diff --git "a/related_34K/test_related_short_2404.19752v1.json" "b/related_34K/test_related_short_2404.19752v1.json" new file mode 100644--- /dev/null +++ "b/related_34K/test_related_short_2404.19752v1.json" @@ -0,0 +1,1442 @@ +[ + { + "url": "http://arxiv.org/abs/2404.19752v1", + "title": "Visual Fact Checker: Enabling High-Fidelity Detailed Caption Generation", + "abstract": "Existing automatic captioning methods for visual content face challenges such\nas lack of detail, content hallucination, and poor instruction following. In\nthis work, we propose VisualFactChecker (VFC), a flexible training-free\npipeline that generates high-fidelity and detailed captions for both 2D images\nand 3D objects. VFC consists of three steps: 1) proposal, where image-to-text\ncaptioning models propose multiple initial captions; 2) verification, where a\nlarge language model (LLM) utilizes tools such as object detection and VQA\nmodels to fact-check proposed captions; 3) captioning, where an LLM generates\nthe final caption by summarizing caption proposals and the fact check\nverification results. In this step, VFC can flexibly generate captions in\nvarious styles following complex instructions. We conduct comprehensive\ncaptioning evaluations using four metrics: 1) CLIP-Score for image-text\nsimilarity; 2) CLIP-Image-Score for measuring the image-image similarity\nbetween the original and the reconstructed image generated by a text-to-image\nmodel using the caption. 3) human study on Amazon Mechanical Turk; 4) GPT-4V\nfor fine-grained evaluation. Evaluation results show that VFC outperforms\nstate-of-the-art open-sourced captioning methods for 2D images on the COCO\ndataset and 3D assets on the Objaverse dataset. Our study demonstrates that by\ncombining open-source models into a pipeline, we can attain captioning\ncapability comparable to proprietary models such as GPT-4V, despite being over\n10x smaller in model size.", + "authors": "Yunhao Ge, Xiaohui Zeng, Jacob Samuel Huffman, Tsung-Yi Lin, Ming-Yu Liu, Yin Cui", + "published": "2024-04-30", + "updated": "2024-04-30", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV" + ], + "label": "Original Paper", + "paper_cat": "LLM Fairness", + "gt": "2.1. Image Captioning Image captioning has made significant progress with the advent of deep learning. Pioneering works [2, 10, 14] primarily focus on integrating deep neural networks for enhanced image understanding and language generation. Recent strides have been made with the introduction of Multimodal-Large Language Models (MM-LLMs), which are trained on extensive vision and language data. The general approach involves leveraging a pre-trained large language model (LLM) and a vision encoder with a projector to align with the LLM\u2019s embeddings, thus enhancing visual understanding. Several models have emerged as significant contributors in this domain. BLIP [16], BLIP2 [17], OFA [35], Flamingo [1], Kosmos-2 [27], MiniGPT4 [39], InstructBLIP [8], LLaVA [20, 21] have demonstrated impressive performance in single-view image captioning tasks. However, they exhibit varying limitations. For instance, BLIP-2 and OFA often generate overly concise captions, while others, like InstructBLIP, can produce detailed captions that often include inaccurate or hallucinatory content. Our method aims to address these limitations by combining different models into a pipeline via an LLM, striking a better balance between accuracy and detailedness in generated captions while mitigating hallucinations. 2.2. Large Language Models for Captioning Recent advancements in large language models (LLMs) like GPT-3 [5], LAMDA [30], PALM [7], Llama [32], GPT4 [26] have demonstrated exceptional zero-shot capabilities in language analysis and summarization tasks. This proficiency has naturally extended to the multimodal domain, particularly in image-language contexts, where LLMs can summarize multimodal information in a zero-shot manner. Input image DALLE-3 text-to-image VisualFactChecker (Ours) LLaVA-1.5 BLIP-2 MVDream text-to-3d Input 3D shape VisualFactChecker (Ours) Cap3D Figure 2. We use DALLE-3 [3] as a text-to-image model to reconstruct 2D images using generated captions from different captioning methods (BLIP-2, LLaVA-1.5 and ours). Similarly, we use MVDream [29] as a text-to-3D model to reconstruct 3D objects using different 3D captions (generated by Cap3D [23] and ours). From the results, we can see that the reconstructed images or 3D objects using BLIP-2 or Cap3D captions are less similar than the input ones, suggesting their captions may not contain sufficient information or incorrectly describe the visual contents; the reconstructed images using LLaVA-1.5 captions contain objects or scenes that are not present in the original images (top: people in the background, bottom: pedestrians and cars on the street), suggesting there might be hallucinations in LLaVA-1.5 captions. Images or 3D objects reconstructed using our captions are more similar to the inputs. Vision-blind LLMs are prominent in multimodal applications, often utilizing language-only prefixes generated by pre-trained tools. Clipcap [25] demonstrates this by using a continuous embedding as a prompt for a GPT-style language model, achieving notable performance in singleviewpoint image captioning. Similarly, Promptcap [13] and PNP-VQA [31] leverage natural language prompts with GPT models to excel in visual question answering. Recent methods have employed LLMs to generate image captions by summarizing initial captions or keywords from Vision-Language models. For instance, Socratic models [37] use a CLIP-based model to extract key tags from images, followed by GPT-3 with specialized prompts to create stylized captions. ChatCaptioner [38] builds upon this by integrating ChatGPT and BLIP-2 [17] in a conversational approach for question-answering about the image, and summarizing them into a caption. Visual Clues [36] uses similar tags to generate a paragraph-caption. IC3 [6] and LLM-Fusion [4] use LLMs to summarize captions from existing models augmented with temperature-based sampling. Cap3D [24] extends this concept to 3D object. Our method differentiates itself in two critical ways: First, we focus on reducing hallucinations in captions by employing visual grounding tools, such as object detection, to fact-check captions for enhanced accuracy. Second, our pipeline can be used for captioning both 2D images and 3D objects. Unlike previous methods that rely on a single captioning model, we integrate multiple captioning sources from different models, ensuring a more comprehensive coverage of visual content to generate captions. 2.3. Hallucination in MM-LLM There are two popular topics on the hallucination of MMLLMs. (1) Hallucination evaluation: Detection approaches such as Gunjal et al. [11] train classification models to identify hallucination. They focus on distinguishing between accurate and hallucinated content. Ground truth comparison methods [18, 34] compare model outputs with ground truth data to detect hallucinations. These techniques assess the alignment of generated captions with actual image content. (2) Mitigation Strategies [22]: Data optimization methods such as Liu et al. [19] address hallucination by creating negative instances in training datasets to reduce model overconfidence. Iterative generation methods such as Wang et al. [33] adopt an iterative process for caption generation, where brief answers are generated in succession and amalgamated, aiming to improve accuracy and relevance. Our VisualFactChecker is a training-free pipeline mitigating hallucination in image captioning. Our method utilizes visual grounding tools for improved accuracy, thereby actively reducing the hallucination and offering high-fidelity captions for both 2D images and 3D objects.", + "pre_questions": [], + "main_content": "Introduction Image captioning is a pivotal challenge in computer vision and natural language processing. Its central goal is to encapsulate visual data within a textual description, which requires a nuanced understanding of both modalities. The recent advent of multimodal large language models (MMLLMs), such as GPT-4V [26], and text-to-image generation models, such as DALLE-3 [3], has marked significant progress in this field. These proprietary models could leverage expansive human-labeled data and enormous computing resources to learn to generate detailed and contextually appropriate image descriptions. On the other hand, existing open-sourced captioning methods in the community still face significant challenges. Methods such as BLIP-2 [17] and OFA [35] often yield overly succinct captions that neglect essential visual information. Conversely, systems like Mini-GPT4 [39], InstructBLIP [8], and LLaVA [20, 21] can suffer from hallucination, producing long descriptions that do not align with the actual content of the images. In light of this, we propose VisualFactChecker (VFC), a flexible training-free pipeline designed to produce accurate and comprehensive captions for both 2D images and 3D objects. Fig. 1 shows examples of captions generated by VFC and their comparisons with captions generated by GPT-4V [26] and Cap3D [23]. Captions generated by VFC are faithful textural representations of the visual contents. This can also be verified by reconstructing images and 3d objects from captions using state-of-the-art text-to-image and text-to-3d models, as shown in Fig. 2. VFC focuses on tackling hallucinations and insufficient details in generated captions and is structured around three core components: Proposer, serving as the system\u2019s \u201ceye\u201d, creating detailed caption proposals as preliminary captions by using image-to-text captioning models; Large Language Model, acting as the \u201cbrain\u201d, calling and summarizing information from other components, and leveraging its advanced generalization capabilities to steer the captioning process following specified captioning instructions; Detector and VQA models, functioning as \u201ctools\u201d utilized by the LLM for fact-checking caption proposals, ensuring the fidelity of the final generated caption. VFC is versatile and effectively handles captioning for both 2D images and 3D objects through a unified pipeline. Fig. 3 shows an overview of the pipeline. The details of each component and their interplay are explained in Sec. 3. To comprehensively evaluate the generated captions, other than leveraging the commonly used CLIP-Score that primarily gauges the image-caption similarity, we propose a new metric: the CLIP-Image-Score. This metric assesses the similarity between the input image and a reconstructed image created by a text-to-image model from the caption, offering a complementary measure. Furthermore, we conducted a human study on Amazon Mechanical Turk for caption evaluation. Finally, we also performed a fine-grained evaluation by asking GPT-4V to compare and judge captions with detailed reasoning. The combination of CLIPScore, CLIP-Image-Score, GPT-4V, and human study provides a more robust evaluation of captions. We summarize our main contributions as follows: 1) We propose VisualFactChecker (VFC), a training-free pipeline to generate high-fidelity detailed 2D and 3D captions, effectively mitigating the challenge of hallucination in long captions. (2) CLIP-Image-Score: A novel caption evaluation metric that measures the similarity between the input image and a reconstructed image from the caption. (3) Our evaluation shows that VisualFactChecker achieves state-of-the-art results in 2D and 3D captioning tasks compared with opensourced models. (4) Our work shows that using an LLM to chain open-source models can achieve captioning capability on par with proprietary models such as GPT-4V. This section introduces the key components of VisualFactChecker as shown in Fig. 3 in detail and explains their interplay in generating accurate and detailed captions. The following sections delve into specifics. First, we detail the pipeline for 2D image captioning (Sec. 3.1), with Fig. 3 (top) illustrating this process. Then, we explore how our VQA Detector Captioner-1 Captioner-2 Initial Captions Detection Results Describe this image in detail. Large Language Model 2D Caption Describe this 3D object in detail. parse the caption and list all objects that could be detected with an object detection model... Object Checklist parse and modify caption using the results from an object detection model... Captioner-1 Captioner-2 Initial Captions Answers Large Language Model 3D Caption ask at most 5 most important and concrete questions that I need to double check... Questions correct the description based on the VQA... distill descriptions about the same 3D object from different camera view into one concise caption... Multi-view Summary Figure 3. Pipeline of the VisualFactChecker for captioning 2D images (top) and 3D objects (bottom). The process begins with the input being captioned by two multimodal captioning models (Captioner-1 and Captioner-2) to generate preliminary captions. These captions are then verified using a Large Language Model (LLM) to call object detection (Detector) and VQA models for fact-checking the captions. Finally, the LLM incorporates all the results and summarizes the final caption by following instructions. approach is adapted for 3D object captioning as shown in Fig. 3 (bottom), underscoring both shared methodologies and unique aspects relevant to 3D contexts (Sec. 3.2). 3.1. 2D Image Captioning The caption generation takes three steps: 1) proposal, 2) verification, and 3) captioning. Each step is detailed below. Proposal: The Proposal step serves as the cornerstone of the captioning process that generates initial captions. This is achieved through the utilization of advanced image-to-text models, specifically \u201cLLaVA\u201d and \u201cKosmos2\u201d. These models are trained on expansive datasets, enabling them to comprehend and interpret visual content effectively. By analyzing the input image, they suggest various preliminary captions, each reflecting different facets and interpretations of the image (Fig. 3 top). The rationale behind using multiple image-to-text multimodal LLMs lies in the complexity of adequately capturing an image\u2019s essence in a single attempt. Since an image can be accurately described in numerous ways, different models bring unique perspectives, thereby encompassing a broader range of information present in the image. Although the initial captions proposed may not possess perfect fidelity, the primary objective at this stage is to generate captions that are as comprehensive as possible. Fig. 3 displays the specific prompts we used for each step, with more details in Appendix A. Verification and Captioning: The goal of the verification step is to scrutinize and rectify any inaccuracies or hallucinations in the captions during the proposal step. It employs a combination of a Large Language Model (LLM) and grounding tools, including an open-vocabulary object detection model and/or a visual question answering (VQA) model. Here the LLM can be GPT-4 or Llama2. As shown in Fig. 3 (top), the process involves the following steps: Step 1: LLM first summarizes the initial detailed descriptions from different MM-LLMs into a single, detailed caption. While this caption is comprehensive, it may not always be accurate. Step 2: The LLM then analyzes this synthesized caption, identifying all objects that could be verified by object detection and summarizing an object checklist. In 2D image captioning, the focus is on eliminating hallucinations, particularly descriptions of non-existent objects in the image. Identifying these objects is crucial for the subsequent verification process. Step 3: Taking the object checklist as input, an open-vocabulary object detection model examines candidate objects in the checklist and determines their presence in the image. This step is pivotal in validating the existence of objects mentioned in the caption, thus supporting the fidelity of the caption. After verification, we go to the last captioning step: Based on the object detection results, the LLM revises the summarized single detailed caption. Each object described in the caption is cross-checked; if detected, it remains unchanged, while undetected objects are considered potential hallucinations and are removed from the caption. This step results in a final caption that is both detailed and reliable. The underlying assumption is that the detection model, serving as an object grounding expert, provides more reliable results than a general image descriptor. In the verification and captioning steps, the LLM plays a pivotal role as a \u201cbrain\u201d. It starts by parsing the initial caption and identifying key objects for detailed examination. The LLM then meticulously assesses whether each object mentioned actually appears in the image based on detection results. Following this thorough analysis, it refines and revises the initial captions, transforming them into final versions that are both coherent and richly detailed. The LLM is instrumental in guaranteeing linguistic fluency, ensuring that the captions not only accurately represent the image but also maintain the necessary level of detail for high-fidelity captioning. Moreover, the LLM can follow complex instructions to write the captions in a specified style, such as a caption that only mentions the foreground objects without mentioning the background. Fig. 3 displays the specific prompts used for each step. 3.2. 3D Object Captioning The 3D object captioning process follows a similar structural pipeline to that of 2D images, with a few key distinctions in certain steps, as depicted in Fig. 3 (bottom). In 3D captioning, an object may present multiple views, each offering unique information. The comprehensive caption for a 3D object is derived by integrating the perspectives from all these views. For each view, VisualFactChecker is employed to create a detailed, high-fidelity description. Subsequently, the LLM (GPT-4 or Llama-2) is used to amalgamate the information from all views, producing a unified caption for the 3D object. In particular, for each view\u2019s captioning, we have the same three-step approach akin to 2D image captioning. In the proposal step, LLaVA-1.5 and InstructBLIP are utilized for generating initial detailed descriptions. We opt out of using Kosmos2 for single 3D objects due to its less effective performance in providing detailed descriptions, possibly linked to its reliance on an implicit detection model. Additionally, a slightly modified prompt is used (see Fig. 3 bottom), which incorporates 3D-specific considerations. In the verification and captioning step, we primarily address hallucinations related to the attributes of 3D objects, such as shape and color. To mitigate these inaccuracies, rather than enumerating potential objects, we employ the LLM to generate five critical questions that could influence a text-to-3D generation model in reconstructing the 3D model. Following this, we utilize VQA models (specifically LLaVA-1.5) to respond to these questions based on the input 3D object view image. Subsequently, the LLM amends Captioning model Text-to-Image model X Caption X\u2019 CLIP-Image-Score CLIP image encoder CLIP image encoder \ud835\udc3c! \" \ud835\udc3c!! \ud835\udc3c! \u00d7 \ud835\udc3c!! Figure 4. The CLIP-Image-Score pipeline evaluates caption accuracy by encoding an original image X into a feature representation I_X using a CLIP image encoder. A captioning model generates a caption that is then input into a text-to-image model to reconstruct an image X' , which is encoded to I_{X'} . The score is computed by assessing the cosine similarity between I_X and I_{X'} , providing a measure of the caption\u2019s fidelity and hallucination detection. the initial caption in accordance with the answers provided by the VQA model. We operate under the assumption that answering targeted questions results in fewer hallucinations compared to generating a general description. Once the caption for each individual view is complete, the LLM synthesizes these multiple perspectives into a singular, comprehensive caption for the entire 3D object. The prompts used for the LLM at each stage are detailed in Appendix A. 4. CLIP-Image-Score Accurate evaluation of caption correctness and detailedness is paramount in determining the performance of an image captioning model. Traditional metrics like the CLIP-Score [12] have served as a standard for measuring the alignment between generated captions and their corresponding images. However, our CLIP-score may lack the sensitivity needed to detect the specific issue of hallucination within captions. We present the CLIP-Image-Score, an alternative metric specifically developed to reflect the subtleties of caption quality. This metric is different from CLIP-Score by introducing an additional reconstruction step. Specifically, the CLIP-Image-score evaluates the similarity between the original image and a reconstructed version of the image generated by a fixed text-to-image model using the caption as a prompt. By comparing the raw image to its reconstructed image, the metric is able to detect discrepancies indicative of hallucination, thus providing a different perspective of the caption quality assessment. The underlying principle of the CLIP-Image-Score is the recognition that multiple \u201ccorrect\u201d captions may exist for a single image. However, it\u2019s only when a caption is both \u201cdetail\u201d and \u201ccorrect\u201d that the reconstructed image closely resembles the original. Moreover, any hallucinations present in the caption become evident in the reconstructed image. Fig. 2 presents examples of such reconstructions. For instance, consider the results from LLaVA-1.5 shown in the third column. The caption generated for the first image falsely mentions \u201cseveral other people in the background\u201d. This error is clearly reflected in the image reconstructed by the text-to-image generator. In essence, comparing the two images indirectly ensures alignment between the image and its caption, thereby providing a complementary method to assess the quality of the caption than directly comparing the image and caption. The CLIP-Image-Score evaluation process is depicted in the following steps: \u2022 Caption Generation: An original image X is input into a captioning model, which generates a caption. \u2022 Caption-to-Image Reconstruction: This generated caption is then used as input for a text-to-image model, which creates a reconstructed image X' that visually represents the textual description. \u2022 Raw Image Encoding: The original image X is processed through a CLIP image encoder, translating the visual content into an encoded representation I_X . \u2022 Reconstructed Image Encoding: The reconstructed image is also processed through the CLIP image encoder to obtain its encoded representation I_{X'} . \u2022 Score Calculation: Finally, the encoded representations of the original and reconstructed images are compared to calculate the CLIP-Image-Score. The score is given by the cosine similarity, which assesses the congruence between I_X and I_{X'} : \\text {CLIP-Im a ge Sco re} = \\frac {I_X \\cdot I_{X'}}{\\|I_X\\| \\times \\|I_{X'}\\|} (1) Most notably, CLIP-Image-Score offers a sensitive measure for detecting hallucinations. In scenarios where the generated caption includes elements that are not in the original image, the reconstructed image will also likely contain these discrepancies. By comparing the original and reconstructed images, the CLIP-Image-Score can effectively highlight these differences, offering a clearer insight into the fidelity and accuracy of the generated caption. Furthermore, CLIP-Image-Score turns a cross-modality comparison into a more intuitive comparison in the same image modality (as shown in Fig. 4). CLIP-Image-Score represents a new complementary perspective for image captioning evaluation. By leveraging the capabilities of textto-image models and focusing on the congruence between the original and reconstructed images, it provides an accurate assessment of caption quality, particularly in identifying and measuring hallucinations, thereby enhancing the overall reliability of caption generation systems. 