introduced challenges\nin their training and inference. Removing model components is perceived as a\nsolution to tackle the large model sizes, however, existing pruning methods\nsolely focus on performance, without considering an essential aspect for the\nresponsible use of LLMs: model fairness. It is crucial to address the fairness\nof LLMs towards diverse groups, such as women, Black people, LGBTQ+, Jewish\ncommunities, among others, as they are being deployed and available to a wide\naudience. In this work, first, we investigate how attention heads impact\nfairness and performance in pre-trained transformer-based language models. We\nthen propose a novel method to prune the attention heads that negatively impact\nfairness while retaining the heads critical for performance, i.e. language\nmodeling capabilities. Our approach is practical in terms of time and\nresources, as it does not require fine-tuning the final pruned, and fairer,\nmodel. Our findings demonstrate a reduction in gender bias by 19%, 19.5%,\n39.5%, 34.7%, 23%, and 8% for DistilGPT-2, GPT-2, GPT-Neo of two different\nsizes, GPT-J, and Llama 2 models, respectively, in comparison to the biased\nmodel, with only a slight decrease in performance.", + "authors": "Abdelrahman Zayed, Goncalo Mordido, Samira Shabanian, Ioana Baldini, Sarath Chandar", + "published": "2023-12-24", + "updated": "2023-12-24", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.CY", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.18569v1", + "title": "Fairness of ChatGPT", + "abstract": "Understanding and addressing unfairness in LLMs are crucial for responsible\nAI deployment. However, there is a limited availability of quantitative\nanalyses and in-depth studies regarding fairness evaluations in LLMs,\nespecially when applying LLMs to high-stakes fields. This work aims to fill\nthis gap by providing a systematic evaluation of the effectiveness and fairness\nof LLMs using ChatGPT as a study case. We focus on assessing ChatGPT's\nperformance in high-takes fields including education, criminology, finance and\nhealthcare. To make thorough evaluation, we consider both group fairness and\nindividual fairness and we also observe the disparities in ChatGPT's outputs\nunder a set of biased or unbiased prompts. This work contributes to a deeper\nunderstanding of LLMs' fairness performance, facilitates bias mitigation and\nfosters the development of responsible artificial intelligence systems.", + "authors": "Yunqi Li, Yongfeng Zhang", + "published": "2023-05-22", + "updated": "2023-05-22", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.AI", + "cs.CL", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.04814v2", + "title": "Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks", + "abstract": "We introduce Syntax-Aware Fill-In-the-Middle (SAFIM), a new benchmark for\nevaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM)\ntask. This benchmark focuses on syntax-aware completions of program structures\nsuch as code blocks and conditional expressions, and includes 17,720 examples\nfrom multiple programming languages, sourced from recent code submissions after\nApril 2022 to minimize data contamination. SAFIM provides a robust framework\nwith various prompt designs and novel syntax-aware post-processing techniques,\nfacilitating accurate and fair comparisons across LLMs. Our comprehensive\nevaluation of 15 LLMs shows that FIM pretraining not only enhances FIM\nproficiency but also improves Left-to-Right (L2R) inference using LLMs. Our\nfindings challenge conventional beliefs and suggest that pretraining methods\nand data quality have more impact than model size. SAFIM thus serves as a\nfoundational platform for future research in effective pretraining strategies\nfor code LLMs. The evaluation toolkit and dataset are available at\nhttps://github.com/gonglinyuan/safim, and the leaderboard is available at\nhttps://safimbenchmark.com.", + "authors": "Linyuan Gong, Sida Wang, Mostafa Elhoushi, Alvin Cheung", + "published": "2024-03-07", + "updated": "2024-04-10", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.LG", + "cs.SE" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.09397v1", + "title": "Do Large GPT Models Discover Moral Dimensions in Language Representations? A Topological Study Of Sentence Embeddings", + "abstract": "As Large Language Models are deployed within Artificial Intelligence systems,\nthat are increasingly integrated with human