5. Experiments This section presents a thorough evaluation of captioning models across both 2D and 3D visual content, employing a variety of datasets and methodologies. Table 1 provides a summary of our comprehensive evaluation experiments. Eval Input pairs for evaluation Method Reference 2D Raw image Caption CLIP-Score Table 2 Human evaluation Fig. 6 CPT4V evaluation Fig. 7 Raw image Image(recon) CLIP-Image-Score Table 2 3D Multi-view (raw) Caption CLIP-Score Table 3 GPT4V evaluation Fig. 7 Multi-view (raw) Multi-view (recon) CLIP-Image-Score Table 3 Table 1. Summary of evaluation methods and results. 5.1. Overall: CLIP-Score and CLIP-Image-Score 2D image captioning. Dataset: Our evaluation utilized 5,000 COCO test images from the Karpathy split. Baseline methods: We benchmarked against state-of-the-art captioning models, including BLIP-2 [17], InstructBLIP [8], and LLaVA-1.5 [20]. The evaluation focused on each model\u2019s ability to produce accurate, detailed, and coherent captions that effectively encapsulate the essence of the images. Evaluation Metric: We employed two metrics: CLIP-Score [12] and CLIP-Image-Score (Sec. 4). The CLIP-Score, a prevalent metric in image caption quality assessment, involves processing the raw image through the CLIP image encoder and the caption through the CLIP text encoder. The resultant embeddings are then compared for cosine similarity, with a higher score indicating greater semantic resemblance between the image and the caption. For our analysis, we first calculated the CLIP-Score for each image-caption pair, then averaged these scores across all 50,000 text/image pairs, scaling the result by a factor of 100. Table 2 displays the comparative performance of various image captioning methods on the 5,000 COCO test set images. The results demonstrate that our VisualFactChecker surpasses all baseline methods in performance. Captioning Method CLIP-Score (%) \u2191 CLIP-Image-Score (%) \u2191 Human Label (COCO GT) 30.36 (-2.54) 71.21 (-2.40) BLIP2 30.11 (-2.79) 70.79 (-2.82) InstructBLIP 31.45 (-1.45) 72.95 (-0.66) LLaVA-1.5 32.08 (-0.82) 73.24 (-0.37) Kosmos-2 32.32 (-0.58) 73.28 (-0.33) VisualFactChecker (Ours) 32.90 73.61 Table 2. Image captioning comparison with different metrics on 5000 COCO test set in Karpathy split, we use raw image and caption as input pairs for evaluation. As outlined in Sec. 4, the CLIP-Image-Score provides a complementary view to assess the quality of image captions. This metric is derived by comparing the cosine similarity between the CLIP embeddings of two images: the original image and a reconstructed image, which is generated using the provided caption through a text-to-image generation model. A higher CLIP-Image-Score signifies a more accurate and effective image caption. For this process, Stable Diffusion XL (SDXL) [28] is utilized as the designated text-to-image model to reconstruct images based on Captioning Method CLIP-Score (%) \u2191 CLIP-Image-Score (%) \u2191 Cap3D 33.44 (-0.57) 79.88 (-0.44) VisualFactChecker (Ours) 34.01 80.32 Table 3. 3D object captioning comparison with different metrics on 1000 objects in Objaverse. For CLIP-Score, we use the average score of two views for evaluation. For CLIP-Image-Score, we use an off-the-shelf text-to-3D model, MVDream, to generate 3D models from 3D captions. We compare two views of the raw object and the same views of generated 3D object for evaluation. the generated captions. Table 2 presents the CLIP-ImageScores obtained for the 5000 images in the COCO test set, where our method outperforms all baseline methods. 3D object captioning. Dataset: 1,000 3D objects sampled from Objaverse dataset [9]. Baseline methods: We use state-of-the-art 3D object captioning model Cap3D [23] as the baseline. Cap3D uses 8 view images to generate the final object caption, our VisualFactChecker uses only 2 views to generate the object caption. Evaluation Metric: CLIP-Score and CLIP-Image-Score on multiple views rendered from 3D objects. To evaluate the similarity of a 3D object and the generated caption, we evaluate the similarity of the caption with the multi-view images used to generate the caption. Specifically, we evaluate the similarity of the generated caption with the two views that were used to generate the caption and use the average score to represent the CLIP-Score. Table. 3 shows the performance of 3D object captioning methods on 1,000 3D objects from Objaverse dataset. VisualFactChecker outperforms Cap3D. We also use CLIP-Image-Score to evaluate the 3D caption quality. CLIP-Image-Score needs reconstructed images to compare with the raw images. We treat the two views that were used to generate the 3D object caption as the raw image. To obtain the reconstructed image, we use an off-theshelf text-to-3D generation model, MVDream, to generate a 3D object given the generated 3D object caption. We then render the same two views of images based on the generated 3D object, and we calculate the CLIP-Image-Score between the raw image and the rendered image. Table. 3 shows the CLIP-Image-Score on 1000 objects in Objaverse dataset. 5.2. Per Image Evaluation: Wining Rate CLIP-Score and CLIP-Image-Score indicate an overall performance comparison, which shows an average score among all 5000 images. The average score may be dominated by a small group of images that have extremely high or low scores. To zoom in and show a more detailed comparison, we try to answer the following question: Given an image, what is the probability that one method performs better than another method on caption generation? To answer this question, we need to go over each image and calculate the winning rate for a pair of methods. Specifically, for each image, we compare the CLIP53.1 53.4 54.6 64.2 60.7 62.0 64.4 70.7 81.1 77.2 Figure 5. 2D image captioning comparison with pair-wise winning rate. VisualFactChecker (VFC) outperforms all baseline methods on both CLIP-Score (top) and CLIP-Image-Score (bottom). Score of our VisualFactChecker caption against the captions generated from different baselines respectively, and calculate the wining probability of our method and the baselines. Fig. 5 shows the results, for example, we can see that in the pair-wise comparison, our VisualFactChecker performs better (higher CLIP-Score) than LLaVA-1.5 on 64.4% of 5000 images (3220 images). Calculating the winning rate over all images provides a more detailed analysis that zooms in on the comparison of each image, which shows a complementary view than overall average CLIP-Score. 5.3. Fine-grained Evaluation: Human and GPT-4V The CLIP-Score and CLIP-Image-Score offer a general comparison of overall performance. A pairwise per-image winning rate provides a more specific analysis, evaluating performance on individual images. However, the research highlighted in related studies [15] indicates that the CLIPScore may not be ideally suited for image-to-image comparison tasks. Furthermore, relying on a single score fails to provide a nuanced comparison across criteria, such as accuracy and level of detail. We use Human evaluation and GPT-4V to provide a more fine-grained evaluation. Human evaluation using Amazon Mechanical Turk (AMT). We employed a pairwise comparison strategy. From the COCO dataset, we randomly selected 100 images out of 5000. For each image, our caption was compared against 5 baseline captions respectively. To reduce variance, each comparison was done by 3 different AMT workers and we used their majority voting as the final selection. This resulted in a total of 1500 comparisons collected on AMT. AMT UI is shown in the appendix. The workers were presented with two competing captions \u2014 one from a baseline method and one from our VisualFactChecker, in randomized order. They were instructed to select the better caption describing the image based on 3 aspects: correctness, detailness, and fluency. Results in Fig. 6 show our captions are more preferred by humans. The human evaluation instruction and web UI is shown in Appendix B. 100 69 58 58 92 Figure 6. Amazon Mechanical Turk human evaluation results. GPT-4V evaluation. Our study applied GPT-4V for evaluating captions in a manner akin to the caption evaluation process used in DALLE-3. We use the same randomly selected 100 images from COCO as in Human evaluation. For each image, we considered the captions generated by 5 baseline methods alongside the caption produced by our VisualFactChecker. We then presented GPT-4V with the raw image, our reference caption, and the four baseline captions. Our designed prompt instructed GPT-4V to compare each baseline caption against our reference caption, focusing on two primary aspects: correctness and detail. GPT-4V was tasked with providing a pairwise, detailed comparison for each pair, including justifications for its assessments. Based on these comparative insights, GPT-4V classified each baseline method caption as either \u201cbetter\u201d or \u201cworse\u201d than our VisualFactChecker. Fig. 5 shows the comprehensive results. More details about the GPT-4V evaluation prompt and examples are shown in Appendix B. 94 68 89 87 100 98 Figure 7. GPT-4V evaluation results. Our captions are significantly better than baselines. 5.4. Ablation Study In our ablation study, we explore the impact of various components on performance. For 2D captioning tasks, we assess the efficacy of initial captioning models, LLaVA-1.5 and Kosmos-2, using the CLIP-Score metric for the captions they generate on the same 5000 COCO test images. Additionally, we ablate our method\u2019s performance in the absence of the verification (fact checker) step, which aims to mitigate hallucinations through detection grounding. Table 4 shows the detailed results. Likewise, in the context of 3D object captioning, we evaluate the individual contribuMethods or Steps CLIP-Score 2D LLaVA-1.5 32.08 (-0.33) Kosmos-2 32.32 (-0.09) VisualFactChecker (w/o fact check) 32.41 VisualFactChecker 32.90 (+0.49) 3D LLaVA-1.5 32.05 (-0.66) InstructBLIP 32.51 (-0.20) VisualFactChecker (w/o fact check) 32.71 VisualFactChecker 34.01 (+1.30) Table 4. Ablation study on captioning 2D images (5000 COCO test dataset) and 3D objects (1000 Objaverse). tions of initial captioners, namely LLaVA-1.5 and InstructBLIP on the same 1000 Objaverse 3D objects. We further investigate the performance of our methodology without the fact checker, which in this case operates by leveraging a VQA model to reduce hallucinations. Table 4 shows the detailed results. These results highlight the significance of fact checker in our approach. 5.5. Qualitative Results and Prompt Following Other than quantitative evaluation results, we show more qualitative examples of VisualFactChecker for 2D and 3D captions in Appendix C. By leveraging an LLM, VisualFactChecker can follow complex instructions to write captions in various styles. Examples are shown in Appendix D. 6. Conclusion We propose the VisualFactChecker (VFC), a training-free pipeline to generate high-fidelity and detailed captions. By utilizing an LLM to chain multimodal models and object detection and VQA models, VFC reduces hallucination in long captions. We conducted a comprehensive caption evaluation using different metrics, including 1) image-text similarity using CLIP-Score, 2) image-reconstructed image similarity using our proposed CLIP-Image-Score, 3) human study, and 4) fine-grained evaluation using GPT-4V. Compared with open-sourced captioning models, our method achieves state-of-the-art in both 2D and 3D captioning. Our work shows combining open-sourced models into a pipeline can significantly close the captioning performance gap with proprietary models like GPT-4V. In the future, we plan to improve our pipeline further by including more components for fact-checking and making it more automatic in deciding which components to use. Acknowledgments We would like to thank Siddharth Gururani for helping with our human evaluation using Amazon Mechanical Turk; Haochen Wang for his help in preprocessing 3D data. We also thank Qinsheng Zhang, Yogesh Balaji, and Yen-Chen Lin for their helpful discussion." + }, + { + "url": "http://arxiv.org/abs/1908.06954v2", + "title": "Attention on Attention for Image Captioning", + "abstract": "Attention mechanisms are widely used in current encoder/decoder frameworks of\nimage captioning, where a weighted average on encoded vectors is generated at\neach time step to guide the caption decoding process. However, the decoder has\nlittle idea of whether or how well the attended vector and the given attention\nquery are related, which could make the decoder give misled results. In this\npaper, we propose an Attention on Attention (AoA) module, which extends the\nconventional attention mechanisms to determine the relevance between attention\nresults and queries. AoA first generates an information vector and an attention\ngate using the attention result and the current context, then adds another\nattention by applying element-wise multiplication to them and finally obtains\nthe attended information, the expected useful knowledge. We apply AoA to both\nthe encoder and the decoder of our image captioning model, which we name as AoA\nNetwork (AoANet). Experiments show that AoANet outperforms all previously\npublished methods and achieves a new state-of-the-art performance of 129.8\nCIDEr-D score on MS COCO Karpathy offline test split and 129.6 CIDEr-D (C40)\nscore on the official online testing server. Code is available at\nhttps://github.com/husthuaan/AoANet.", + "authors": "Lun Huang, Wenmin Wang, Jie Chen, Xiao-Yong Wei", + "published": "2019-08-19", + "updated": "2019-08-21", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2210.08773v3", + "title": "Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training", + "abstract": "Visual question answering (VQA) is a hallmark of vision and language\nreasoning and a challenging task under the zero-shot setting. We propose\nPlug-and-Play VQA (PNP-VQA), a modular framework for zero-shot VQA. In contrast\nto most existing works, which require substantial adaptation of pretrained\nlanguage models (PLMs) for the vision modality, PNP-VQA requires no additional\ntraining of the PLMs. Instead, we propose to use natural language and network\ninterpretation as an intermediate representation that glues pretrained models\ntogether. We first generate question-guided informative image captions, and\npass the captions to a PLM as context for question answering. Surpassing\nend-to-end trained baselines, PNP-VQA achieves state-of-the-art results on\nzero-shot VQAv2 and GQA. With 11B parameters, it outperforms the 80B-parameter\nFlamingo model by 8.5% on VQAv2. With 738M PLM parameters, PNP-VQA achieves an\nimprovement of 9.1% on GQA over FewVLM with 740M PLM parameters. Code is\nreleased at https://github.com/salesforce/LAVIS/tree/main/projects/pnp-vqa", + "authors": "Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, Steven C. H. Hoi", + "published": "2022-10-17", + "updated": "2023-03-20", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2111.09734v1", + "title": "ClipCap: CLIP Prefix for Image Captioning", + "abstract": "Image captioning is a fundamental task in vision-language understanding,\nwhere the model predicts a textual informative caption to a given input image.\nIn this paper, we present a simple approach to address this task. We use CLIP\nencoding as a prefix to the caption, by employing a simple mapping network, and\nthen fine-tunes a language model to generate the image captions. The recently\nproposed CLIP model contains rich semantic features which were trained with\ntextual context, making it best for vision-language perception. Our key idea is\nthat together with a pre-trained language model (GPT2), we obtain a wide\nunderstanding of both visual and textual data. Hence, our approach only\nrequires rather quick training to produce a competent captioning model. Without\nadditional annotations or pre-training, it efficiently generates meaningful\ncaptions for large-scale and diverse datasets. Surprisingly, our method works\nwell even when only the mapping network is trained, while both CLIP and the\nlanguage model remain frozen, allowing a lighter architecture with less\ntrainable parameters. Through quantitative evaluation, we demonstrate our model\nachieves comparable results to state-of-the-art methods on the challenging\nConceptual Captions and nocaps datasets, while it is simpler, faster, and\nlighter. Our code is available in\nhttps://github.com/rmokady/CLIP_prefix_caption.", + "authors": "Ron Mokady, Amir Hertz, Amit H. Bermano", + "published": "2021-11-18", + "updated": "2021-11-18", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2308.15126v3", + "title": "Evaluation and Analysis of Hallucination in Large Vision-Language Models", + "abstract": "Large Vision-Language Models (LVLMs) have recently achieved remarkable\nsuccess. However, LVLMs are still plagued by the hallucination problem, which\nlimits the practicality in many scenarios. Hallucination refers to the\ninformation of LVLMs' responses that does not exist in the visual input, which\nposes potential risks of substantial consequences. There has been limited work\nstudying hallucination evaluation in LVLMs. In this paper, we propose\nHallucination Evaluation based on Large Language Models (HaELM), an LLM-based\nhallucination evaluation framework. HaELM achieves an approximate 95%\nperformance comparable to ChatGPT and has additional advantages including low\ncost, reproducibility, privacy preservation and local deployment. Leveraging\nthe HaELM, we evaluate the hallucination in current LVLMs. Furthermore, we\nanalyze the factors contributing to hallucination in LVLMs and offer helpful\nsuggestions to mitigate the hallucination problem. Our training data and human\nannotation hallucination data will be made public soon.", + "authors": "Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng Shi, Chenlin Zhao, Haiyang Xu, Qinghao Ye, Ming Yan, Ji Zhang, Jihua Zhu, Jitao Sang, Haoyu Tang", + "published": "2023-08-29", + "updated": "2023-10-10", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.AI", + "cs.CL", + "cs.CV" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2302.01328v3", + "title": "IC3: Image Captioning by Committee Consensus", + "abstract": "If you ask a human to describe an image, they might do so in a thousand\ndifferent ways. Traditionally, image captioning models are trained to generate\na single \"best\" (most like a reference) image caption. Unfortunately, doing so\nencourages captions that are \"informationally impoverished,\" and focus on only\na subset of the possible details, while ignoring other potentially useful\ninformation in the scene. In this work, we introduce a simple, yet novel,\nmethod: \"Image Captioning by Committee Consensus\" (IC3), designed to generate a\nsingle caption that captures high-level details from several annotator\nviewpoints. Humans rate captions produced by IC3 at least as helpful as\nbaseline SOTA models more than two thirds of the time, and IC3 can improve the\nperformance of SOTA automated recall systems by up to 84%, outperforming single\nhuman-generated reference captions, and indicating significant improvements\nover SOTA approaches for visual description. Code is available at\nhttps://davidmchan.github.io/caption-by-committee/", + "authors": "David M. Chan, Austin Myers, Sudheendra Vijayanarasimhan, David A. Ross, John Canny", + "published": "2023-02-02", + "updated": "2023-10-19", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV", + "cs.AI", + "cs.CL", + "cs.LG" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2211.09699v4", + "title": "PromptCap: Prompt-Guided Task-Aware Image Captioning", + "abstract": "Knowledge-based visual question answering (VQA) involves questions that\nrequire world knowledge beyond the image to yield the correct answer. Large\nlanguage models (LMs) like GPT-3 are particularly helpful for this task because\nof their strong knowledge retrieval and reasoning capabilities. To enable LM to\nunderstand images, prior work uses a captioning model to convert images into\ntext. However, when summarizing an image in a single caption sentence, which\nvisual entities to describe are often underspecified. Generic image captions\noften miss visual details essential for the LM to answer visual questions\ncorrectly. To address this challenge, we propose PromptCap (Prompt-guided image\nCaptioning), a captioning model designed to serve as a better connector between\nimages and black-box LMs. Different from generic captions, PromptCap takes a\nnatural-language prompt to control the visual entities to describe in the\ngenerated caption. The prompt contains a question that the caption should aid\nin answering. To avoid extra annotation, PromptCap is trained by examples\nsynthesized with GPT-3 and existing datasets. We demonstrate PromptCap's\neffectiveness on an existing pipeline in which GPT-3 is prompted with image\ncaptions to carry out VQA. PromptCap outperforms generic captions by a large\nmargin and achieves state-of-the-art accuracy on knowledge-based VQA tasks\n(60.4% on OK-VQA and 59.6% on A-OKVQA). Zero-shot results on WebQA show that\nPromptCap generalizes well to unseen domains.", + "authors": "Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, Jiebo Luo", + "published": "2022-11-15", + "updated": "2023-08-17", + "primary_cat": "cs.CV", + "cats": [ + "cs.CV", + "cs.CL" + ], + "label": "Related