society, it becomes more important\nthan ever to study their internal structures. Higher level abilities of LLMs\nsuch as GPT-3.5 emerge in large part due to informative language\nrepresentations they induce from raw text data during pre-training on trillions\nof words. These embeddings exist in vector spaces of several thousand\ndimensions, and their processing involves mapping between multiple vector\nspaces, with total number of parameters on the order of trillions. Furthermore,\nthese language representations are induced by gradient optimization, resulting\nin a black box system that is hard to interpret. In this paper, we take a look\nat the topological structure of neuronal activity in the \"brain\" of Chat-GPT's\nfoundation language model, and analyze it with respect to a metric representing\nthe notion of fairness. We develop a novel approach to visualize GPT's moral\ndimensions. We first compute a fairness metric, inspired by social psychology\nliterature, to identify factors that typically influence fairness assessments\nin humans, such as legitimacy, need, and responsibility. Subsequently, we\nsummarize the manifold's shape using a lower-dimensional simplicial complex,\nwhose topology is derived from this metric. We color it with a heat map\nassociated with this fairness metric, producing human-readable visualizations\nof the high-dimensional sentence manifold. Our results show that sentence\nembeddings based on GPT-3.5 can be decomposed into two submanifolds\ncorresponding to fair and unfair moral judgments. This indicates that GPT-based\nlanguage models develop a moral dimension within their representation spaces\nand induce an understanding of fairness during their training process.", + "authors": "Stephen Fitz", + "published": "2023-09-17", + "updated": "2023-09-17", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG", + "cs.NE" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.05694v1", + "title": "A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics", + "abstract": "The utilization of large language models (LLMs) in the Healthcare domain has\ngenerated both excitement and concern due to their ability to effectively\nrespond to freetext queries with certain professional knowledge. This survey\noutlines the capabilities of the currently developed LLMs for Healthcare and\nexplicates their development process, with the aim of providing an overview of\nthe development roadmap from traditional Pretrained Language Models (PLMs) to\nLLMs. Specifically, we first explore the potential of LLMs to enhance the\nefficiency and effectiveness of various Healthcare applications highlighting\nboth the strengths and limitations. Secondly, we conduct a comparison between\nthe previous PLMs and the latest LLMs, as well as comparing various LLMs with\neach other. Then we summarize related Healthcare training data, training\nmethods, optimization strategies, and usage. Finally, the unique concerns\nassociated with deploying LLMs in Healthcare settings are investigated,\nparticularly regarding fairness, accountability, transparency and ethics. Our\nsurvey provide a comprehensive investigation from perspectives of both computer\nscience and Healthcare specialty. Besides the discussion about Healthcare\nconcerns, we supports the computer science community by compiling a collection\nof open source resources, such as accessible datasets, the latest\nmethodologies, code implementations, and evaluation benchmarks in the Github.\nSummarily, we contend that a significant paradigm shift is underway,\ntransitioning from PLMs to LLMs. This shift encompasses a move from\ndiscriminative AI approaches to generative AI approaches, as well as a shift\nfrom model-centered methodologies to datacentered methodologies.", + "authors": "Kai He, Rui Mao, Qika Lin, Yucheng Ruan, Xiang Lan, Mengling Feng, Erik Cambria", + "published": "2023-10-09", + "updated": "2023-10-09", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.10567v3", + "title": "InSaAF: Incorporating Safety through Accuracy and Fairness | Are LLMs ready for the Indian Legal Domain?", + "abstract": "Recent advancements in language technology and Artificial Intelligence have\nresulted in numerous Language Models being proposed to perform various tasks in\nthe legal domain ranging from predicting judgments to generating summaries.