Work" + }, + { + "url": "http://arxiv.org/abs/2305.01937v1", + "title": "Can Large Language Models Be an Alternative to Human Evaluations?", + "abstract": "Human evaluation is indispensable and inevitable for assessing the quality of\ntexts generated by machine learning models or written by humans. However, human\nevaluation is very difficult to reproduce and its quality is notoriously\nunstable, hindering fair comparisons among different natural language\nprocessing (NLP) models and algorithms. Recently, large language models (LLMs)\nhave demonstrated exceptional performance on unseen tasks when only the task\ninstructions are provided. In this paper, we explore if such an ability of the\nLLMs can be used as an alternative to human evaluation. We present the LLMs\nwith the exact same instructions, samples to be evaluated, and questions used\nto conduct human evaluation, and then ask the LLMs to generate responses to\nthose questions; we dub this LLM evaluation. We use human evaluation and LLM\nevaluation to evaluate the texts in two NLP tasks: open-ended story generation\nand adversarial attacks. We show that the result of LLM evaluation is\nconsistent with the results obtained by expert human evaluation: the texts\nrated higher by human experts are also rated higher by the LLMs. We also find\nthat the results of LLM evaluation are stable over different formatting of the\ntask instructions and the sampling algorithm used to generate the answer. We\nare the first to show the potential of using LLMs to assess the quality of\ntexts and discuss the limitations and ethical considerations of LLM evaluation.", + "authors": "Cheng-Han Chiang, Hung-yi Lee", + "published": "2023-05-03", + "updated": "2023-05-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.HC" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.05345v3", + "title": "RTLLM: An Open-Source Benchmark for Design RTL Generation with Large Language Model", + "abstract": "Inspired by the recent success of large language models (LLMs) like ChatGPT,\nresearchers start to explore the adoption of LLMs for agile hardware design,\nsuch as generating design RTL based on natural-language instructions. However,\nin existing works, their target designs are all relatively simple and in a\nsmall scale, and proposed by the authors themselves, making a fair comparison\namong different LLM solutions challenging. In addition, many prior works only\nfocus on the design correctness, without evaluating the design qualities of\ngenerated design RTL. In this work, we propose an open-source benchmark named\nRTLLM, for generating design RTL with natural language instructions. To\nsystematically evaluate the auto-generated design RTL, we summarized three\nprogressive goals, named syntax goal, functionality goal, and design quality\ngoal. This benchmark can automatically provide a quantitative evaluation of any\ngiven LLM-based solution. Furthermore, we propose an easy-to-use yet\nsurprisingly effective prompt engineering technique named self-planning, which\nproves to significantly boost the performance of GPT-3.5 in our proposed\nbenchmark.", + "authors": "Yao Lu, Shang Liu, Qijun Zhang, Zhiyao Xie", + "published": "2023-08-10", + "updated": "2023-11-11", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.AR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.01262v2", + "title": "Fairness Certification for Natural Language Processing and Large Language Models", + "abstract": "Natural Language Processing (NLP) plays an important role in our daily lives,\nparticularly due to the enormous progress of Large Language Models (LLM).\nHowever, NLP has many fairness-critical use cases, e.g., as an expert system in\nrecruitment or as an LLM-based tutor in education. Since NLP is based on human\nlanguage, potentially harmful biases can diffuse into NLP systems and produce\nunfair results, discriminate against minorities or generate legal issues.\nHence, it is important to develop a fairness certification for NLP approaches.\nWe follow a qualitative research approach towards a fairness certification for\nNLP. In particular, we have reviewed a large body of literature on algorithmic\nfairness, and we have conducted semi-structured expert interviews with a wide\nrange of experts from that area. We have systematically devised six fairness\ncriteria for NLP, which can be further refined into 18 sub-categories. Our\ncriteria offer a foundation for operationalizing and testing processes to\ncertify fairness, both from the perspective of the auditor and the audited\norganization.", + "authors": "Vincent Freiberger, Erik Buchmann", + "published": "2024-01-02", + "updated": "2024-01-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG", + "68T50", + "I.2.7" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2303.01248v3", + "title": "Can ChatGPT Assess Human Personalities? A General Evaluation Framework", + "abstract": "Large Language Models (LLMs) especially ChatGPT have produced impressive\nresults in various areas, but their potential human-like psychology is still\nlargely unexplored. Existing works study the virtual personalities of LLMs but\nrarely explore the possibility of analyzing human personalities via LLMs. This\npaper presents a generic evaluation framework for LLMs to assess human\npersonalities based on Myers Briggs Type Indicator (MBTI) tests. Specifically,\nwe first devise unbiased prompts by randomly permuting options in MBTI\nquestions and adopt the average testing result to encourage more impartial\nanswer generation. Then, we propose to replace the subject in question\nstatements to enable flexible queries and assessments on different subjects\nfrom LLMs. Finally, we re-formulate the question instructions in a manner of\ncorrectness evaluation to facilitate LLMs to generate clearer responses. The\nproposed framework enables LLMs to flexibly assess personalities of different\ngroups of people. We further propose three evaluation metrics to measure the\nconsistency, robustness, and fairness of assessment results from\nstate-of-the-art LLMs including ChatGPT and GPT-4. Our experiments reveal\nChatGPT's ability to assess human personalities, and the average results\ndemonstrate that it can achieve more consistent and fairer assessments in spite\nof lower robustness against prompt biases compared with InstructGPT.", + "authors": "Haocong Rao, Cyril Leung, Chunyan Miao", + "published": "2023-03-01", + "updated": "2023-10-13", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.09606v1", + "title": "Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey", + "abstract": "Causal inference has shown potential in enhancing the predictive accuracy,\nfairness, robustness, and explainability of Natural Language Processing (NLP)\nmodels by capturing causal relationships among variables. The emergence of\ngenerative Large Language Models (LLMs) has significantly impacted various NLP\ndomains, particularly through their advanced reasoning capabilities. This\nsurvey focuses on evaluating and improving LLMs from a causal view in the\nfollowing areas: understanding and improving the LLMs' reasoning capacity,\naddressing fairness and safety issues in LLMs, complementing LLMs with\nexplanations, and handling multimodality. Meanwhile, LLMs' strong reasoning\ncapacities can in turn contribute to the field of causal inference by aiding\ncausal relationship discovery and causal effect estimations. This review\nexplores the interplay between causal inference frameworks and LLMs from both\nperspectives, emphasizing their collective potential to further the development\nof more advanced and equitable artificial intelligence systems.", + "authors": "Xiaoyu Liu, Paiheng Xu, Junda Wu, Jiaxin Yuan, Yifan Yang, Yuhang Zhou, Fuxiao Liu, Tianrui Guan, Haoliang Wang, Tong Yu, Julian McAuley, Wei Ai, Furong Huang", + "published": "2024-03-14", + "updated": "2024-03-14", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.11764v1", + "title": "ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs", + "abstract": "Large Language models (LLMs), while powerful, exhibit harmful social biases.\nDebiasing is often challenging due to computational costs, data constraints,\nand potential degradation of multi-task language capabilities. This work\nintroduces a novel approach utilizing ChatGPT to generate synthetic training\ndata, aiming to enhance the debiasing of LLMs. We propose two strategies:\nTargeted Prompting, which provides effective debiasing for known biases but\nnecessitates prior specification of bias in question; and General Prompting,\nwhich, while slightly less effective, offers debiasing across various\ncategories. We leverage resource-efficient LLM debiasing using adapter tuning\nand compare the effectiveness of our synthetic data to existing debiasing\ndatasets. Our results reveal that: (1) ChatGPT can efficiently produce\nhigh-quality training data for debiasing other LLMs; (2) data produced via our\napproach surpasses existing datasets in debiasing performance while also\npreserving internal knowledge of a pre-trained LLM; and (3) synthetic data\nexhibits generalizability across categories, effectively mitigating various\nbiases, including intersectional ones. These findings underscore the potential\nof synthetic data in advancing the fairness of LLMs with minimal retraining\ncost.", + "authors": "Pengrui Han, Rafal Kocielnik, Adhithya Saravanan, Roy Jiang, Or Sharir, Anima Anandkumar", + "published": "2024-02-19", + "updated": "2024-02-19", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "68T50", + "I.2.7; K.4.1" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.04205v2", + "title": "Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves", + "abstract": "Misunderstandings arise not only in interpersonal communication but also\nbetween humans and Large Language Models (LLMs). Such discrepancies can make\nLLMs interpret seemingly unambiguous questions in unexpected ways, yielding\nincorrect responses. While it is widely acknowledged that the quality of a\nprompt, such as a question, significantly impacts the quality of the response\nprovided by LLMs, a systematic method for crafting questions that LLMs can\nbetter comprehend is still underdeveloped. In this paper, we present a method\nnamed `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand\nquestions posed by humans and provide responses in a single prompt. This\napproach serves as a simple yet effective prompting method for improving\nperformance. We also introduce a two-step variant of RaR, where a rephrasing\nLLM first rephrases the question and then passes the original and rephrased\nquestions together to a different responding LLM. This facilitates the\neffective utilization of rephrased questions generated by one LLM with another.\nOur experiments demonstrate that our methods significantly improve the\nperformance of different models across a wide range to tasks. We further\nprovide a comprehensive comparison between RaR and the popular Chain-of-Thought\n(CoT) methods, both theoretically and empirically. We show that RaR is\ncomplementary to CoT and can be combined with CoT to achieve even better\nperformance. Our work not only contributes to enhancing LLM performance\nefficiently and effectively but also sheds light on a fair evaluation of LLM\ncapabilities. Data and codes are available at\nhttps://github.com/uclaml/Rephrase-and-Respond.", + "authors": "Yihe Deng, Weitong Zhang, Zixiang Chen, Quanquan Gu", + "published": "2023-11-07", + "updated": "2024-04-18", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.17916v2", + "title": "LLM-Resistant Math Word Problem Generation via Adversarial Attacks", + "abstract": "Large language models (LLMs) have significantly transformed the educational\nlandscape. As current plagiarism detection tools struggle to keep pace with\nLLMs' rapid advancements, the educational community faces the challenge of\nassessing students' true problem-solving abilities in the presence of LLMs. In\nthis work, we explore a new paradigm for ensuring fair evaluation -- generating\nadversarial examples which preserve the structure and difficulty of the\noriginal questions aimed for assessment, but are unsolvable by LLMs. Focusing\non the domain of math word problems, we leverage abstract syntax trees to\nstructurally generate adversarial examples that cause LLMs to produce incorrect\nanswers by simply editing the numeric values in the problems. We conduct\nexperiments on various open- and closed-source LLMs, quantitatively and\nqualitatively demonstrating that our method significantly degrades their math\nproblem-solving ability. We identify shared vulnerabilities among LLMs and\npropose a cost-effective approach to attack high-cost models. Additionally, we\nconduct automatic analysis on math problems and investigate the cause of\nfailure, offering a nuanced view into model's limitation.", + "authors": "Roy Xie, Chengxuan Huang, Junlin Wang, Bhuwan Dhingra", + "published": "2024-02-27", + "updated": "2024-03-30", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2206.13757v1", + "title": "Flexible text generation for counterfactual fairness probing", + "abstract": "A common approach for testing fairness issues in text-based classifiers is\nthrough the use of counterfactuals: does the classifier output change if a\nsensitive attribute in the input is changed? Existing counterfactual generation\nmethods typically rely on wordlists or templates, producing simple\ncounterfactuals that don't take into account grammar, context, or subtle\nsensitive attribute references, and could miss issues that the wordlist\ncreators had not considered. In this paper, we introduce a task for generating\ncounterfactuals that overcomes these shortcomings, and demonstrate how large\nlanguage models (LLMs) can be leveraged to make progress on this task. We show\nthat this LLM-based method can produce complex counterfactuals that existing\nmethods cannot, comparing the performance of various counterfactual generation\nmethods on the Civil Comments dataset and showing their value in evaluating a\ntoxicity classifier.", + "authors": "Zee Fryer, Vera Axelrod, Ben Packer, Alex Beutel, Jilin Chen, Kellie Webster", + "published": "2022-06-28", + "updated": "2022-06-28", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.12090v1", + "title": "UP5: Unbiased Foundation Model for Fairness-aware Recommendation", + "abstract": "Recent advancements in foundation models such as large language models (LLM)\nhave propelled them to the forefront of recommender systems (RS). Moreover,\nfairness in RS is critical since many users apply it for decision-making and\ndemand fulfillment. However, at present, there is a lack of understanding\nregarding the level of fairness exhibited by recommendation foundation models\nand the appropriate methods for equitably treating different groups of users in\nfoundation models. In this paper, we focus on user-side unfairness problem and\nshow through a thorough examination that there is unfairness involved in LLMs\nthat lead to unfair recommendation results. To eliminate bias from LLM for\nfairness-aware recommendation, we introduce a novel Unbiased P5 (UP5)\nfoundation model based on Counterfactually-Fair-Prompting (CFP) techniques. CFP\nincludes two sub-modules: a personalized prefix prompt that enhances fairness\nwith respect to individual sensitive attributes, and a Prompt Mixture that\nintegrates multiple counterfactually-fair prompts for a set of sensitive\nattributes. Experiments are conducted on two real-world datasets, MovieLens-1M\nand Insurance, and results are compared with both matching-based and\nsequential-based fairness-aware recommendation models. The results show that\nUP5 achieves better recommendation performance and meanwhile exhibits a high\nlevel of fairness.", + "authors": "Wenyue Hua, Yingqiang Ge, Shuyuan Xu, Jianchao Ji, Yongfeng Zhang", + "published": "2023-05-20", + "updated": "2023-05-20", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.AI", + "cs.CL", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.03852v2", + "title": "FLM-101B: An Open LLM and How to Train It with $100K Budget", + "abstract": "Large language models (LLMs) have achieved remarkable success in NLP and\nmultimodal tasks, among others. Despite these successes, two main challenges\nremain in developing LLMs: (i) high computational cost, and (ii) fair and\nobjective evaluations. In this paper, we report a solution to significantly\nreduce LLM training cost through a growth strategy. We demonstrate that a\n101B-parameter LLM with 0.31T tokens can be trained with a budget of 100K US\ndollars. Inspired by IQ tests, we also consolidate an additional range of\nevaluations on top of existing evaluations that focus on knowledge-oriented\nabilities. These IQ evaluations include symbolic mapping, rule understanding,\npattern mining, and anti-interference. Such evaluations minimize the potential\nimpact of memorization. Experimental results show that our model, named\nFLM-101B, trained with a budget of 100K US dollars, achieves performance\ncomparable to powerful and well-known models, e.g., GPT-3 and GLM-130B,\nespecially on the additional range of IQ evaluations. The checkpoint of\nFLM-101B is released at https://huggingface.co/CofeAI/FLM-101B.", + "authors": "Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi Fang, Xuying Meng, Siqi Fan, Peng Han, Jing Li, Li Du, Bowen Qin, Zheng Zhang, Aixin Sun, Yequan Wang", + "published": "2023-09-07", + "updated": "2023-09-17", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.07420v1", + "title": "FairSISA: Ensemble Post-Processing to Improve Fairness of Unlearning in LLMs", + "abstract": "Training large language models (LLMs) is a costly endeavour in terms of time\nand computational resources. The large amount of training data used during the\nunsupervised pre-training phase makes it difficult to verify all data and,\nunfortunately, undesirable data may be ingested during training. Re-training\nfrom scratch is impractical and has led to the creation of the 'unlearning'\ndiscipline where models are modified to \"unlearn\" undesirable information\nwithout retraining. However, any modification can alter the behaviour of LLMs,\nespecially on key dimensions such as fairness. This is the first work that\nexamines this interplay between unlearning and fairness for LLMs. In\nparticular, we focus on a popular unlearning framework known as SISA [Bourtoule\net al., 2021], which creates an ensemble of models trained on disjoint shards.\nWe evaluate the performance-fairness trade-off for SISA, and empirically\ndemsontrate that SISA can indeed reduce fairness in LLMs. To remedy this, we\npropose post-processing bias mitigation techniques for ensemble models produced\nby SISA. We adapt the post-processing fairness improvement technique from\n[Hardt et al., 2016] to design three methods that can handle model ensembles,\nand prove that one of the methods is an optimal fair predictor for ensemble of\nmodels. Through experimental results, we demonstrate the efficacy of our\npost-processing framework called 'FairSISA'.", + "authors": "Swanand Ravindra Kadhe, Anisa Halimi, Ambrish Rawat, Nathalie Baracaldo", + "published": "2023-12-12", + "updated": "2023-12-12", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.04057v1", + "title": "Unveiling Bias in Fairness Evaluations of Large Language Models: A Critical Literature Review of Music and Movie Recommendation Systems", + "abstract": "The rise of generative artificial intelligence, particularly Large Language\nModels (LLMs), has intensified the imperative to scrutinize fairness alongside\naccuracy. Recent studies have begun to investigate fairness evaluations for\nLLMs within domains such as recommendations. Given that personalization is an\nintrinsic aspect of recommendation systems, its incorporation into fairness\nassessments is paramount. Yet, the degree to which current fairness evaluation\nframeworks account for personalization remains unclear. Our comprehensive\nliterature review aims to fill this gap by examining how existing frameworks\nhandle fairness evaluations of LLMs, with a focus on the integration of\npersonalization factors. Despite an exhaustive collection and analysis of\nrelevant works, we discovered that most evaluations overlook personalization, a\ncritical facet of recommendation systems, thereby inadvertently perpetuating\nunfair practices. Our findings shed light on this oversight and underscore the\nurgent need for more nuanced fairness evaluations that acknowledge\npersonalization. Such improvements are vital for fostering equitable\ndevelopment within the AI community.", + "authors": "Chandan Kumar Sah, Dr. Lian Xiaoli, Muhammad Mirajul Islam", + "published": "2024-01-08", + "updated": "2024-01-08", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.AI", + "cs.SE" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.02680v1", + "title": "Large Language Models are Geographically Biased", + "abstract": "Large Language Models (LLMs) inherently carry the biases contained in their\ntraining corpora, which can lead to the perpetuation of societal harm. As the\nimpact of these foundation models grows, understanding and evaluating their\nbiases becomes crucial to achieving fairness and accuracy. We propose to study\nwhat LLMs know about the world we live in through the lens of geography. This\napproach is particularly powerful as there is ground truth for the numerous\naspects of human life that are meaningfully projected onto geographic space\nsuch as culture, race, language, politics, and religion. We show various\nproblematic geographic biases, which we define as systemic errors in geospatial\npredictions. Initially, we demonstrate that LLMs are capable of making accurate\nzero-shot geospatial predictions in the form of ratings that show strong\nmonotonic correlation with ground truth (Spearman's $\\rho$ of up to 0.89). We\nthen show that LLMs exhibit common biases across a range of objective and\nsubjective topics. In particular, LLMs are clearly biased against locations\nwith lower socioeconomic conditions (e.g. most of Africa) on a variety of\nsensitive subjective topics such as attractiveness, morality, and intelligence\n(Spearman's $\\rho$ of up to 0.70). Finally, we introduce a bias score to\nquantify this and find that there is significant variation in the magnitude of\nbias across existing LLMs.", + "authors": "Rohin Manvi, Samar Khanna, Marshall Burke, David Lobell, Stefano Ermon", + "published": "2024-02-05", + "updated": "2024-02-05", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.08472v1", + "title": "Selecting Shots for Demographic Fairness in Few-Shot Learning with Large Language Models", + "abstract": "Recently, work in NLP has shifted to few-shot (in-context) learning, with\nlarge language models (LLMs) performing well across a range of tasks. However,\nwhile fairness evaluations have become a standard for supervised methods,\nlittle is known about the fairness of LLMs as prediction systems. Further,\ncommon standard methods for fairness involve access to models weights or are\napplied during finetuning, which are not applicable in few-shot learning. Do\nLLMs exhibit prediction biases when used for standard NLP tasks? In this work,\nwe explore the effect of shots, which directly affect the performance of\nmodels, on the fairness of LLMs as NLP classification systems. We consider how\ndifferent shot selection strategies, both existing and new demographically\nsensitive methods, affect model fairness across three standard fairness\ndatasets. We discuss how future work can include LLM fairness evaluations.", + "authors": "Carlos Aguirre, Kuleen Sasse, Isabel Cachola, Mark Dredze", + "published": "2023-11-14", + "updated": "2023-11-14", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.08517v1", + "title": "Online Safety Analysis for LLMs: a Benchmark, an Assessment, and a Path Forward", + "abstract": "While Large Language Models (LLMs) have seen widespread applications across\nnumerous fields, their limited interpretability poses concerns regarding their\nsafe operations from multiple aspects, e.g., truthfulness, robustness, and\nfairness. Recent research has started developing quality assurance methods for\nLLMs, introducing techniques such as offline detector-based or uncertainty\nestimation methods. However, these approaches predominantly concentrate on\npost-generation analysis, leaving the online safety analysis for LLMs during\nthe generation phase an unexplored area. To bridge this gap, we conduct in this\nwork a comprehensive evaluation of the effectiveness of existing online safety\nanalysis methods on LLMs. We begin with a pilot study that validates the\nfeasibility of detecting unsafe outputs in the early generation process.\nFollowing this, we establish the first publicly available benchmark of online\nsafety analysis for LLMs, including a broad spectrum of methods, models, tasks,\ndatasets, and evaluation metrics. Utilizing this benchmark, we extensively\nanalyze the performance of state-of-the-art online safety analysis methods on\nboth open-source and closed-source LLMs. This analysis reveals the strengths\nand weaknesses of individual methods and offers valuable insights into\nselecting the most appropriate method based on specific application scenarios\nand task requirements. Furthermore, we also explore the potential of using\nhybridization methods, i.e., combining multiple methods to derive a collective\nsafety conclusion, to enhance the efficacy of online safety analysis for LLMs.\nOur findings indicate a promising direction for the development of innovative\nand trustworthy quality assurance methodologies for LLMs, facilitating their\nreliable deployments across diverse domains.", + "authors": "Xuan Xie, Jiayang Song, Zhehua Zhou, Yuheng Huang, Da Song, Lei Ma", + "published": "2024-04-12", + "updated": "2024-04-12", + "primary_cat": "cs.SE", + "cats": [ + "cs.SE", + "cs.AI", + "cs.CL", + "cs.CR", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.05374v2", + "title": "Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment", + "abstract": "Ensuring alignment, which refers to making models behave in accordance with\nhuman intentions [1,2], has become a critical task before deploying large\nlanguage models (LLMs) in real-world applications. For instance, OpenAI devoted\nsix months to iteratively aligning GPT-4 before its release [3]. However, a\nmajor challenge faced by practitioners is the lack of clear guidance on\nevaluating whether LLM outputs align with social norms, values, and\nregulations. This obstacle hinders systematic iteration and deployment of LLMs.\nTo address this issue, this paper presents a comprehensive survey of key\ndimensions that are crucial to consider when assessing LLM trustworthiness. The\nsurvey covers seven major categories of LLM trustworthiness: reliability,\nsafety, fairness, resistance to misuse, explainability and reasoning, adherence\nto social norms, and robustness. Each major category is further divided into\nseveral sub-categories, resulting in a total of 29 sub-categories.\nAdditionally, a subset of 8 sub-categories is selected for further\ninvestigation, where corresponding measurement studies are designed and\nconducted on several widely-used LLMs. The measurement results indicate that,\nin general, more aligned models tend to perform better in terms of overall\ntrustworthiness. However, the effectiveness of alignment varies across the\ndifferent trustworthiness categories considered. This highlights the importance\nof conducting more fine-grained analyses, testing, and making continuous\nimprovements on LLM alignment. By shedding light on these key dimensions of LLM\ntrustworthiness, this paper aims to provide valuable insights and guidance to\npractitioners in the field. Understanding and addressing these concerns will be\ncrucial in achieving reliable and ethically sound deployment of LLMs in various\napplications.", + "authors": "Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov, Muhammad Faaiz Taufiq, Hang Li", + "published": "2023-08-10", + "updated": "2024-03-21", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.11406v2", + "title": "Don't Go To Extremes: Revealing the Excessive Sensitivity and Calibration Limitations of LLMs in Implicit Hate Speech Detection", + "abstract": "The fairness and trustworthiness of Large Language Models (LLMs) are\nreceiving increasing attention. Implicit hate speech, which employs indirect\nlanguage to convey hateful intentions, occupies a significant portion of\npractice. However, the extent to which LLMs effectively address this issue\nremains insufficiently examined. This paper delves into the capability of LLMs\nto detect implicit hate speech (Classification Task) and express confidence in\ntheir responses (Calibration Task). Our evaluation meticulously considers\nvarious prompt patterns and mainstream uncertainty estimation methods. Our\nfindings highlight that LLMs exhibit two extremes: (1) LLMs display excessive\nsensitivity towards groups or topics that may cause fairness issues, resulting\nin misclassifying benign statements as hate speech. (2) LLMs' confidence scores\nfor each method excessively concentrate on a fixed range, remaining unchanged\nregardless of the dataset's complexity. Consequently, the calibration\nperformance is heavily reliant on primary classification accuracy. These\ndiscoveries unveil new limitations of LLMs, underscoring the need for caution\nwhen optimizing models to ensure they do not veer towards extremes. This serves\nas a reminder to carefully consider sensitivity and confidence in the pursuit\nof model fairness.", + "authors": "Min Zhang, Jianfeng He, Taoran Ji, Chang-Tien Lu", + "published": "2024-02-18", + "updated": "2024-02-26", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.15491v1", + "title": "Open Source Conversational LLMs do not know most Spanish words", + "abstract": "The growing interest in Large Language Models (LLMs) and in particular in\nconversational models with which users can interact has led to the development\nof a large number of open-source chat LLMs. These models are evaluated on a\nwide range of benchmarks to assess their capabilities in answering questions or\nsolving problems on almost any possible topic or to test their ability to\nreason or interpret texts. Instead, the evaluation of the knowledge that these\nmodels have of the languages has received much less attention. For example, the\nwords that they can recognize and use in different languages. In this paper, we\nevaluate the knowledge that open-source chat LLMs have of Spanish words by\ntesting a sample of words in a reference dictionary. The results show that\nopen-source chat LLMs produce incorrect meanings for an important fraction of\nthe words and are not able to use most of the words correctly to write\nsentences with context. These results show how Spanish is left behind in the\nopen-source LLM race and highlight the need to push for linguistic fairness in\nconversational LLMs ensuring that they provide similar performance across\nlanguages.", + "authors": "Javier Conde, Miguel Gonz\u00e1lez, Nina Melero, Raquel Ferrando, Gonzalo Mart\u00ednez, Elena Merino-G\u00f3mez, Jos\u00e9 Alberto Hern\u00e1ndez, Pedro Reviriego", + "published": "2024-03-21", + "updated": "2024-03-21", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.06500v1", + "title": "MetaAgents: Simulating Interactions of Human Behaviors for LLM-based Task-oriented Coordination via Collaborative Generative Agents", + "abstract": "Significant advancements have occurred in the application of Large Language\nModels (LLMs) for various tasks and social simulations. Despite this, their\ncapacities to coordinate within task-oriented social contexts are\nunder-explored. Such capabilities are crucial if LLMs are to effectively mimic\nhuman-like social behavior and produce meaningful results. To bridge this gap,\nwe introduce collaborative generative agents, endowing LLM-based Agents with\nconsistent behavior patterns and task-solving abilities. We situate these\nagents in a simulated job fair environment as a case study to scrutinize their\ncoordination skills. We propose a novel framework that equips collaborative\ngenerative agents with human-like reasoning abilities and specialized skills.\nOur evaluation demonstrates that these agents show promising performance.\nHowever, we also uncover limitations that hinder their effectiveness in more\ncomplex coordination tasks. Our work provides valuable insights into the role\nand evolution of LLMs in task-oriented social simulations.", + "authors": "Yuan Li, Yixuan Zhang, Lichao Sun", + "published": "2023-10-10", + "updated": "2023-10-10", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.15478v1", + "title": "A Group Fairness Lens for Large Language Models", + "abstract": "The rapid advancement of large language models has revolutionized various\napplications but also raised crucial concerns about their potential to\nperpetuate biases and unfairness when deployed in social media contexts.\nEvaluating LLMs' potential biases and fairness has become crucial, as existing\nmethods rely on limited prompts focusing on just a few groups, lacking a\ncomprehensive categorical perspective. In this paper, we propose evaluating LLM\nbiases from a group fairness lens using a novel hierarchical schema\ncharacterizing diverse social groups. Specifically, we construct a dataset,\nGFair, encapsulating target-attribute combinations across multiple dimensions.\nIn addition, we introduce statement organization, a new open-ended text\ngeneration task, to uncover complex biases in LLMs. Extensive evaluations of\npopular LLMs reveal inherent safety concerns. To mitigate the biases of LLM\nfrom a group fairness perspective, we pioneer a novel chain-of-thought method\nGF-Think to mitigate biases of LLMs from a group fairness perspective.\nExperimental results demonstrate its efficacy in mitigating bias in LLMs to\nachieve fairness.", + "authors": "Guanqun Bi, Lei Shen, Yuqiang Xie, Yanan Cao, Tiangang Zhu, Xiaodong He", + "published": "2023-12-24", + "updated": "2023-12-24", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.08189v1", + "title": "Simulating Human Strategic Behavior: Comparing Single and Multi-agent LLMs", + "abstract": "When creating plans, policies, or applications for people, it is challenging\nfor designers to think through the strategic ways that different people will\nbehave. Recently, Large Language Models (LLMs) have been shown to create\nrealistic simulations of human-like behavior based on personas. We build on\nthis to investigate whether LLMs can simulate human strategic behavior. Human\nstrategies are complex because they take into account social norms in addition\nto aiming to maximize personal gain. The ultimatum game is a classic economics\nexperiment used to understand human strategic behavior in a social setting. It\nshows that people will often choose to \"punish\" other players to enforce social\nnorms rather than to maximize personal profits. We test whether LLMs can\nreplicate this complex behavior in simulations. We compare two architectures:\nsingle- and multi-agent LLMs. We compare their abilities to (1) simulate\nhuman-like actions in the ultimatum game, (2) simulate two player\npersonalities, greedy and fair, and (3) create robust strategies that are\nlogically complete and consistent with personality. Our evaluation shows the\nmulti-agent architecture is much more accurate than single LLMs (88% vs. 50%)\nin simulating human strategy creation and actions for personality pairs. Thus\nthere is potential to use LLMs to simulate human strategic behavior to help\ndesigners, planners, and policymakers perform preliminary exploration of how\npeople behave in systems.", + "authors": "Karthik Sreedhar, Lydia Chilton", + "published": "2024-02-13", + "updated": "2024-02-13", + "primary_cat": "cs.HC", + "cats": [ + "cs.HC" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.08656v1", + "title": "Linear Cross-document Event Coreference Resolution with X-AMR", + "abstract": "Event Coreference Resolution (ECR) as a pairwise mention classification task\nis expensive both for automated systems and manual annotations. The task's\nquadratic difficulty is exacerbated when using Large Language Models (LLMs),\nmaking prompt engineering for ECR prohibitively costly. In this work, we\npropose a graphical representation of events, X-AMR, anchored around individual\nmentions using a \\textbf{cross}-document version of \\textbf{A}bstract\n\\textbf{M}eaning \\textbf{R}epresentation. We then linearize the ECR with a\nnovel multi-hop coreference algorithm over the event graphs. The event graphs\nsimplify ECR, making it a) LLM cost-effective, b) compositional and\ninterpretable, and c) easily annotated. For a fair assessment, we first enrich\nan existing ECR benchmark dataset with these event graphs using an\nannotator-friendly tool we introduce. Then, we employ GPT-4, the newest LLM by\nOpenAI, for these annotations. Finally, using the ECR algorithm, we assess\nGPT-4 against humans and analyze its limitations. Through this research, we aim\nto advance the state-of-the-art for efficient ECR and shed light on the\npotential shortcomings of current LLMs at this task. Code and annotations:\n\\url{https://github.com/ahmeshaf/gpt_coref}", + "authors": "Shafiuddin Rehan Ahmed, George Arthur Baker, Evi Judge, Michael Regan, Kristin Wright-Bettner, Martha Palmer, James H. Martin", + "published": "2024-03-25", + "updated": "2024-03-25", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.14769v3", + "title": "Large Language Model (LLM) Bias Index -- LLMBI", + "abstract": "The Large Language Model Bias Index (LLMBI) is a pioneering approach designed\nto quantify and address biases inherent in large language models (LLMs), such\nas GPT-4. We recognise the increasing prevalence and impact of LLMs across\ndiverse sectors. This research introduces a novel metric, LLMBI, to\nsystematically measure and mitigate biases potentially skewing model responses.\nWe formulated LLMBI using a composite scoring system incorporating multiple\ndimensions of bias, including but not limited to age, gender, and racial\nbiases. To operationalise this metric, we engaged in a multi-step process\ninvolving collecting and annotating LLM responses, applying sophisticated\nNatural Language Processing (NLP) techniques for bias detection, and computing\nthe LLMBI score through a specially crafted mathematical formula. The formula\nintegrates weighted averages of various bias dimensions, a penalty for dataset\ndiversity deficiencies, and a correction for sentiment biases. Our empirical\nanalysis, conducted using responses from OpenAI's API, employs advanced\nsentiment analysis as a representative method for bias detection. The research\nreveals LLMs, whilst demonstrating impressive capabilities in text generation,\nexhibit varying degrees of bias across different dimensions. LLMBI provides a\nquantifiable measure to compare biases across models and over time, offering a\nvital tool for systems engineers, researchers and regulators in enhancing the\nfairness and reliability of LLMs. It highlights the potential of LLMs in\nmimicking unbiased human-like responses. Additionally, it underscores the\nnecessity of continuously monitoring and recalibrating such models to align\nwith evolving societal norms and ethical standards.", + "authors": "Abiodun Finbarrs Oketunji, Muhammad Anas, Deepthi Saina", + "published": "2023-12-22", + "updated": "2023-12-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG", + "I.2.7" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.13925v1", + "title": "MARIO Eval: Evaluate Your Math LLM with your Math LLM--A mathematical dataset evaluation toolkit", + "abstract": "Large language models (LLMs) have been explored in a variety of reasoning\ntasks including solving of mathematical problems. Each math dataset typically\nincludes its own specially designed evaluation script, which, while suitable\nfor its intended use, lacks generalizability across different datasets.\nConsequently, updates and adaptations to these evaluation tools tend to occur\nwithout being systematically reported, leading to inconsistencies and obstacles\nto fair comparison across studies. To bridge this gap, we introduce a\ncomprehensive mathematical evaluation toolkit that not only utilizes a python\ncomputer algebra system (CAS) for its numerical accuracy, but also integrates\nan optional LLM, known for its considerable natural language processing\ncapabilities. To validate the effectiveness of our toolkit, we manually\nannotated two distinct datasets. Our experiments demonstrate that the toolkit\nyields more robust evaluation results compared to prior works, even without an\nLLM. Furthermore, when an LLM is incorporated, there is a notable enhancement.\nThe code for our method will be made available at\n\\url{https://github.com/MARIO-Math-Reasoning/math_evaluation}.", + "authors": "Boning Zhang, Chengxi Li, Kai Fan", + "published": "2024-04-22", + "updated": "2024-04-22", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.05694v1", + "title": "A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics", + "abstract": "The utilization of large language models (LLMs) in the Healthcare domain has\ngenerated both excitement and concern due to their ability to effectively\nrespond to freetext queries with certain professional knowledge. This survey\noutlines the capabilities of the currently developed LLMs for Healthcare and\nexplicates their development process, with the aim of providing an overview of\nthe development roadmap from traditional Pretrained Language Models (PLMs) to\nLLMs. Specifically, we first explore the potential of LLMs to enhance the\nefficiency and effectiveness of various Healthcare applications highlighting\nboth the strengths and limitations. Secondly, we conduct a comparison between\nthe previous PLMs and the latest LLMs, as well as comparing various LLMs with\neach other. Then we summarize related Healthcare training data, training\nmethods, optimization strategies, and usage. Finally, the unique concerns\nassociated with deploying LLMs in Healthcare settings are investigated,\nparticularly regarding fairness, accountability, transparency and ethics. Our\nsurvey provide a comprehensive investigation from perspectives of both computer\nscience and Healthcare specialty. Besides the discussion about Healthcare\nconcerns, we supports the computer science community by compiling a collection\nof open source resources, such as accessible datasets, the latest\nmethodologies, code implementations, and evaluation benchmarks in the Github.\nSummarily, we contend that a significant paradigm shift is underway,\ntransitioning from PLMs to LLMs. This shift encompasses a move from\ndiscriminative AI approaches to generative AI approaches, as well as a shift\nfrom model-centered methodologies to datacentered methodologies.", + "authors": "Kai He, Rui Mao, Qika Lin, Yucheng Ruan, Xiang Lan, Mengling Feng, Erik Cambria", + "published": "2023-10-09", + "updated": "2023-10-09", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.08780v1", + "title": "\"Im not Racist but...