\nDespite their immense potential, these models have been proven to learn and\nexhibit societal biases and make unfair predictions. In this study, we explore\nthe ability of Large Language Models (LLMs) to perform legal tasks in the\nIndian landscape when social factors are involved. We present a novel metric,\n$\\beta$-weighted $\\textit{Legal Safety Score ($LSS_{\\beta}$)}$, which\nencapsulates both the fairness and accuracy aspects of the LLM. We assess LLMs'\nsafety by considering its performance in the $\\textit{Binary Statutory\nReasoning}$ task and its fairness exhibition with respect to various axes of\ndisparities in the Indian society. Task performance and fairness scores of\nLLaMA and LLaMA--2 models indicate that the proposed $LSS_{\\beta}$ metric can\neffectively determine the readiness of a model for safe usage in the legal\nsector. We also propose finetuning pipelines, utilising specialised legal\ndatasets, as a potential method to mitigate bias and improve model safety. The\nfinetuning procedures on LLaMA and LLaMA--2 models increase the $LSS_{\\beta}$,\nimproving their usability in the Indian legal domain. Our code is publicly\nreleased.", + "authors": "Yogesh Tripathi, Raghav Donakanti, Sahil Girhepuje, Ishan Kavathekar, Bhaskara Hanuma Vedula, Gokul S Krishnan, Shreya Goyal, Anmol Goel, Balaraman Ravindran, Ponnurangam Kumaraguru", + "published": "2024-02-16", + "updated": "2024-02-21", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.08517v1", + "title": "Online Safety Analysis for LLMs: a Benchmark, an Assessment, and a Path Forward", + "abstract": "While Large Language Models (LLMs) have seen widespread applications across\nnumerous fields, their limited interpretability poses concerns regarding their\nsafe operations from multiple aspects, e.g., truthfulness, robustness, and\nfairness. Recent research has started developing quality assurance methods for\nLLMs, introducing techniques such as offline detector-based or uncertainty\nestimation methods. However, these approaches predominantly concentrate on\npost-generation analysis, leaving the online safety analysis for LLMs during\nthe generation phase an unexplored area. To bridge this gap, we conduct in this\nwork a comprehensive evaluation of the effectiveness of existing online safety\nanalysis methods on LLMs. We begin with a pilot study that validates the\nfeasibility of detecting unsafe outputs in the early generation process.\nFollowing this, we establish the first publicly available benchmark of online\nsafety analysis for LLMs, including a broad spectrum of methods, models, tasks,\ndatasets, and evaluation metrics. Utilizing this benchmark, we extensively\nanalyze the performance of state-of-the-art online safety analysis methods on\nboth open-source and closed-source LLMs. This analysis reveals the strengths\nand weaknesses of individual methods and offers valuable insights into\nselecting the most appropriate method based on specific application scenarios\nand task requirements. Furthermore, we also explore the potential of using\nhybridization methods, i.e., combining multiple methods to derive a collective\nsafety conclusion, to enhance the efficacy of online safety analysis for LLMs.\nOur findings indicate a promising direction for the development of innovative\nand trustworthy quality assurance methodologies for LLMs, facilitating their\nreliable deployments across diverse domains.", + "authors": "Xuan Xie, Jiayang Song, Zhehua Zhou, Yuheng Huang, Da Song, Lei Ma", + "published": "2024-04-12", + "updated": "2024-04-12", + "primary_cat": "cs.SE", + "cats": [ + "cs.SE", + "cs.AI", + "cs.CL", + "cs.CR", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.14804v1", + "title": "Use large language models to promote equity", + "abstract": "Advances in large language models (LLMs) have driven an explosion of interest\nabout their societal impacts. Much of the discourse around how they will impact\nsocial equity has been cautionary or negative, focusing on questions like \"how\nmight LLMs be biased and how would we mitigate those biases?\" This is a vital\ndiscussion: the ways in which AI generally, and LLMs specifically, can entrench\nbiases have been well-documented. But equally vital, and much less discussed,\nis the more opportunity-focused counterpoint: \"what promising applications do\nLLMs enable that could promote equity?\" If LLMs are to enable a more equitable\nworld, it is not enough just to play defense against their biases and failure\nmodes. We must also go on offense, applying them positively to equity-enhancing\nuse cases to increase opportunities for underserved groups and reduce societal\ndiscrimination. There are many choices which determine the impact of AI, and a\nfundamental choice very early in the pipeline is the problems we choose to\napply it to. If we focus only later in the pipeline -- making LLMs marginally\nmore fair as they facilitate use cases which intrinsically entrench power -- we\nwill miss an important opportunity to guide them to equitable impacts. Here, we\nhighlight the emerging potential of LLMs to promote equity by presenting four\nnewly possible, promising research directions, while keeping risks and\ncautionary points in clear view.", + "authors": "Emma Pierson, Divya Shanmugam, Rajiv Movva, Jon Kleinberg, Monica Agrawal, Mark Dredze, Kadija Ferryman, Judy Wawira Gichoya, Dan Jurafsky, Pang Wei Koh, Karen Levy, Sendhil Mullainathan, Ziad Obermeyer, Harini Suresh, Keyon Vafa", + "published": "2023-12-22", + "updated": "2023-12-22", + "primary_cat": "cs.CY", + "cats": [ + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.00811v1", + "title": "Cognitive Bias in High-Stakes Decision-Making with LLMs", + "abstract": "Large language models (LLMs) offer significant potential as tools to support\nan expanding range of decision-making tasks. However, given their training on\nhuman (created) data, LLMs can inherit both societal biases against protected\ngroups, as well as be subject to cognitive bias. Such human-like bias can\nimpede fair and explainable decisions made with LLM assistance. Our work\nintroduces BiasBuster, a framework designed to uncover, evaluate, and mitigate\ncognitive bias in LLMs, particularly in high-stakes decision-making tasks.\nInspired by prior research in psychology and cognitive sciences, we develop a\ndataset containing 16,800 prompts to evaluate different cognitive biases (e.g.,\nprompt-induced, sequential, inherent). We test various bias mitigation\nstrategies, amidst proposing a novel method using LLMs to debias their own\nprompts. Our analysis provides a comprehensive picture on the presence and\neffects of cognitive bias across different commercial and open-source models.\nWe demonstrate that our self-help debiasing effectively mitigate cognitive bias\nwithout having to manually craft examples for each bias type.", + "authors": "Jessica Echterhoff, Yao Liu, Abeer Alessa, Julian McAuley, Zexue He", + "published": "2024-02-25", + "updated": "2024-02-25", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2405.02219v1", + "title": "FairEvalLLM. A Comprehensive Framework for Benchmarking Fairness in Large Language Model Recommender Systems", + "abstract": "This paper presents a framework for evaluating fairness in recommender\nsystems powered by Large Language Models (RecLLMs), addressing the need for a\nunified approach that spans various fairness dimensions including sensitivity\nto user attributes, intrinsic fairness, and discussions of fairness based on\nunderlying benefits. In addition, our framework introduces counterfactual\nevaluations and integrates diverse user group considerations to enhance the\ndiscourse on fairness evaluation for RecLLMs.\n Our key contributions include the development of a robust framework for\nfairness evaluation in LLM-based recommendations and a structured method to\ncreate \\textit{informative user profiles} from demographic data, historical\nuser preferences, and recent interactions. We argue that the latter is\nessential for enhancing personalization in such systems, especially in\ntemporal-driven scenarios. We demonstrate the utility of our framework through\npractical applications on two datasets, LastFM-1K and ML-1M. We conduct\nexperiments on a subsample of 80 users from each dataset, testing and assessing\nthe effectiveness of various prompt construction scenarios and in-context\nlearning, comprising more than 50 scenarios. This results in more than 4000\nrecommendations (80 * 50 = 4000). Our study reveals that while there are no\nsignificant unfairness issues in scenarios involving sensitive attributes, some\nconcerns remain. However, in terms of intrinsic fairness, which does not\ninvolve direct sensitivity, unfairness across demographic groups remains\nsignificant. The code and data used for this paper are available at:\n\\url{https://shorturl.at/awBFM}.", + "authors": "Yashar Deldjoo", + "published": "2024-05-03", + "updated": "2024-05-03", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.13840v1", + "title": "Whose