\": Discovering Bias in the Internal Knowledge of Large Language Models", + "abstract": "Large language models (LLMs) have garnered significant attention for their\nremarkable performance in a continuously expanding set of natural language\nprocessing tasks. However, these models have been shown to harbor inherent\nsocietal biases, or stereotypes, which can adversely affect their performance\nin their many downstream applications. In this paper, we introduce a novel,\npurely prompt-based approach to uncover hidden stereotypes within any arbitrary\nLLM. Our approach dynamically generates a knowledge representation of internal\nstereotypes, enabling the identification of biases encoded within the LLM's\ninternal knowledge. By illuminating the biases present in LLMs and offering a\nsystematic methodology for their analysis, our work contributes to advancing\ntransparency and promoting fairness in natural language processing systems.", + "authors": "Abel Salinas, Louis Penafiel, Robert McCormack, Fred Morstatter", + "published": "2023-10-13", + "updated": "2023-10-13", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.13343v1", + "title": "Challenges and Contributing Factors in the Utilization of Large Language Models (LLMs)", + "abstract": "With the development of large language models (LLMs) like the GPT series,\ntheir widespread use across various application scenarios presents a myriad of\nchallenges. This review initially explores the issue of domain specificity,\nwhere LLMs may struggle to provide precise answers to specialized questions\nwithin niche fields. The problem of knowledge forgetting arises as these LLMs\nmight find it hard to balance old and new information. The knowledge repetition\nphenomenon reveals that sometimes LLMs might deliver overly mechanized\nresponses, lacking depth and originality. Furthermore, knowledge illusion\ndescribes situations where LLMs might provide answers that seem insightful but\nare actually superficial, while knowledge toxicity focuses on harmful or biased\ninformation outputs. These challenges underscore problems in the training data\nand algorithmic design of LLMs. To address these issues, it's suggested to\ndiversify training data, fine-tune models, enhance transparency and\ninterpretability, and incorporate ethics and fairness training. Future\ntechnological trends might lean towards iterative methodologies, multimodal\nlearning, model personalization and customization, and real-time learning and\nfeedback mechanisms. In conclusion, future LLMs should prioritize fairness,\ntransparency, and ethics, ensuring they uphold high moral and ethical standards\nwhen serving humanity.", + "authors": "Xiaoliang Chen, Liangbin Li, Le Chang, Yunhe Huang, Yuxuan Zhao, Yuxiao Zhang, Dinuo Li", + "published": "2023-10-20", + "updated": "2023-10-20", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.03192v1", + "title": "Do Large Language Models Rank Fairly? An Empirical Study on the Fairness of LLMs as Rankers", + "abstract": "The integration of Large Language Models (LLMs) in information retrieval has\nraised a critical reevaluation of fairness in the text-ranking models. LLMs,\nsuch as GPT models and Llama2, have shown effectiveness in natural language\nunderstanding tasks, and prior works (e.g., RankGPT) have also demonstrated\nthat the LLMs exhibit better performance than the traditional ranking models in\nthe ranking task. However, their fairness remains largely unexplored. This\npaper presents an empirical study evaluating these LLMs using the TREC Fair\nRanking dataset, focusing on the representation of binary protected attributes\nsuch as gender and geographic location, which are historically underrepresented\nin search outcomes. Our analysis delves into how these LLMs handle queries and\ndocuments related to these attributes, aiming to uncover biases in their\nranking algorithms. We assess fairness from both user and content perspectives,\ncontributing an empirical benchmark for evaluating LLMs as the fair ranker.", + "authors": "Yuan Wang, Xuyang Wu, Hsin-Tai Wu, Zhiqiang Tao, Yi Fang", + "published": "2024-04-04", + "updated": "2024-04-04", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.00884v2", + "title": "Text classification of column headers with a controlled vocabulary: leveraging LLMs for metadata enrichment", + "abstract": "Traditional dataset retrieval systems index on metadata information rather\nthan on the data values. Thus relying primarily on manual annotations and\nhigh-quality metadata, processes known to be labour-intensive and challenging\nto automate. We propose a method to support metadata enrichment with topic\nannotations of column headers using three Large Language Models (LLMs):\nChatGPT-3.5, GoogleBard and GoogleGemini. We investigate the LLMs ability to\nclassify column headers based on domain-specific topics from a controlled\nvocabulary. We evaluate our approach by assessing the internal consistency of\nthe LLMs, the inter-machine alignment, and the human-machine agreement for the\ntopic classification task. Additionally, we investigate the impact of\ncontextual information (i.e. dataset description) on the classification\noutcomes. Our results suggest that ChatGPT and GoogleGemini outperform\nGoogleBard for internal consistency as well as LLM-human-alignment.\nInterestingly, we found that context had no impact on the LLMs performances.\nThis work proposes a novel approach that leverages LLMs for text classification\nusing a controlled topic vocabulary, which has the potential to facilitate\nautomated metadata enrichment, thereby enhancing dataset retrieval and the\nFindability, Accessibility, Interoperability and Reusability (FAIR) of research\ndata on the Web.", + "authors": "Margherita Martorana, Tobias Kuhn, Lise Stork, Jacco van Ossenbruggen", + "published": "2024-03-01", + "updated": "2024-03-05", + "primary_cat": "cs.DB", + "cats": [ + "cs.DB", + "cs.AI", + "cs.IR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.18276v1", + "title": "Bias Neutralization Framework: Measuring Fairness in Large Language Models with Bias Intelligence Quotient (BiQ)", + "abstract": "The burgeoning influence of Large Language Models (LLMs) in shaping public\ndiscourse and decision-making underscores the imperative to address inherent\nbiases within these AI systems. In the wake of AI's expansive integration\nacross sectors, addressing racial bias in LLMs has never been more critical.\nThis paper introduces a novel framework called Comprehensive Bias\nNeutralization Framework (CBNF) which embodies an innovative approach to\nquantifying and mitigating biases within LLMs. Our framework combines the Large\nLanguage Model Bias Index (LLMBI) [Oketunji, A., Anas, M., Saina, D., (2023)]\nand Bias removaL with No Demographics (BLIND) [Orgad, H., Belinkov, Y. (2023)]\nmethodologies to create a new metric called Bias Intelligence Quotient\n(BiQ)which detects, measures, and mitigates racial bias in LLMs without\nreliance on demographic annotations.\n By introducing a new metric called BiQ that enhances LLMBI with additional\nfairness metrics, CBNF offers a multi-dimensional metric for bias assessment,\nunderscoring the necessity of a nuanced approach to fairness in AI [Mehrabi et\nal., 2021]. This paper presents a detailed analysis of Latimer AI (a language\nmodel incrementally trained on black history and culture) in comparison to\nChatGPT 3.5, illustrating Latimer AI's efficacy in detecting racial, cultural,\nand gender biases through targeted training and refined bias mitigation\nstrategies [Latimer & Bender, 2023].", + "authors": "Malur Narayan, John Pasmore, Elton Sampaio, Vijay Raghavan, Gabriella Waters", + "published": "2024-04-28", + "updated": "2024-04-28", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "D.1; I.2" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.02049v1", + "title": "Post Turing: Mapping the landscape of LLM Evaluation", + "abstract": "In the rapidly evolving landscape of Large Language Models (LLMs),\nintroduction of well-defined and standardized evaluation methodologies remains\na crucial challenge. This paper traces the historical trajectory of LLM\nevaluations, from the foundational questions posed by Alan Turing to the modern\nera of AI research. We categorize the evolution of LLMs into distinct periods,\neach characterized by its unique benchmarks and evaluation criteria. As LLMs\nincreasingly mimic human-like behaviors, traditional evaluation proxies, such\nas the Turing test, have become less reliable. We emphasize the pressing need\nfor a unified evaluation system, given the broader societal implications of\nthese models. Through an analysis of common evaluation methodologies, we\nadvocate for a qualitative shift in assessment approaches, underscoring the\nimportance of standardization and objective criteria. This work serves as a\ncall for the AI community to collaboratively address the challenges of LLM\nevaluation, ensuring their reliability, fairness, and societal benefit.", + "authors": "Alexey Tikhonov, Ivan P. Yamshchikov", + "published": "2023-11-03", + "updated": "2023-11-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "68T50", + "I.2.7" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.15198v2", + "title": "Do LLM Agents Exhibit Social Behavior?", + "abstract": "The advances of Large Language Models (LLMs) are expanding their utility in\nboth academic research and practical applications. Recent social science\nresearch has explored the use of these ``black-box'' LLM agents for simulating\ncomplex social systems and potentially substituting human subjects in\nexperiments. Our study delves into this emerging domain, investigating the\nextent to which LLMs exhibit key social interaction principles, such as social\nlearning, social preference, and cooperative behavior (indirect reciprocity),\nin their interactions with humans and other agents. We develop a framework for\nour study, wherein classical laboratory experiments involving human subjects\nare adapted to use LLM agents. This approach involves step-by-step reasoning\nthat mirrors human cognitive processes and zero-shot learning to assess the\ninnate preferences of LLMs. Our analysis of LLM agents' behavior includes both\nthe primary effects and an in-depth examination of the underlying mechanisms.\nFocusing on GPT-4, our analyses suggest that LLM agents appear to exhibit a\nrange of human-like social behaviors such as distributional and reciprocity\npreferences, responsiveness to group identity cues, engagement in indirect\nreciprocity, and social learning capabilities. However, our analysis also\nreveals notable differences: LLMs demonstrate a pronounced fairness preference,\nweaker positive reciprocity, and a more calculating approach in social learning\ncompared to humans. These insights indicate that while LLMs hold great promise\nfor applications in social science research, such as in laboratory experiments\nand agent-based modeling, the subtle behavioral differences between LLM agents\nand humans warrant further investigation. Careful examination and development\nof protocols in evaluating the social behaviors of LLMs are necessary before\ndirectly applying these models to emulate human behavior.", + "authors": "Yan Leng, Yuan Yuan", + "published": "2023-12-23", + "updated": "2024-02-22", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.SI", + "econ.GN", + "q-fin.EC" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.14345v2", + "title": "Bias Testing and Mitigation in LLM-based Code Generation", + "abstract": "Utilizing state-of-the-art Large Language Models (LLMs), automatic code\ngeneration models play a pivotal role in enhancing the productivity of software\ndevelopment procedures. As the adoption of LLMs becomes more widespread in\nsoftware coding ecosystems, a pressing issue has emerged: does the generated\ncode contain social bias and unfairness, such as those related to age, gender,\nand race? This issue concerns the integrity, fairness, and ethical foundation\nof software applications that depend on the code generated by these models, yet\nis under-explored in the literature. This paper presents a novel bias testing\nframework that is specifically designed for code generation tasks. Based on\nthis framework, we conduct an extensive evaluation of the bias in code\ngenerated by five state-of-the-art LLMs. Our findings reveal that 20.29% to\n44.93% code functions generated by the models under study are biased when\nhandling bias sensitive tasks (i.e., tasks that involve sensitive attributes\nsuch as age and gender). This indicates that the existing LLMs can be unfair in\ncode generation, posing risks of unintended and harmful software behaviors. To\nmitigate bias for code generation models, we evaluate five bias mitigation\nprompt strategies, i.e., utilizing bias testing results to refine the code\n(zero-shot), one-, few-shot, and two Chain-of-Thought (CoT) prompts. Our\nevaluation results illustrate that these strategies are all effective in\nmitigating bias. Overall, one-shot and few-shot learning are the two most\neffective. For GPT-4, 80% to 90% code bias can be removed with one-shot\nlearning.", + "authors": "Dong Huang, Qingwen Bu, Jie Zhang, Xiaofei Xie, Junjie Chen, Heming Cui", + "published": "2023-09-03", + "updated": "2024-01-09", + "primary_cat": "cs.SE", + "cats": [ + "cs.SE", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.10397v2", + "title": "FairMonitor: A Four-Stage Automatic Framework for Detecting Stereotypes and Biases in Large Language Models", + "abstract": "Detecting stereotypes and biases in Large Language Models (LLMs) can enhance\nfairness and reduce adverse impacts on individuals or groups when these LLMs\nare applied. However, the majority of existing methods focus on measuring the\nmodel's preference towards sentences containing biases and stereotypes within\ndatasets, which lacks interpretability and cannot detect implicit biases and\nstereotypes in the real world. To address this gap, this paper introduces a\nfour-stage framework to directly evaluate stereotypes and biases in the\ngenerated content of LLMs, including direct inquiry testing, serial or adapted\nstory testing, implicit association testing, and unknown situation testing.\nAdditionally, the paper proposes multi-dimensional evaluation metrics and\nexplainable zero-shot prompts for automated evaluation. Using the education\nsector as a case study, we constructed the Edu-FairMonitor based on the\nfour-stage framework, which encompasses 12,632 open-ended questions covering\nnine sensitive factors and 26 educational scenarios. Experimental results\nreveal varying degrees of stereotypes and biases in five LLMs evaluated on\nEdu-FairMonitor. Moreover, the results of our proposed automated evaluation\nmethod have shown a high correlation with human annotations.", + "authors": "Yanhong Bai, Jiabao Zhao, Jinxin Shi, Tingjiang Wei, Xingjiao Wu, Liang He", + "published": "2023-08-21", + "updated": "2023-10-27", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.00306v1", + "title": "Probing Explicit and Implicit Gender Bias through LLM Conditional Text Generation", + "abstract": "Large Language Models (LLMs) can generate biased and toxic responses. Yet\nmost prior work on LLM gender bias evaluation requires predefined\ngender-related phrases or gender stereotypes, which are challenging to be\ncomprehensively collected and are limited to explicit bias evaluation. In\naddition, we believe that instances devoid of gender-related language or\nexplicit stereotypes in inputs can still induce gender bias in LLMs. Thus, in\nthis work, we propose a conditional text generation mechanism without the need\nfor predefined gender phrases and stereotypes. This approach employs three\ntypes of inputs generated through three distinct strategies to probe LLMs,\naiming to show evidence of explicit and implicit gender biases in LLMs. We also\nutilize explicit and implicit evaluation metrics to evaluate gender bias in\nLLMs under different strategies. Our experiments demonstrate that an increased\nmodel size does not consistently lead to enhanced fairness and all tested LLMs\nexhibit explicit and/or implicit gender bias, even when explicit gender\nstereotypes are absent in the inputs.", + "authors": "Xiangjue Dong, Yibo Wang, Philip S. Yu, James Caverlee", + "published": "2023-11-01", + "updated": "2023-11-01", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.10567v3", + "title": "InSaAF: Incorporating Safety through Accuracy and Fairness | Are LLMs ready for the Indian Legal Domain?", + "abstract": "Recent advancements in language technology and Artificial Intelligence have\nresulted in numerous Language Models being proposed to perform various tasks in\nthe legal domain ranging from predicting judgments to generating summaries.\nDespite their immense potential, these models have been proven to learn and\nexhibit societal biases and make unfair predictions. In this study, we explore\nthe ability of Large Language Models (LLMs) to perform legal tasks in the\nIndian landscape when social factors are involved. We present a novel metric,\n$\\beta$-weighted $\\textit{Legal Safety Score ($LSS_{\\beta}$)}$, which\nencapsulates both the fairness and accuracy aspects of the LLM. We assess LLMs'\nsafety by considering its performance in the $\\textit{Binary Statutory\nReasoning}$ task and its fairness exhibition with respect to various axes of\ndisparities in the Indian society. Task performance and fairness scores of\nLLaMA and LLaMA--2 models indicate that the proposed $LSS_{\\beta}$ metric can\neffectively determine the readiness of a model for safe usage in the legal\nsector. We also propose finetuning pipelines, utilising specialised legal\ndatasets, as a potential method to mitigate bias and improve model safety. The\nfinetuning procedures on LLaMA and LLaMA--2 models increase the $LSS_{\\beta}$,\nimproving their usability in the Indian legal domain. Our code is publicly\nreleased.", + "authors": "Yogesh Tripathi, Raghav Donakanti, Sahil Girhepuje, Ishan Kavathekar, Bhaskara Hanuma Vedula, Gokul S Krishnan, Shreya Goyal, Anmol Goel, Balaraman Ravindran, Ponnurangam Kumaraguru", + "published": "2024-02-16", + "updated": "2024-02-21", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.12736v1", + "title": "Large Language Model Supply Chain: A Research Agenda", + "abstract": "The rapid advancements in pre-trained Large Language Models (LLMs) and Large\nMultimodal Models (LMMs) have ushered in a new era of intelligent applications,\ntransforming fields ranging from natural language processing to content\ngeneration. The LLM supply chain represents a crucial aspect of the\ncontemporary artificial intelligence landscape. It encompasses the entire\nlifecycle of pre-trained models, from its initial development and training to\nits final deployment and application in various domains. This paper presents a\ncomprehensive overview of the LLM supply chain, highlighting its three core\nelements: 1) the model infrastructure, encompassing datasets and toolchain for\ntraining, optimization, and deployment; 2) the model lifecycle, covering\ntraining, testing, releasing, and ongoing maintenance; and 3) the downstream\napplication ecosystem, enabling the integration of pre-trained models into a\nwide range of intelligent applications. However, this rapidly evolving field\nfaces numerous challenges across these key components, including data privacy\nand security, model interpretability and fairness, infrastructure scalability,\nand regulatory compliance. Addressing these challenges is essential for\nharnessing the full potential of LLMs and ensuring their ethical and\nresponsible use. This paper provides a future research agenda for the LLM\nsupply chain, aiming at driving the continued advancement and responsible\ndeployment of these transformative LLMs.", + "authors": "Shenao Wang, Yanjie Zhao, Xinyi Hou, Haoyu Wang", + "published": "2024-04-19", + "updated": "2024-04-19", + "primary_cat": "cs.SE", + "cats": [ + "cs.SE" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2307.03838v2", + "title": "RADAR: Robust AI-Text Detection via Adversarial Learning", + "abstract": "Recent advances in large language models (LLMs) and the intensifying\npopularity of ChatGPT-like applications have blurred the boundary of\nhigh-quality text generation between humans and machines. However, in addition\nto the anticipated revolutionary changes to our technology and society, the\ndifficulty of distinguishing LLM-generated texts (AI-text) from human-generated\ntexts poses new challenges of misuse and fairness, such as fake content\ngeneration, plagiarism, and false accusations of innocent writers. While\nexisting works show that current AI-text detectors are not robust to LLM-based\nparaphrasing, this paper aims to bridge this gap by proposing a new framework\ncalled RADAR, which jointly trains a robust AI-text detector via adversarial\nlearning. RADAR is based on adversarial training of a paraphraser and a\ndetector. The paraphraser's goal is to generate realistic content to evade\nAI-text detection. RADAR uses the feedback from the detector to update the\nparaphraser, and vice versa. Evaluated with 8 different LLMs (Pythia, Dolly\n2.0, Palmyra, Camel, GPT-J, Dolly 1.0, LLaMA, and Vicuna) across 4 datasets,\nexperimental results show that RADAR significantly outperforms existing AI-text\ndetection methods, especially when paraphrasing is in place. We also identify\nthe strong transferability of RADAR from instruction-tuned LLMs to other LLMs,\nand evaluate the improved capability of RADAR via GPT-3.5-Turbo.", + "authors": "Xiaomeng Hu, Pin-Yu Chen, Tsung-Yi Ho", + "published": "2023-07-07", + "updated": "2023-10-24", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.09219v5", + "title": "\"Kelly is a Warm Person, Joseph is a Role Model\": Gender Biases in LLM-Generated Reference Letters", + "abstract": "Large Language Models (LLMs) have recently emerged as an effective tool to\nassist individuals in writing various types of content, including professional\ndocuments such as recommendation letters. Though bringing convenience, this\napplication also introduces unprecedented fairness concerns. Model-generated\nreference letters might be directly used by users in professional scenarios. If\nunderlying biases exist in these model-constructed letters, using them without\nscrutinization could lead to direct societal harms, such as sabotaging\napplication success rates for female applicants. In light of this pressing\nissue, it is imminent and necessary to comprehensively study fairness issues\nand associated harms in this real-world use case. In this paper, we critically\nexamine gender biases in LLM-generated reference letters. Drawing inspiration\nfrom social science findings, we design evaluation methods to manifest biases\nthrough 2 dimensions: (1) biases in language style and (2) biases in lexical\ncontent. We further investigate the extent of bias propagation by analyzing the\nhallucination bias of models, a term that we define to be bias exacerbation in\nmodel-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs-\nChatGPT and Alpaca, we reveal significant gender biases in LLM-generated\nrecommendation letters. Our findings not only warn against using LLMs for this\napplication without scrutinization, but also illuminate the importance of\nthoroughly studying hidden biases and harms in LLM-generated professional\ndocuments.", + "authors": "Yixin Wan, George Pu, Jiao Sun, Aparna Garimella, Kai-Wei Chang, Nanyun Peng", + "published": "2023-10-13", + "updated": "2023-12-01", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.08495v2", + "title": "Large Language Models Portray Socially Subordinate Groups as More Homogeneous, Consistent with a Bias Observed in Humans", + "abstract": "Large language models (LLMs) are becoming pervasive in everyday life, yet\ntheir propensity to reproduce biases inherited from training data remains a\npressing concern. Prior investigations into bias in LLMs have focused on the\nassociation of social groups with stereotypical attributes. However, this is\nonly one form of human bias such systems may reproduce. We investigate a new\nform of bias in LLMs that resembles a social psychological phenomenon where\nsocially subordinate groups are perceived as more homogeneous than socially\ndominant groups. We had ChatGPT, a state-of-the-art LLM, generate texts about\nintersectional group identities and compared those texts on measures of\nhomogeneity. We consistently found that ChatGPT portrayed African, Asian, and\nHispanic Americans as more homogeneous than White Americans, indicating that\nthe model described racial minority groups with a narrower range of human\nexperience. ChatGPT also portrayed women as more homogeneous than men, but\nthese differences were small. Finally, we found that the effect of gender\ndiffered across racial/ethnic groups such that the effect of gender was\nconsistent within African and Hispanic Americans but not within Asian and White\nAmericans. We argue that the tendency of LLMs to describe groups as less\ndiverse risks perpetuating stereotypes and discriminatory behavior.", + "authors": "Messi H. J. Lee, Jacob M. Montgomery, Calvin K. Lai", + "published": "2024-01-16", + "updated": "2024-04-26", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.06003v1", + "title": "FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models", + "abstract": "The rapid development of large language model (LLM) evaluation methodologies\nand datasets has led to a profound challenge: integrating state-of-the-art\nevaluation techniques cost-effectively while ensuring reliability,\nreproducibility, and efficiency. Currently, there is a notable absence of a\nunified and adaptable framework that seamlessly integrates various evaluation\napproaches. Moreover, the reliability of evaluation findings is often\nquestionable due to potential data contamination, with the evaluation\nefficiency commonly overlooked when facing the substantial costs associated\nwith LLM inference. In response to these challenges, we introduce FreeEval, a\nmodular and scalable framework crafted to enable trustworthy and efficient\nautomatic evaluations of LLMs. Firstly, FreeEval's unified abstractions\nsimplify the integration and improve the transparency of diverse evaluation\nmethodologies, encompassing dynamic evaluation that demand sophisticated LLM\ninteractions. Secondly, the framework integrates meta-evaluation techniques\nlike human evaluation and data contamination detection, which, along with\ndynamic evaluation modules in the platform, enhance the fairness of the\nevaluation outcomes. Lastly, FreeEval is designed with a high-performance\ninfrastructure, including distributed computation and caching strategies,\nenabling extensive evaluations across multi-node, multi-GPU clusters for\nopen-source and proprietary LLMs.", + "authors": "Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Zhengran Zeng, Wei Ye, Jindong Wang, Yue Zhang, Shikun Zhang", + "published": "2024-04-09", + "updated": "2024-04-09", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.15585v1", + "title": "Evaluating Gender Bias in Large Language Models via Chain-of-Thought Prompting", + "abstract": "There exist both scalable tasks, like reading comprehension and\nfact-checking, where model performance improves with model size, and unscalable\ntasks, like arithmetic reasoning and symbolic reasoning, where model\nperformance does not necessarily improve with model size. Large language models\n(LLMs) equipped with Chain-of-Thought (CoT) prompting are able to make accurate\nincremental predictions even on unscalable tasks. Unfortunately, despite their\nexceptional reasoning abilities, LLMs tend to internalize and reproduce\ndiscriminatory societal biases. Whether CoT can provide discriminatory or\negalitarian rationalizations for the implicit information in unscalable tasks\nremains an open question.