Side Are You On? Investigating the Political Stance of Large Language Models", + "abstract": "Large Language Models (LLMs) have gained significant popularity for their\napplication in various everyday tasks such as text generation, summarization,\nand information retrieval. As the widespread adoption of LLMs continues to\nsurge, it becomes increasingly crucial to ensure that these models yield\nresponses that are politically impartial, with the aim of preventing\ninformation bubbles, upholding fairness in representation, and mitigating\nconfirmation bias. In this paper, we propose a quantitative framework and\npipeline designed to systematically investigate the political orientation of\nLLMs. Our investigation delves into the political alignment of LLMs across a\nspectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.\nAcross topics, the results indicate that LLMs exhibit a tendency to provide\nresponses that closely align with liberal or left-leaning perspectives rather\nthan conservative or right-leaning ones when user queries include details\npertaining to occupation, race, or political affiliation. The findings\npresented in this study not only reaffirm earlier observations regarding the\nleft-leaning characteristics of LLMs but also surface particular attributes,\nsuch as occupation, that are particularly susceptible to such inclinations even\nwhen directly steered towards conservatism. As a recommendation to avoid these\nmodels providing politicised responses, users should be mindful when crafting\nqueries, and exercise caution in selecting neutral prompt language.", + "authors": "Pagnarasmey Pit, Xingjun Ma, Mike Conway, Qingyu Chen, James Bailey, Henry Pit, Putrasmey Keo, Watey Diep, Yu-Gang Jiang", + "published": "2024-03-15", + "updated": "2024-03-15", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.SI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.10397v2", + "title": "FairMonitor: A Four-Stage Automatic Framework for Detecting Stereotypes and Biases in Large Language Models", + "abstract": "Detecting stereotypes and biases in Large Language Models (LLMs) can enhance\nfairness and reduce adverse impacts on individuals or groups when these LLMs\nare applied. However, the majority of existing methods focus on measuring the\nmodel's preference towards sentences containing biases and stereotypes within\ndatasets, which lacks interpretability and cannot detect implicit biases and\nstereotypes in the real world. To address this gap, this paper introduces a\nfour-stage framework to directly evaluate stereotypes and biases in the\ngenerated content of LLMs, including direct inquiry testing, serial or adapted\nstory testing, implicit association testing, and unknown situation testing.\nAdditionally, the paper proposes multi-dimensional evaluation metrics and\nexplainable zero-shot prompts for automated evaluation. Using the education\nsector as a case study, we constructed the Edu-FairMonitor based on the\nfour-stage framework, which encompasses 12,632 open-ended questions covering\nnine sensitive factors and 26 educational scenarios. Experimental results\nreveal varying degrees of stereotypes and biases in five LLMs evaluated on\nEdu-FairMonitor. Moreover, the results of our proposed automated evaluation\nmethod have shown a high correlation with human annotations.", + "authors": "Yanhong Bai, Jiabao Zhao, Jinxin Shi, Tingjiang Wei, Xingjiao Wu, Liang He", + "published": "2023-08-21", + "updated": "2023-10-27", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.18333v3", + "title": "She had Cobalt Blue Eyes: Prompt Testing to Create Aligned and Sustainable Language Models", + "abstract": "As the use of large language models (LLMs) increases within society, as does\nthe risk of their misuse. Appropriate safeguards must be in place to ensure LLM\noutputs uphold the ethical standards of society, highlighting the positive role\nthat artificial intelligence technologies can have. Recent events indicate\nethical concerns around conventionally trained LLMs, leading to overall unsafe\nuser experiences. This motivates our research question: how do we ensure LLM\nalignment? In this work, we introduce a test suite of unique prompts to foster\nthe development of aligned LLMs that are fair, safe, and robust. We show that\nprompting LLMs at every step of the development pipeline, including data\ncuration, pre-training, and fine-tuning, will result in an overall