\n In this study, we examine the impact of LLMs' step-by-step predictions on\ngender bias in unscalable tasks. For this purpose, we construct a benchmark for\nan unscalable task where the LLM is given a list of words comprising feminine,\nmasculine, and gendered occupational words, and is required to count the number\nof feminine and masculine words. In our CoT prompts, we require the LLM to\nexplicitly indicate whether each word in the word list is a feminine or\nmasculine before making the final predictions. With counting and handling the\nmeaning of words, this benchmark has characteristics of both arithmetic\nreasoning and symbolic reasoning. Experimental results in English show that\nwithout step-by-step prediction, most LLMs make socially biased predictions,\ndespite the task being as simple as counting words. Interestingly, CoT\nprompting reduces this unconscious social bias in LLMs and encourages fair\npredictions.", + "authors": "Masahiro Kaneko, Danushka Bollegala, Naoaki Okazaki, Timothy Baldwin", + "published": "2024-01-28", + "updated": "2024-01-28", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.14607v2", + "title": "Confronting LLMs with Traditional ML: Rethinking the Fairness of Large Language Models in Tabular Classifications", + "abstract": "Recent literature has suggested the potential of using large language models\n(LLMs) to make classifications for tabular tasks. However, LLMs have been shown\nto exhibit harmful social biases that reflect the stereotypes and inequalities\npresent in society. To this end, as well as the widespread use of tabular data\nin many high-stake applications, it is important to explore the following\nquestions: what sources of information do LLMs draw upon when making\nclassifications for tabular tasks; whether and to what extent are LLM\nclassifications for tabular data influenced by social biases and stereotypes;\nand what are the consequential implications for fairness?\n Through a series of experiments, we delve into these questions and show that\nLLMs tend to inherit social biases from their training data which significantly\nimpact their fairness in tabular classification tasks. Furthermore, our\ninvestigations show that in the context of bias mitigation, though in-context\nlearning and finetuning have a moderate effect, the fairness metric gap between\ndifferent subgroups is still larger than that in traditional machine learning\nmodels, such as Random Forest and shallow Neural Networks. This observation\nemphasizes that the social biases are inherent within the LLMs themselves and\ninherited from their pretraining corpus, not only from the downstream task\ndatasets. Besides, we demonstrate that label-flipping of in-context examples\ncan significantly reduce biases, further highlighting the presence of inherent\nbias within LLMs.", + "authors": "Yanchen Liu, Srishti Gautam, Jiaqi Ma, Himabindu Lakkaraju", + "published": "2023-10-23", + "updated": "2024-04-02", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.06899v4", + "title": "Flames: Benchmarking Value Alignment of LLMs in Chinese", + "abstract": "The widespread adoption of large language models (LLMs) across various\nregions underscores the urgent need to evaluate their alignment with human\nvalues. Current benchmarks, however, fall short of effectively uncovering\nsafety vulnerabilities in LLMs. Despite numerous models achieving high scores\nand 'topping the chart' in these evaluations, there is still a significant gap\nin LLMs' deeper alignment with human values and achieving genuine harmlessness.\nTo this end, this paper proposes a value alignment benchmark named Flames,\nwhich encompasses both common harmlessness principles and a unique morality\ndimension that integrates specific Chinese values such as harmony. Accordingly,\nwe carefully design adversarial prompts that incorporate complex scenarios and\njailbreaking methods, mostly with implicit malice. By prompting 17 mainstream\nLLMs, we obtain model responses and rigorously annotate them for detailed\nevaluation. Our findings indicate that all the evaluated LLMs demonstrate\nrelatively poor performance on Flames, particularly in the safety and fairness\ndimensions. We also develop a lightweight specified scorer capable of scoring\nLLMs across multiple dimensions to efficiently evaluate new models on the\nbenchmark. The complexity of Flames has far exceeded existing benchmarks,\nsetting a new challenge for contemporary LLMs and highlighting the need for\nfurther alignment of LLMs. Our benchmark is publicly available at\nhttps://github.com/AIFlames/Flames.", + "authors": "Kexin Huang, Xiangyang Liu, Qianyu Guo, Tianxiang Sun, Jiawei Sun, Yaru Wang, Zeyang Zhou, Yixu Wang, Yan Teng, Xipeng Qiu, Yingchun Wang, Dahua Lin", + "published": "2023-11-12", + "updated": "2024-04-15", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.15007v1", + "title": "Did the Neurons Read your Book? Document-level Membership Inference for Large Language Models", + "abstract": "With large language models (LLMs) poised to become embedded in our daily\nlives, questions are starting to be raised about the dataset(s) they learned\nfrom. These questions range from potential bias or misinformation LLMs could\nretain from their training data to questions of copyright and fair use of\nhuman-generated text. However, while these questions emerge, developers of the\nrecent state-of-the-art LLMs become increasingly reluctant to disclose details\non their training corpus. We here introduce the task of document-level\nmembership inference for real-world LLMs, i.e. inferring whether the LLM has\nseen a given document during training or not. First, we propose a procedure for\nthe development and evaluation of document-level membership inference for LLMs\nby leveraging commonly used data sources for training and the model release\ndate. We then propose a practical, black-box method to predict document-level\nmembership and instantiate it on OpenLLaMA-7B with both books and academic\npapers. We show our methodology to perform very well, reaching an impressive\nAUC of 0.856 for books and 0.678 for papers. We then show our approach to\noutperform the sentence-level membership inference attacks used in the privacy\nliterature for the document-level membership task. We finally evaluate whether\nsmaller models might be less sensitive to document-level inference and show\nOpenLLaMA-3B to be approximately as sensitive as OpenLLaMA-7B to our approach.\nTaken together, our results show that accurate document-level membership can be\ninferred for LLMs, increasing the transparency of technology poised to change\nour lives.", + "authors": "Matthieu Meeus, Shubham Jain, Marek Rei, Yves-Alexandre de Montjoye", + "published": "2023-10-23", + "updated": "2023-10-23", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.CR", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.01964v1", + "title": "Don't Make Your LLM an Evaluation Benchmark Cheater", + "abstract": "Large language models~(LLMs) have greatly advanced the frontiers of\nartificial intelligence, attaining remarkable improvement in model capacity. To\nassess the model performance, a typical approach is to construct evaluation\nbenchmarks for measuring the ability level of LLMs in different aspects.\nDespite that a number of high-quality benchmarks have been released, the\nconcerns about the appropriate use of these benchmarks and the fair comparison\nof different models are increasingly growing. Considering these concerns, in\nthis paper, we discuss the potential risk and impact of inappropriately using\nevaluation benchmarks and misleadingly interpreting the evaluation results.\nSpecially, we focus on a special issue that would lead to inappropriate\nevaluation, \\ie \\emph{benchmark leakage}, referring that the data related to\nevaluation sets is occasionally used for model training. This phenomenon now\nbecomes more common since pre-training data is often prepared ahead of model\ntest. We conduct extensive experiments to study the effect of benchmark\nleverage, and find that it can dramatically boost the evaluation results, which\nwould finally lead to an unreliable assessment of model performance. To improve\nthe use of existing evaluation benchmarks, we finally present several\nguidelines for both LLM developers and benchmark maintainers. We hope this work\ncan draw attention to appropriate training and evaluation of LLMs.", + "authors": "Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong Wen, Jiawei Han", + "published": "2023-11-03", + "updated": "2023-11-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2405.01769v1", + "title": "A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law", + "abstract": "In the fast-evolving domain of artificial intelligence, large language models\n(LLMs) such as GPT-3 and GPT-4 are revolutionizing the landscapes of finance,\nhealthcare, and law: domains characterized by their reliance on professional\nexpertise, challenging data acquisition, high-stakes, and stringent regulatory\ncompliance. This survey offers a detailed exploration of the methodologies,\napplications, challenges, and forward-looking opportunities of LLMs within\nthese high-stakes sectors. We highlight the instrumental role of LLMs in\nenhancing diagnostic and treatment methodologies in healthcare, innovating\nfinancial analytics, and refining legal interpretation and compliance\nstrategies. Moreover, we critically examine the ethics for LLM applications in\nthese fields, pointing out the existing ethical concerns and the need for\ntransparent, fair, and robust AI systems that respect regulatory norms. By\npresenting a thorough review of current literature and practical applications,\nwe showcase the transformative impact of LLMs, and outline the imperative for\ninterdisciplinary cooperation, methodological advancements, and ethical\nvigilance. Through this lens, we aim to spark dialogue and inspire future\nresearch dedicated to maximizing the benefits of LLMs while mitigating their\nrisks in these precision-dependent sectors. To facilitate future research on\nLLMs in these critical societal domains, we also initiate a reading list that\ntracks the latest advancements under this topic, which will be continually\nupdated: \\url{https://github.com/czyssrs/LLM_X_papers}.", + "authors": "Zhiyu Zoey Chen, Jing Ma, Xinlu Zhang, Nan Hao, An Yan, Armineh Nourbakhsh, Xianjun Yang, Julian McAuley, Linda Petzold, William Yang Wang", + "published": "2024-05-02", + "updated": "2024-05-02", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.13840v1", + "title": "Whose Side Are You On? Investigating the Political Stance of Large Language Models", + "abstract": "Large Language Models (LLMs) have gained significant popularity for their\napplication in various everyday tasks such as text generation, summarization,\nand information retrieval. As the widespread adoption of LLMs continues to\nsurge, it becomes increasingly crucial to ensure that these models yield\nresponses that are politically impartial, with the aim of preventing\ninformation bubbles, upholding fairness in representation, and mitigating\nconfirmation bias. In this paper, we propose a quantitative framework and\npipeline designed to systematically investigate the political orientation of\nLLMs. Our investigation delves into the political alignment of LLMs across a\nspectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.\nAcross topics, the results indicate that LLMs exhibit a tendency to provide\nresponses that closely align with liberal or left-leaning perspectives rather\nthan conservative or right-leaning ones when user queries include details\npertaining to occupation, race, or political affiliation. The findings\npresented in this study not only reaffirm earlier observations regarding the\nleft-leaning characteristics of LLMs but also surface particular attributes,\nsuch as occupation, that are particularly susceptible to such inclinations even\nwhen directly steered towards conservatism. As a recommendation to avoid these\nmodels providing politicised responses, users should be mindful when crafting\nqueries, and exercise caution in selecting neutral prompt language.", + "authors": "Pagnarasmey Pit, Xingjun Ma, Mike Conway, Qingyu Chen, James Bailey, Henry Pit, Putrasmey Keo, Watey Diep, Yu-Gang Jiang", + "published": "2024-03-15", + "updated": "2024-03-15", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.SI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.00811v1", + "title": "Cognitive Bias in High-Stakes Decision-Making with LLMs", + "abstract": "Large language models (LLMs) offer significant potential as tools to support\nan expanding range of decision-making tasks. However, given their training on\nhuman (created) data, LLMs can inherit both societal biases against protected\ngroups, as well as be subject to cognitive bias. Such human-like bias can\nimpede fair and explainable decisions made with LLM assistance. Our work\nintroduces BiasBuster, a framework designed to uncover, evaluate, and mitigate\ncognitive bias in LLMs, particularly in high-stakes decision-making tasks.\nInspired by prior research in psychology and cognitive sciences, we develop a\ndataset containing 16,800 prompts to evaluate different cognitive biases (e.g.,\nprompt-induced, sequential, inherent). We test various bias mitigation\nstrategies, amidst proposing a novel method using LLMs to debias their own\nprompts. Our analysis provides a comprehensive picture on the presence and\neffects of cognitive bias across different commercial and open-source models.\nWe demonstrate that our self-help debiasing effectively mitigate cognitive bias\nwithout having to manually craft examples for each bias type.", + "authors": "Jessica Echterhoff, Yao Liu, Abeer Alessa, Julian McAuley, Zexue He", + "published": "2024-02-25", + "updated": "2024-02-25", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.04814v2", + "title": "Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks", + "abstract": "We introduce Syntax-Aware Fill-In-the-Middle (SAFIM), a new benchmark for\nevaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM)\ntask. This benchmark focuses on syntax-aware completions of program structures\nsuch as code blocks and conditional expressions, and includes 17,720 examples\nfrom multiple programming languages, sourced from recent code submissions after\nApril 2022 to minimize data contamination. SAFIM provides a robust framework\nwith various prompt designs and novel syntax-aware post-processing techniques,\nfacilitating accurate and fair comparisons across LLMs. Our comprehensive\nevaluation of 15 LLMs shows that FIM pretraining not only enhances FIM\nproficiency but also improves Left-to-Right (L2R) inference using LLMs. Our\nfindings challenge conventional beliefs and suggest that pretraining methods\nand data quality have more impact than model size. SAFIM thus serves as a\nfoundational platform for future research in effective pretraining strategies\nfor code LLMs. The evaluation toolkit and dataset are available at\nhttps://github.com/gonglinyuan/safim, and the leaderboard is available at\nhttps://safimbenchmark.com.", + "authors": "Linyuan Gong, Sida Wang, Mostafa Elhoushi, Alvin Cheung", + "published": "2024-03-07", + "updated": "2024-04-10", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.LG", + "cs.SE" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.15451v1", + "title": "Towards Enabling FAIR Dataspaces Using Large Language Models", + "abstract": "Dataspaces have recently gained adoption across various sectors, including\ntraditionally less digitized domains such as culture. Leveraging Semantic Web\ntechnologies helps to make dataspaces FAIR, but their complexity poses a\nsignificant challenge to the adoption of dataspaces and increases their cost.\nThe advent of Large Language Models (LLMs) raises the question of how these\nmodels can support the adoption of FAIR dataspaces. In this work, we\ndemonstrate the potential of LLMs in dataspaces with a concrete example. We\nalso derive a research agenda for exploring this emerging field.", + "authors": "Benedikt T. Arnold, Johannes Theissen-Lipp, Diego Collarana, Christoph Lange, Sandra Geisler, Edward Curry, Stefan Decker", + "published": "2024-03-18", + "updated": "2024-03-18", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.10149v2", + "title": "A Survey on Fairness in Large Language Models", + "abstract": "Large Language Models (LLMs) have shown powerful performance and development\nprospects and are widely deployed in the real world. However, LLMs can capture\nsocial biases from unprocessed training data and propagate the biases to\ndownstream tasks. Unfair LLM systems have undesirable social impacts and\npotential harms. In this paper, we provide a comprehensive review of related\nresearch on fairness in LLMs. Considering the influence of parameter magnitude\nand training paradigm on research strategy, we divide existing fairness\nresearch into oriented to medium-sized LLMs under pre-training and fine-tuning\nparadigms and oriented to large-sized LLMs under prompting paradigms. First,\nfor medium-sized LLMs, we introduce evaluation metrics and debiasing methods\nfrom the perspectives of intrinsic bias and extrinsic bias, respectively. Then,\nfor large-sized LLMs, we introduce recent fairness research, including fairness\nevaluation, reasons for bias, and debiasing methods. Finally, we discuss and\nprovide insight on the challenges and future directions for the development of\nfairness in LLMs.", + "authors": "Yingji Li, Mengnan Du, Rui Song, Xin Wang, Ying Wang", + "published": "2023-08-20", + "updated": "2024-02-21", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.02294v1", + "title": "LLMs grasp morality in concept", + "abstract": "Work in AI ethics and fairness has made much progress in regulating LLMs to\nreflect certain values, such as fairness, truth, and diversity. However, it has\ntaken the problem of how LLMs might 'mean' anything at all for granted. Without\naddressing this, it is not clear what imbuing LLMs with such values even means.\nIn response, we provide a general theory of meaning that extends beyond humans.\nWe use this theory to explicate the precise nature of LLMs as meaning-agents.\nWe suggest that the LLM, by virtue of its position as a meaning-agent, already\ngrasps the constructions of human society (e.g. morality, gender, and race) in\nconcept. Consequently, under certain ethical frameworks, currently popular\nmethods for model alignment are limited at best and counterproductive at worst.\nMoreover, unaligned models may help us better develop our moral and social\nphilosophy.", + "authors": "Mark Pock, Andre Ye, Jared Moore", + "published": "2023-11-04", + "updated": "2023-11-04", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.03033v1", + "title": "Beyond Words: A Mathematical Framework for Interpreting Large Language Models", + "abstract": "Large language models (LLMs) are powerful AI tools that can generate and\ncomprehend natural language text and other complex information. However, the\nfield lacks a mathematical framework to systematically describe, compare and\nimprove LLMs. We propose Hex a framework that clarifies key terms and concepts\nin LLM research, such as hallucinations, alignment, self-verification and\nchain-of-thought reasoning. The Hex framework offers a precise and consistent\nway to characterize LLMs, identify their strengths and weaknesses, and\nintegrate new findings. Using Hex, we differentiate chain-of-thought reasoning\nfrom chain-of-thought prompting and establish the conditions under which they\nare equivalent. This distinction clarifies the basic assumptions behind\nchain-of-thought prompting and its implications for methods that use it, such\nas self-verification and prompt programming.\n Our goal is to provide a formal framework for LLMs that can help both\nresearchers and practitioners explore new possibilities for generative AI. We\ndo not claim to have a definitive solution, but rather a tool for opening up\nnew research avenues. We argue that our formal definitions and results are\ncrucial for advancing the discussion on how to build generative AI systems that\nare safe, reliable, fair and robust, especially in domains like healthcare and\nsoftware engineering.", + "authors": "Javier Gonz\u00e1lez, Aditya V. Nori", + "published": "2023-11-06", + "updated": "2023-11-06", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.02650v1", + "title": "Towards detecting unanticipated bias in Large Language Models", + "abstract": "Over the last year, Large Language Models (LLMs) like ChatGPT have become\nwidely available and have exhibited fairness issues similar to those in\nprevious machine learning systems. Current research is primarily focused on\nanalyzing and quantifying these biases in training data and their impact on the\ndecisions of these models, alongside developing mitigation strategies. This\nresearch largely targets well-known biases related to gender, race, ethnicity,\nand language. However, it is clear that LLMs are also affected by other, less\nobvious implicit biases. The complex and often opaque nature of these models\nmakes detecting such biases challenging, yet this is crucial due to their\npotential negative impact in various applications. In this paper, we explore\nnew avenues for detecting these unanticipated biases in LLMs, focusing\nspecifically on Uncertainty Quantification and Explainable AI methods. These\napproaches aim to assess the certainty of model decisions and to make the\ninternal decision-making processes of LLMs more transparent, thereby\nidentifying and understanding biases that are not immediately apparent. Through\nthis research, we aim to contribute to the development of fairer and more\ntransparent AI systems.", + "authors": "Anna Kruspe", + "published": "2024-04-03", + "updated": "2024-04-03", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.11653v2", + "title": "\"It's a Fair Game\", or Is It? Examining How Users Navigate Disclosure Risks and Benefits When Using LLM-Based Conversational Agents", + "abstract": "The widespread use of Large Language Model (LLM)-based conversational agents\n(CAs), especially in high-stakes domains, raises many privacy concerns.\nBuilding ethical LLM-based CAs that respect user privacy requires an in-depth\nunderstanding of the privacy risks that concern users the most. However,\nexisting research, primarily model-centered, does not provide insight into\nusers' perspectives. To bridge this gap, we analyzed sensitive disclosures in\nreal-world ChatGPT conversations and conducted semi-structured interviews with\n19 LLM-based CA users. We found that users are constantly faced with trade-offs\nbetween privacy, utility, and convenience when using LLM-based CAs. However,\nusers' erroneous mental models and the dark patterns in system design limited\ntheir awareness and comprehension of the privacy risks. Additionally, the\nhuman-like interactions encouraged more sensitive disclosures, which\ncomplicated users' ability to navigate the trade-offs. We discuss practical\ndesign guidelines and the needs for paradigm shifts to protect the privacy of\nLLM-based CA users.", + "authors": "Zhiping Zhang, Michelle Jia, Hao-Ping Lee, Bingsheng Yao, Sauvik Das, Ada Lerner, Dakuo Wang, Tianshi Li", + "published": "2023-09-20", + "updated": "2024-04-02", + "primary_cat": "cs.HC", + "cats": [ + "cs.HC", + "cs.AI", + "cs.CR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2308.11483v1", + "title": "Large Language Models Sensitivity to The Order of Options in Multiple-Choice Questions", + "abstract": "Large Language Models (LLMs) have demonstrated remarkable capabilities in\nvarious NLP tasks. However, previous works have shown these models are\nsensitive towards prompt wording, and few-shot demonstrations and their order,\nposing challenges to fair assessment of these models. As these models become\nmore powerful, it becomes imperative to understand and address these\nlimitations. In this paper, we focus on LLMs robustness on the task of\nmultiple-choice questions -- commonly adopted task to study reasoning and\nfact-retrieving capability of LLMs. Investigating the sensitivity of LLMs\ntowards the order of options in multiple-choice questions, we demonstrate a\nconsiderable performance gap of approximately 13% to 75% in LLMs on different\nbenchmarks, when answer options are reordered, even when using demonstrations\nin a few-shot setting. Through a detailed analysis, we conjecture that this\nsensitivity arises when LLMs are uncertain about the prediction between the\ntop-2/3 choices, and specific options placements may favor certain prediction\nbetween those top choices depending on the question caused by positional bias.\nWe also identify patterns in top-2 choices that amplify or mitigate the model's\nbias toward option placement. We found that for amplifying bias, the optimal\nstrategy involves positioning the top two choices as the first and last\noptions. Conversely, to mitigate bias, we recommend placing these choices among\nthe adjacent options. To validate our conjecture, we conduct various\nexperiments and adopt two approaches to calibrate LLMs' predictions, leading to\nup to 8 percentage points improvement across different models and benchmarks.", + "authors": "Pouya Pezeshkpour, Estevam Hruschka", + "published": "2023-08-22", + "updated": "2023-08-22", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.07884v2", + "title": "Fair Abstractive Summarization of Diverse Perspectives", + "abstract": "People from different social and demographic groups express diverse\nperspectives and conflicting opinions on a broad set of topics such as product\nreviews, healthcare, law, and politics. A fair summary should provide a\ncomprehensive coverage of diverse perspectives without underrepresenting\ncertain groups. However, current work in summarization metrics and Large\nLanguage Models (LLMs) evaluation has not explored fair abstractive\nsummarization. In this paper, we systematically investigate fair abstractive\nsummarization for user-generated data. We first formally define fairness in\nabstractive summarization as not underrepresenting perspectives of any groups\nof people, and we propose four reference-free automatic metrics by measuring\nthe differences between target and source perspectives. We evaluate nine LLMs,\nincluding three GPT models, four LLaMA models, PaLM 2, and Claude, on six\ndatasets collected from social media, online reviews, and recorded transcripts.\nExperiments show that both the model-generated and the human-written reference\nsummaries suffer from low fairness. We conduct a comprehensive analysis of the\ncommon factors influencing fairness and propose three simple but effective\nmethods to alleviate unfair summarization. Our dataset and code are available\nat https://github.com/psunlpgroup/FairSumm.", + "authors": "Yusen Zhang, Nan Zhang, Yixin Liu, Alexander Fabbri, Junru Liu, Ryo Kamoi, Xiaoxin Lu, Caiming Xiong, Jieyu Zhao, Dragomir Radev, Kathleen McKeown, Rui Zhang", + "published": "2023-11-14", + "updated": "2024-03-30", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.11033v4", + "title": "FAIR Enough: How Can We Develop and Assess a FAIR-Compliant Dataset for Large Language Models' Training?", + "abstract": "The rapid evolution of Large Language Models (LLMs) highlights the necessity\nfor ethical considerations and data integrity in AI development, particularly\nemphasizing the role of FAIR (Findable, Accessible, Interoperable, Reusable)\ndata principles. While these principles are crucial for ethical data\nstewardship, their specific application in the context of LLM training data\nremains an under-explored area. This research gap is the focus of our study,\nwhich begins with an examination of existing literature to underline the\nimportance of FAIR principles in managing data for LLM training. Building upon\nthis, we propose a novel framework designed to integrate FAIR principles into\nthe LLM development lifecycle. A contribution of our work is the development of\na comprehensive checklist intended to guide researchers and developers in\napplying FAIR data principles consistently across the model development\nprocess. The utility and effectiveness of our framework are validated through a\ncase study on creating a FAIR-compliant dataset aimed at detecting and\nmitigating biases in LLMs. We present this framework to the community as a tool\nto foster the creation of technologically advanced, ethically grounded, and\nsocially responsible AI models.", + "authors": "Shaina Raza, Shardul Ghuge, Chen Ding, Elham Dolatabadi, Deval Pandya", + "published": "2024-01-19", + "updated": "2024-04-03", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.02839v1", + "title": "An Empirical Study of LLM-as-a-Judge for LLM Evaluation: Fine-tuned Judge Models are Task-specific Classifiers", + "abstract": "Recently, there has been a growing trend of utilizing Large Language Model\n(LLM) to evaluate the quality of other LLMs. Many studies have employed\nproprietary close-source models, especially GPT4, as the evaluator.\nAlternatively, other works have fine-tuned judge models based on open-source\nLLMs as the evaluator. In this study, we conduct an empirical study of\ndifferent judge models on their evaluation capability. Our findings indicate\nthat although the fine-tuned judge models achieve high accuracy on in-domain\ntest sets, even surpassing GPT4, they are inherently task-specific classifiers,\nand their generalizability and fairness severely underperform GPT4.", + "authors": "Hui Huang, Yingqi Qu, Jing Liu, Muyun Yang, Tiejun Zhao", + "published": "2024-03-05", + "updated": "2024-03-05", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.18569v1", + "title": "Fairness of ChatGPT", + "abstract": "Understanding and addressing unfairness in LLMs are crucial for responsible\nAI deployment. However, there is a limited availability of quantitative\nanalyses and in-depth studies regarding fairness evaluations in LLMs,\nespecially when applying LLMs to high-stakes fields. This work aims to fill\nthis gap by providing a systematic evaluation of the effectiveness and fairness\nof LLMs using ChatGPT as a study case. We focus on assessing ChatGPT's\nperformance in high-takes fields including education, criminology, finance and\nhealthcare. To make thorough evaluation, we consider both group fairness and\nindividual fairness and we also observe the disparities in ChatGPT's outputs\nunder a set of biased or unbiased prompts. This work contributes to a deeper\nunderstanding of LLMs' fairness performance, facilitates bias mitigation and\nfosters the development of responsible artificial intelligence systems.", + "authors": "Yunqi Li, Yongfeng Zhang", + "published": "2023-05-22", + "updated": "2023-05-22", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.AI", + "cs.CL", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2401.00588v1", + "title": "Fairness in Serving Large Language Models", + "abstract": "High-demand LLM inference services (e.g., ChatGPT and BARD) support a wide\nrange of requests from short chat conversations to long document reading. To\nensure that all client requests are processed fairly, most major LLM inference\nservices have request rate limits, to ensure that no client can dominate the\nrequest queue. However, this rudimentary notion of fairness also results in\nunder-utilization of the resources and poor client experience when there is\nspare capacity. While there is a rich literature on fair scheduling, serving\nLLMs presents new challenges due to their unpredictable request lengths and\ntheir unique batching characteristics on parallel accelerators. This paper\nintroduces the definition of LLM serving fairness based on a cost function that\naccounts for the number of input and output tokens processed. To achieve\nfairness in serving, we propose a novel scheduling algorithm, the Virtual Token\nCounter (VTC), a fair scheduler based on the continuous batching mechanism. We\nprove a 2x tight upper bound on the service difference between two backlogged\nclients, adhering to the requirement of work-conserving. Through extensive\nexperiments, we demonstrate the superior performance of VTC in ensuring\nfairness, especially in contrast to other baseline methods, which exhibit\nshortcomings under various conditions.", + "authors": "Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo, Joseph E. Gonzalez, Ion Stoica", + "published": "2023-12-31", + "updated": "2023-12-31", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.LG", + "cs.PF" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.04892v2", + "title": "Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs", + "abstract": "Recent works have showcased the ability of LLMs to embody diverse personas in\ntheir responses, exemplified by prompts like 'You are Yoda. Explain the Theory\nof Relativity.' While this ability allows personalization of LLMs and enables\nhuman behavior simulation, its effect on LLMs' capabilities remains unclear. To\nfill this gap, we present the first extensive study of the unintended\nside-effects of persona assignment on the ability of LLMs to perform basic\nreasoning tasks. Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse\npersonas (e.g. an Asian person) spanning 5 socio-demographic groups. Our\nexperiments unveil that LLMs harbor deep rooted bias against various\nsocio-demographics underneath a veneer of fairness. While they overtly reject\nstereotypes when explicitly asked ('Are Black people less skilled at\nmathematics?'), they manifest stereotypical and erroneous presumptions when\nasked to answer questions while adopting a persona. These can be observed as\nabstentions in responses, e.g., 'As a Black person, I can't answer this\nquestion as it requires math knowledge', and generally result in a substantial\nperformance drop. Our experiments with ChatGPT-3.5 show that this bias is\nubiquitous - 80% of our personas demonstrate bias; it is significant - some\ndatasets show performance drops of 70%+; and can be especially harmful for\ncertain groups - some personas suffer statistically significant drops on 80%+\nof the datasets. Overall, all 4 LLMs exhibit this bias to varying extents, with\nGPT-4-Turbo showing the least but still a problematic amount of bias (evident\nin 42% of the personas). Further analysis shows that these persona-induced\nerrors can be hard-to-discern and hard-to-avoid. Our findings serve as a\ncautionary tale that the practice of assigning personas to LLMs - a trend on\nthe rise - can surface their deep-rooted biases and have unforeseeable and\ndetrimental side-effects.", + "authors": "Shashank Gupta, Vaishnavi Shrivastava, Ameet Deshpande, Ashwin Kalyan, Peter Clark, Ashish Sabharwal, Tushar Khot", + "published": "2023-11-08", + "updated": "2024-01-27", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.13862v2", + "title": "A Trip Towards Fairness: Bias and De-Biasing in Large Language Models", + "abstract": "Cheap-to-Build Very Large-Language Models (CtB-LLMs) with affordable training\nare emerging as the next big revolution in natural language processing and\nunderstanding. These CtB-LLMs are democratizing access to trainable Very\nLarge-Language Models (VLLMs) and, thus, may represent the building blocks of\nmany NLP systems solving downstream tasks. Hence, a little or a large bias in\nCtB-LLMs may cause huge harm. In this paper, we performed a large investigation\nof the bias of three families of CtB-LLMs, and we showed that debiasing\ntechniques are effective and usable. Indeed, according to current tests, the\nLLaMA and the OPT families have an important bias in gender, race, religion,\nand profession. In contrast to the analysis for other LLMs, we discovered that\nbias depends not on the number of parameters but on the perplexity. Finally,\nthe debiasing of OPT using LoRA reduces bias up to 4.12 points in the\nnormalized stereotype score.", + "authors": "Leonardo Ranaldi, Elena Sofia Ruzzetti, Davide Venditti, Dario Onorati, Fabio Massimo Zanzotto", + "published": "2023-05-23", + "updated": "2023-08-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2307.15997v1", + "title": "RoCar: A Relationship Network-based Evaluation Method to Large Language Models", + "abstract": "Large language models (LLMs) have received increasing attention. However, due\nto the complexity of its capabilities, how to rationally evaluate the\ncapabilities of LLMs is still a task to be solved. We propose the RoCar method,\nwhich utilizes the defined basic schemas to randomly construct a task graph and\ngenerates natural language evaluation tasks based on the task graph to evaluate\nthe reasoning and memory abilities of LLMs respectively. Due to the very large\nrandomness of the task construction process, it is possible to ensure that none\nof the LLMs to be tested has directly learned the evaluation tasks,\nguaranteeing the fairness of the evaluation method.", + "authors": "Ming Wang, Wenfang Wu, Chongyun Gao, Daling Wang, Shi Feng, Yifei Zhang", + "published": "2023-07-29", + "updated": "2023-07-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.10199v3", + "title": "CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting", + "abstract": "As the utilization of large language models (LLMs) has proliferated\nworldwide, it is crucial for them to have adequate knowledge and fair\nrepresentation for diverse global cultures. In this work, we uncover culture\nperceptions of three SOTA models on 110 countries and regions on 8\nculture-related topics through culture-conditioned generations, and extract\nsymbols from these generations that are associated to each culture by the LLM.\nWe discover that culture-conditioned generation consist of linguistic \"markers\"\nthat distinguish marginalized cultures apart from default cultures. We also\ndiscover that LLMs have an uneven degree of diversity in the culture symbols,\nand that cultures from different geographic regions have different presence in\nLLMs' culture-agnostic generation. Our findings promote further research in\nstudying the knowledge and fairness of global culture perception in LLMs. Code\nand Data can be found in: https://github.com/huihanlhh/Culture-Gen/", + "authors": "Huihan Li, Liwei Jiang, Jena D. Huang, Hyunwoo Kim, Sebastin Santy, Taylor Sorensen, Bill Yuchen Lin, Nouha Dziri, Xiang Ren, Yejin Choi", + "published": "2024-04-16", + "updated": "2024-04-26", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.07981v1", + "title": "Manipulating Large Language Models to Increase Product Visibility", + "abstract": "Large language models (LLMs) are increasingly being integrated into search\nengines to provide natural language responses tailored to user queries.\nCustomers and end-users are also becoming more dependent on these models for\nquick and easy purchase decisions. In this work, we investigate whether\nrecommendations from LLMs can be manipulated to enhance a product's visibility.\nWe demonstrate that adding a strategic text sequence (STS) -- a carefully\ncrafted message -- to a product's information page can significantly increase\nits likelihood of being listed as the LLM's top recommendation. To understand\nthe impact of STS, we use a catalog of fictitious coffee machines and analyze\nits effect on two target products: one that seldom appears in the LLM's\nrecommendations and another that usually ranks second. We observe that the\nstrategic text sequence significantly enhances the visibility of both products\nby increasing their chances of appearing as the top recommendation. This\nability to manipulate LLM-generated search responses provides vendors with a\nconsiderable competitive advantage and has the potential to disrupt fair market\ncompetition. Just as search engine optimization (SEO) revolutionized how\nwebpages are customized to rank higher in search engine results, influencing\nLLM recommendations could profoundly impact content optimization for AI-driven\nsearch services. Code for our experiments is available at\nhttps://github.com/aounon/llm-rank-optimizer.", + "authors": "Aounon Kumar, Himabindu Lakkaraju", + "published": "2024-04-11", + "updated": "2024-04-11", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.15215v1", + "title": "Item-side Fairness of Large Language Model-based Recommendation System", + "abstract": "Recommendation systems for Web content distribution intricately connect to\nthe information access and exposure opportunities for vulnerable populations.\nThe emergence of Large Language Models-based Recommendation System (LRS) may\nintroduce additional societal challenges to recommendation systems due to the\ninherent biases in Large Language Models (LLMs). From the perspective of\nitem-side fairness, there remains a lack of comprehensive investigation into\nthe item-side fairness of LRS given the unique characteristics of LRS compared\nto conventional recommendation systems. To bridge this gap, this study examines\nthe property of LRS with respect to item-side fairness and reveals the\ninfluencing factors of both historical users' interactions and inherent\nsemantic biases of LLMs, shedding light on the need to extend conventional\nitem-side fairness methods for LRS. Towards this goal, we develop a concise and\neffective framework called IFairLRS to enhance the item-side fairness of an\nLRS. IFairLRS covers the main stages of building an LRS with specifically\nadapted strategies to calibrate the recommendations of LRS. We utilize IFairLRS\nto fine-tune LLaMA, a representative LLM, on \\textit{MovieLens} and\n\\textit{Steam} datasets, and observe significant item-side fairness\nimprovements. The code can be found in\nhttps://github.com/JiangM-C/IFairLRS.git.", + "authors": "Meng Jiang, Keqin Bao, Jizhi Zhang, Wenjie Wang, Zhengyi Yang, Fuli Feng, Xiangnan He", + "published": "2024-02-23", + "updated": "2024-02-23", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.19118v1", + "title": "Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate", + "abstract": "Modern large language models (LLMs) like ChatGPT have shown remarkable\nperformance on general language tasks but still struggle on complex reasoning\ntasks, which drives the research on cognitive behaviors of LLMs to explore\nhuman-like problem-solving strategies. Along this direction, one representative\nstrategy is self-reflection, which asks an LLM to refine the solution with the\nfeedback generated by itself iteratively. However, our study shows that such\nreflection-style methods suffer from the Degeneration-of-Thought (DoT) problem:\nonce the LLM has established confidence in its solutions, it is unable to\ngenerate novel thoughts later through reflection even if its initial stance is\nincorrect. To address the DoT problem, we propose a Multi-Agent Debate (MAD)\nframework, in which multiple agents express their arguments in the state of\n\"tit for tat\" and a judge manages the debate process to obtain a final\nsolution. Clearly, our MAD framework encourages divergent thinking in LLMs\nwhich would be helpful for tasks that require deep levels of contemplation.