more\nresponsible model. Our test suite evaluates outputs from four state-of-the-art\nlanguage models: GPT-3.5, GPT-4, OPT, and LLaMA-2. The assessment presented in\nthis paper highlights a gap between societal alignment and the capabilities of\ncurrent LLMs. Additionally, implementing a test suite such as ours lowers the\nenvironmental overhead of making models safe and fair.", + "authors": "Veronica Chatrath, Oluwanifemi Bamgbose, Shaina Raza", + "published": "2023-10-20", + "updated": "2023-12-15", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.18502v1", + "title": "Few-Shot Fairness: Unveiling LLM's Potential for Fairness-Aware Classification", + "abstract": "Employing Large Language Models (LLM) in various downstream applications such\nas classification is crucial, especially for smaller companies lacking the\nexpertise and resources required for fine-tuning a model. Fairness in LLMs\nhelps ensure inclusivity, equal representation based on factors such as race,\ngender and promotes responsible AI deployment. As the use of LLMs has become\nincreasingly prevalent, it is essential to assess whether LLMs can generate\nfair outcomes when subjected to considerations of fairness. In this study, we\nintroduce a framework outlining fairness regulations aligned with various\nfairness definitions, with each definition being modulated by varying degrees\nof abstraction. We explore the configuration for in-context learning and the\nprocedure for selecting in-context demonstrations using RAG, while\nincorporating fairness rules into the process. Experiments conducted with\ndifferent LLMs indicate that GPT-4 delivers superior results in terms of both\naccuracy and fairness compared to other models. This work is one of the early\nattempts to achieve fairness in prediction tasks by utilizing LLMs through\nin-context learning.", + "authors": "Garima Chhikara, Anurag Sharma, Kripabandhu Ghosh, Abhijnan Chakraborty", + "published": "2024-02-28", + "updated": "2024-02-28", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.02049v1", + "title": "Post Turing: Mapping the landscape of LLM Evaluation", + "abstract": "In the rapidly evolving landscape of Large Language Models (LLMs),\nintroduction of well-defined and standardized evaluation methodologies remains\na crucial challenge. This paper traces the historical trajectory of LLM\nevaluations, from the foundational questions posed by Alan Turing to the modern\nera of AI research. We categorize the evolution of LLMs into distinct periods,\neach characterized by its unique benchmarks and evaluation criteria. As LLMs\nincreasingly mimic human-like behaviors, traditional evaluation proxies, such\nas the Turing test, have become less reliable. We emphasize the pressing need\nfor a unified evaluation system, given the broader societal implications of\nthese models. Through an analysis of common evaluation methodologies, we\nadvocate for a qualitative shift in assessment approaches, underscoring the\nimportance of standardization and objective criteria. This work serves as a\ncall for the AI community to collaboratively address the challenges of LLM\nevaluation, ensuring their reliability, fairness, and societal benefit.", + "authors": "Alexey Tikhonov, Ivan P. Yamshchikov", + "published": "2023-11-03", + "updated": "2023-11-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "68T50", + "I.2.7" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.05374v2", + "title": "Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment", + "abstract": "Ensuring alignment, which refers to making models behave in accordance with\nhuman intentions [1,2], has become a critical task before deploying large\nlanguage models (LLMs) in real-world applications. For instance, OpenAI devoted\nsix months to iteratively aligning GPT-4 before its release [3]. However, a\nmajor challenge faced by practitioners is the lack of clear guidance on\nevaluating whether LLM outputs align with social norms, values, and\nregulations. This obstacle hinders systematic iteration and deployment of LLMs.\nTo address this issue, this paper presents a comprehensive survey of key\ndimensions that are crucial to consider when assessing LLM trustworthiness. The\nsurvey covers seven major categories of LLM trustworthiness: reliability,\nsafety, fairness, resistance to misuse, explainability and reasoning, adherence\nto social norms, and robustness. Each major category is further divided into\nseveral sub-categories, resulting in a total of 29 sub-categories.\nAdditionally, a subset of 8 sub-categories is selected for further\ninvestigation, where corresponding measurement studies are designed and\nconducted on several widely-used LLMs. The measurement results indicate that,\nin general, more aligned models tend to perform better in terms of overall\ntrustworthiness. However, the effectiveness of alignment varies across the\ndifferent trustworthiness categories considered. This highlights the importance\nof conducting more fine-grained analyses, testing, and making continuous\nimprovements on LLM alignment. By shedding light on these key dimensions of LLM\ntrustworthiness, this paper aims to provide valuable insights and guidance to\npractitioners in the field. Understanding and addressing these concerns will be\ncrucial in achieving reliable and ethically sound deployment of LLMs in various\napplications.", + "authors": "Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov, Muhammad Faaiz Taufiq, Hang Li", + "published": "2023-08-10", + "updated": "2024-03-21", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.07688v1", + "title": "CyberMetric: A Benchmark Dataset for Evaluating Large Language Models Knowledge in Cybersecurity", + "abstract": "Large Language Models (LLMs) excel across various domains, from computer\nvision to medical diagnostics. However, understanding the diverse landscape of\ncybersecurity, encompassing cryptography, reverse engineering, and managerial\nfacets like risk assessment, presents a challenge, even for human experts. In\nthis paper, we introduce CyberMetric, a benchmark dataset comprising 10,000\nquestions sourced from standards, certifications, research papers, books, and\nother publications in the cybersecurity domain. The questions are created\nthrough a collaborative process, i.e., merging expert knowledge with LLMs,\nincluding GPT-3.5 and Falcon-180B. Human experts spent over 200 hours verifying\ntheir accuracy and relevance. Beyond assessing LLMs' knowledge, the dataset's\nmain goal is to facilitate a fair comparison between humans and different LLMs\nin cybersecurity. To achieve this, we carefully selected 80 questions covering\na wide range of topics within cybersecurity and involved 30 participants of\ndiverse expertise levels, facilitating a comprehensive comparison between human\nand machine intelligence in this area. The findings revealed that LLMs\noutperformed humans in almost every aspect of cybersecurity.", + "authors": "Norbert Tihanyi, Mohamed Amine Ferrag, Ridhi Jain, Merouane Debbah", + "published": "2024-02-12", + "updated": "2024-02-12", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.CR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.00588v1", + "title": "Fairness in Serving Large Language Models", + "abstract": "High-demand LLM inference services (e.g., ChatGPT and BARD) support a wide\nrange of requests from short chat conversations to long document reading. To\nensure that all client requests are processed fairly, most major LLM inference\nservices have request rate limits, to ensure that no client can dominate the\nrequest queue. However, this rudimentary notion of fairness also results in\nunder-utilization of the resources and poor client experience when there is\nspare capacity. While there is a rich literature on fair scheduling, serving\nLLMs presents new challenges due to their unpredictable request lengths and\ntheir unique batching characteristics on parallel accelerators. This paper\nintroduces the definition of LLM serving fairness based on a cost function that\naccounts for the number of input and output tokens processed. To achieve\nfairness in serving, we propose a novel scheduling algorithm, the Virtual Token\nCounter (VTC), a fair scheduler based on the continuous batching mechanism. We\nprove a 2x tight upper bound on the service difference between two backlogged\nclients, adhering to the requirement of work-conserving. Through extensive\nexperiments, we demonstrate the superior performance of VTC in ensuring\nfairness, especially in contrast to other baseline methods, which exhibit\nshortcomings under various conditions.", + "authors": "Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo, Joseph E. Gonzalez, Ion Stoica", + "published": "2023-12-31", + "updated": "2023-12-31", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.LG", + "cs.PF" + ], + "category": "LLM Fairness" + } +] \ No newline at end of file