\nExperiment results on two challenging datasets, commonsense machine translation\nand counter-intuitive arithmetic reasoning, demonstrate the effectiveness of\nour MAD framework. Extensive analyses suggest that the adaptive break of debate\nand the modest level of \"tit for tat\" state are required for MAD to obtain good\nperformance. Moreover, we find that LLMs might not be a fair judge if different\nLLMs are used for agents. Codes:\nhttps://github.com/Skytliang/Multi-Agents-Debate", + "authors": "Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, Shuming Shi", + "published": "2023-05-30", + "updated": "2023-05-30", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.13095v1", + "title": "Enhancing Logical Reasoning in Large Language Models to Facilitate Legal Applications", + "abstract": "Language serves as a vehicle for conveying thought, enabling communication\namong individuals. The ability to distinguish between diverse concepts,\nidentify fairness and injustice, and comprehend a range of legal notions\nfundamentally relies on logical reasoning. Large Language Models (LLMs) attempt\nto emulate human language understanding and generation, but their competency in\nlogical reasoning remains limited. This paper seeks to address the\nphilosophical question: How can we effectively teach logical reasoning to LLMs\nwhile maintaining a deep understanding of the intricate relationship between\nlanguage and logic? By focusing on bolstering LLMs' capabilities in logical\nreasoning, we aim to expand their applicability in law and other\nlogic-intensive disciplines. To this end, we propose a Reinforcement Learning\nfrom Logical Feedback (RLLF) approach, which serves as a potential framework\nfor refining LLMs' reasoning capacities. Through RLLF and a revised evaluation\nmethodology, we explore new avenues for research in this domain and contribute\nto the development of LLMs capable of handling complex legal reasoning tasks\nwhile acknowledging the fundamental connection between language and logic.", + "authors": "Ha-Thanh Nguyen, Wachara Fungwacharakorn, Ken Satoh", + "published": "2023-11-22", + "updated": "2023-11-22", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.16343v2", + "title": "Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models", + "abstract": "Advancements in natural language generation (NLG) and large language models\n(LLMs) have led to proficient text generation in various tasks. However,\nintegrating intricate constraints into neural text generation, due to LLMs'\nopacity, remains challenging. This study investigates constrained text\ngeneration for LLMs, where predefined constraints are applied during LLM's\ngeneration process. Our research mainly focuses on mainstream open-source LLMs,\ncategorizing constraints into lexical, structural, and relation-based types. We\nalso present various benchmarks to facilitate fair evaluation. The study\naddresses some key research questions, including evaluating, understanding and\nimproving constrained text generation for LLMs. Results illuminate LLMs'\ncapacity and deficiency to incorporate constraints and provide insights for\nfuture developments in constrained text generation. Codes and datasets will be\nreleased upon acceptance.", + "authors": "Xiang Chen, Xiaojun Wan", + "published": "2023-10-25", + "updated": "2024-03-21", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.07688v1", + "title": "CyberMetric: A Benchmark Dataset for Evaluating Large Language Models Knowledge in Cybersecurity", + "abstract": "Large Language Models (LLMs) excel across various domains, from computer\nvision to medical diagnostics. However, understanding the diverse landscape of\ncybersecurity, encompassing cryptography, reverse engineering, and managerial\nfacets like risk assessment, presents a challenge, even for human experts. In\nthis paper, we introduce CyberMetric, a benchmark dataset comprising 10,000\nquestions sourced from standards, certifications, research papers, books, and\nother publications in the cybersecurity domain. The questions are created\nthrough a collaborative process, i.e., merging expert knowledge with LLMs,\nincluding GPT-3.5 and Falcon-180B. Human experts spent over 200 hours verifying\ntheir accuracy and relevance. Beyond assessing LLMs' knowledge, the dataset's\nmain goal is to facilitate a fair comparison between humans and different LLMs\nin cybersecurity. To achieve this, we carefully selected 80 questions covering\na wide range of topics within cybersecurity and involved 30 participants of\ndiverse expertise levels, facilitating a comprehensive comparison between human\nand machine intelligence in this area. The findings revealed that LLMs\noutperformed humans in almost every aspect of cybersecurity.", + "authors": "Norbert Tihanyi, Mohamed Amine Ferrag, Ridhi Jain, Merouane Debbah", + "published": "2024-02-12", + "updated": "2024-02-12", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.CR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.19465v1", + "title": "Towards Tracing Trustworthiness Dynamics: Revisiting Pre-training Period of Large Language Models", + "abstract": "Ensuring the trustworthiness of large language models (LLMs) is crucial. Most\nstudies concentrate on fully pre-trained LLMs to better understand and improve\nLLMs' trustworthiness. In this paper, to reveal the untapped potential of\npre-training, we pioneer the exploration of LLMs' trustworthiness during this\nperiod, focusing on five key dimensions: reliability, privacy, toxicity,\nfairness, and robustness. To begin with, we apply linear probing to LLMs. The\nhigh probing accuracy suggests that \\textit{LLMs in early pre-training can\nalready distinguish concepts in each trustworthiness dimension}. Therefore, to\nfurther uncover the hidden possibilities of pre-training, we extract steering\nvectors from a LLM's pre-training checkpoints to enhance the LLM's\ntrustworthiness. Finally, inspired by~\\citet{choi2023understanding} that mutual\ninformation estimation is bounded by linear probing accuracy, we also probe\nLLMs with mutual information to investigate the dynamics of trustworthiness\nduring pre-training. We are the first to observe a similar two-phase\nphenomenon: fitting and compression~\\citep{shwartz2017opening}. This research\nprovides an initial exploration of trustworthiness modeling during LLM\npre-training, seeking to unveil new insights and spur further developments in\nthe field. We will make our code publicly accessible at\n\\url{https://github.com/ChnQ/TracingLLM}.", + "authors": "Chen Qian, Jie Zhang, Wei Yao, Dongrui Liu, Zhenfei Yin, Yu Qiao, Yong Liu, Jing Shao", + "published": "2024-02-29", + "updated": "2024-02-29", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.12150v1", + "title": "Your Large Language Model is Secretly a Fairness Proponent and You Should Prompt it Like One", + "abstract": "The widespread adoption of large language models (LLMs) underscores the\nurgent need to ensure their fairness. However, LLMs frequently present dominant\nviewpoints while ignoring alternative perspectives from minority parties,\nresulting in potential biases. We hypothesize that these fairness-violating\nbehaviors occur because LLMs express their viewpoints using a human personality\nthat represents the majority of training data. In response to this, we validate\nthat prompting LLMs with specific roles can allow LLMs to express diverse\nviewpoints. Building on this insight and observation, we develop FairThinking,\na pipeline designed to automatically generate roles that enable LLMs to\narticulate diverse perspectives for fair expressions. To evaluate FairThinking,\nwe create a dataset with a thousand items covering three fairness-related\ntopics and conduct experiments on GPT-3.5, GPT-4, Llama2, and Mistral to\ndemonstrate its superior performance.", + "authors": "Tianlin Li, Xiaoyu Zhang, Chao Du, Tianyu Pang, Qian Liu, Qing Guo, Chao Shen, Yang Liu", + "published": "2024-02-19", + "updated": "2024-02-19", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "I.2; J.4" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2405.02219v1", + "title": "FairEvalLLM. A Comprehensive Framework for Benchmarking Fairness in Large Language Model Recommender Systems", + "abstract": "This paper presents a framework for evaluating fairness in recommender\nsystems powered by Large Language Models (RecLLMs), addressing the need for a\nunified approach that spans various fairness dimensions including sensitivity\nto user attributes, intrinsic fairness, and discussions of fairness based on\nunderlying benefits. In addition, our framework introduces counterfactual\nevaluations and integrates diverse user group considerations to enhance the\ndiscourse on fairness evaluation for RecLLMs.\n Our key contributions include the development of a robust framework for\nfairness evaluation in LLM-based recommendations and a structured method to\ncreate \\textit{informative user profiles} from demographic data, historical\nuser preferences, and recent interactions. We argue that the latter is\nessential for enhancing personalization in such systems, especially in\ntemporal-driven scenarios. We demonstrate the utility of our framework through\npractical applications on two datasets, LastFM-1K and ML-1M. We conduct\nexperiments on a subsample of 80 users from each dataset, testing and assessing\nthe effectiveness of various prompt construction scenarios and in-context\nlearning, comprising more than 50 scenarios. This results in more than 4000\nrecommendations (80 * 50 = 4000). Our study reveals that while there are no\nsignificant unfairness issues in scenarios involving sensitive attributes, some\nconcerns remain. However, in terms of intrinsic fairness, which does not\ninvolve direct sensitivity, unfairness across demographic groups remains\nsignificant. The code and data used for this paper are available at:\n\\url{https://shorturl.at/awBFM}.", + "authors": "Yashar Deldjoo", + "published": "2024-05-03", + "updated": "2024-05-03", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.14208v2", + "title": "Content Conditional Debiasing for Fair Text Embedding", + "abstract": "Mitigating biases in machine learning models has gained increasing attention\nin Natural Language Processing (NLP). Yet, only a few studies focus on fair\ntext embeddings, which are crucial yet challenging for real-world applications.\nIn this paper, we propose a novel method for learning fair text embeddings. We\nachieve fairness while maintaining utility trade-off by ensuring conditional\nindependence between sensitive attributes and text embeddings conditioned on\nthe content. Specifically, we enforce that embeddings of texts with different\nsensitive attributes but identical content maintain the same distance toward\nthe embedding of their corresponding neutral text. Furthermore, we address the\nissue of lacking proper training data by using Large Language Models (LLMs) to\naugment texts into different sensitive groups. Our extensive evaluations\ndemonstrate that our approach effectively improves fairness while preserving\nthe utility of embeddings, representing a pioneering effort in achieving\nconditional independence for fair text embeddings.", + "authors": "Wenlong Deng, Blair Chen, Xiaoxiao Li, Christos Thrampoulidis", + "published": "2024-02-22", + "updated": "2024-02-23", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.09397v1", + "title": "Do Large GPT Models Discover Moral Dimensions in Language Representations? A Topological Study Of Sentence Embeddings", + "abstract": "As Large Language Models are deployed within Artificial Intelligence systems,\nthat are increasingly integrated with human society, it becomes more important\nthan ever to study their internal structures. Higher level abilities of LLMs\nsuch as GPT-3.5 emerge in large part due to informative language\nrepresentations they induce from raw text data during pre-training on trillions\nof words. These embeddings exist in vector spaces of several thousand\ndimensions, and their processing involves mapping between multiple vector\nspaces, with total number of parameters on the order of trillions. Furthermore,\nthese language representations are induced by gradient optimization, resulting\nin a black box system that is hard to interpret. In this paper, we take a look\nat the topological structure of neuronal activity in the \"brain\" of Chat-GPT's\nfoundation language model, and analyze it with respect to a metric representing\nthe notion of fairness. We develop a novel approach to visualize GPT's moral\ndimensions. We first compute a fairness metric, inspired by social psychology\nliterature, to identify factors that typically influence fairness assessments\nin humans, such as legitimacy, need, and responsibility. Subsequently, we\nsummarize the manifold's shape using a lower-dimensional simplicial complex,\nwhose topology is derived from this metric. We color it with a heat map\nassociated with this fairness metric, producing human-readable visualizations\nof the high-dimensional sentence manifold. Our results show that sentence\nembeddings based on GPT-3.5 can be decomposed into two submanifolds\ncorresponding to fair and unfair moral judgments. This indicates that GPT-based\nlanguage models develop a moral dimension within their representation spaces\nand induce an understanding of fairness during their training process.", + "authors": "Stephen Fitz", + "published": "2023-09-17", + "updated": "2023-09-17", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY", + "cs.LG", + "cs.NE" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2403.05668v1", + "title": "CFaiRLLM: Consumer Fairness Evaluation in Large-Language Model Recommender System", + "abstract": "In the evolving landscape of recommender systems, the integration of Large\nLanguage Models (LLMs) such as ChatGPT marks a new era, introducing the concept\nof Recommendation via LLM (RecLLM). While these advancements promise\nunprecedented personalization and efficiency, they also bring to the fore\ncritical concerns regarding fairness, particularly in how recommendations might\ninadvertently perpetuate or amplify biases associated with sensitive user\nattributes. In order to address these concerns, our study introduces a\ncomprehensive evaluation framework, CFaiRLLM, aimed at evaluating (and thereby\nmitigating) biases on the consumer side within RecLLMs.\n Our research methodically assesses the fairness of RecLLMs by examining how\nrecommendations might vary with the inclusion of sensitive attributes such as\ngender, age, and their intersections, through both similarity alignment and\ntrue preference alignment. By analyzing recommendations generated under\ndifferent conditions-including the use of sensitive attributes in user\nprompts-our framework identifies potential biases in the recommendations\nprovided. A key part of our study involves exploring how different detailed\nstrategies for constructing user profiles (random, top-rated, recent) impact\nthe alignment between recommendations made without consideration of sensitive\nattributes and those that are sensitive-attribute-aware, highlighting the bias\nmechanisms within RecLLMs.\n The findings in our study highlight notable disparities in the fairness of\nrecommendations, particularly when sensitive attributes are integrated into the\nrecommendation process, either individually or in combination. The analysis\ndemonstrates that the choice of user profile sampling strategy plays a\nsignificant role in affecting fairness outcomes, highlighting the complexity of\nachieving fair recommendations in the era of LLMs.", + "authors": "Yashar Deldjoo, Tommaso di Noia", + "published": "2024-03-08", + "updated": "2024-03-08", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.07609v3", + "title": "Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation", + "abstract": "The remarkable achievements of Large Language Models (LLMs) have led to the\nemergence of a novel recommendation paradigm -- Recommendation via LLM\n(RecLLM). Nevertheless, it is important to note that LLMs may contain social\nprejudices, and therefore, the fairness of recommendations made by RecLLM\nrequires further investigation. To avoid the potential risks of RecLLM, it is\nimperative to evaluate the fairness of RecLLM with respect to various sensitive\nattributes on the user side. Due to the differences between the RecLLM paradigm\nand the traditional recommendation paradigm, it is problematic to directly use\nthe fairness benchmark of traditional recommendation. To address the dilemma,\nwe propose a novel benchmark called Fairness of Recommendation via LLM\n(FaiRLLM). This benchmark comprises carefully crafted metrics and a dataset\nthat accounts for eight sensitive attributes1 in two recommendation scenarios:\nmusic and movies. By utilizing our FaiRLLM benchmark, we conducted an\nevaluation of ChatGPT and discovered that it still exhibits unfairness to some\nsensitive attributes when generating recommendations. Our code and dataset can\nbe found at https://github.com/jizhi-zhang/FaiRLLM.", + "authors": "Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang, Fuli Feng, Xiangnan He", + "published": "2023-05-12", + "updated": "2023-10-17", + "primary_cat": "cs.IR", + "cats": [ + "cs.IR", + "cs.CL", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.03514v3", + "title": "Can Large Language Models Transform Computational Social Science?", + "abstract": "Large Language Models (LLMs) are capable of successfully performing many\nlanguage processing tasks zero-shot (without training data). If zero-shot LLMs\ncan also reliably classify and explain social phenomena like persuasiveness and\npolitical ideology, then LLMs could augment the Computational Social Science\n(CSS) pipeline in important ways. This work provides a road map for using LLMs\nas CSS tools. Towards this end, we contribute a set of prompting best practices\nand an extensive evaluation pipeline to measure the zero-shot performance of 13\nlanguage models on 25 representative English CSS benchmarks. On taxonomic\nlabeling tasks (classification), LLMs fail to outperform the best fine-tuned\nmodels but still achieve fair levels of agreement with humans. On free-form\ncoding tasks (generation), LLMs produce explanations that often exceed the\nquality of crowdworkers' gold references. We conclude that the performance of\ntoday's LLMs can augment the CSS research pipeline in two ways: (1) serving as\nzero-shot data annotators on human annotation teams, and (2) bootstrapping\nchallenging creative generation tasks (e.g., explaining the underlying\nattributes of a text). In summary, LLMs are posed to meaningfully participate\nin social science analysis in partnership with humans.", + "authors": "Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen, Zhehao Zhang, Diyi Yang", + "published": "2023-04-12", + "updated": "2024-02-26", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.LG" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2312.06056v1", + "title": "METAL: Metamorphic Testing Framework for Analyzing Large-Language Model Qualities", + "abstract": "Large-Language Models (LLMs) have shifted the paradigm of natural language\ndata processing. However, their black-boxed and probabilistic characteristics\ncan lead to potential risks in the quality of outputs in diverse LLM\napplications. Recent studies have tested Quality Attributes (QAs), such as\nrobustness or fairness, of LLMs by generating adversarial input texts. However,\nexisting studies have limited their coverage of QAs and tasks in LLMs and are\ndifficult to extend. Additionally, these studies have only used one evaluation\nmetric, Attack Success Rate (ASR), to assess the effectiveness of their\napproaches. We propose a MEtamorphic Testing for Analyzing LLMs (METAL)\nframework to address these issues by applying Metamorphic Testing (MT)\ntechniques. This approach facilitates the systematic testing of LLM qualities\nby defining Metamorphic Relations (MRs), which serve as modularized evaluation\nmetrics. The METAL framework can automatically generate hundreds of MRs from\ntemplates that cover various QAs and tasks. In addition, we introduced novel\nmetrics that integrate the ASR method into the semantic qualities of text to\nassess the effectiveness of MRs accurately. Through the experiments conducted\nwith three prominent LLMs, we have confirmed that the METAL framework\neffectively evaluates essential QAs on primary LLM tasks and reveals the\nquality risks in LLMs. Moreover, the newly proposed metrics can guide the\noptimal MRs for testing each task and suggest the most effective method for\ngenerating MRs.", + "authors": "Sangwon Hyun, Mingyu Guo, M. Ali Babar", + "published": "2023-12-11", + "updated": "2023-12-11", + "primary_cat": "cs.SE", + "cats": [ + "cs.SE", + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2304.03728v1", + "title": "Interpretable Unified Language Checking", + "abstract": "Despite recent concerns about undesirable behaviors generated by large\nlanguage models (LLMs), including non-factual, biased, and hateful language, we\nfind LLMs are inherent multi-task language checkers based on their latent\nrepresentations of natural and social knowledge. We present an interpretable,\nunified, language checking (UniLC) method for both human and machine-generated\nlanguage that aims to check if language input is factual and fair. While\nfairness and fact-checking tasks have been handled separately with dedicated\nmodels, we find that LLMs can achieve high performance on a combination of\nfact-checking, stereotype detection, and hate speech detection tasks with a\nsimple, few-shot, unified set of prompts. With the ``1/2-shot'' multi-task\nlanguage checking method proposed in this work, the GPT3.5-turbo model\noutperforms fully supervised baselines on several language tasks. The simple\napproach and results suggest that based on strong latent knowledge\nrepresentations, an LLM can be an adaptive and explainable tool for detecting\nmisinformation, stereotypes, and hate speech.", + "authors": "Tianhua Zhang, Hongyin Luo, Yung-Sung Chuang, Wei Fang, Luc Gaitskell, Thomas Hartvigsen, Xixin Wu, Danny Fox, Helen Meng, James Glass", + "published": "2023-04-07", + "updated": "2023-04-07", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.06852v2", + "title": "ChemLLM: A Chemical Large Language Model", + "abstract": "Large language models (LLMs) have made impressive progress in chemistry\napplications. However, the community lacks an LLM specifically designed for\nchemistry. The main challenges are two-fold: firstly, most chemical data and\nscientific knowledge are stored in structured databases, which limits the\nmodel's ability to sustain coherent dialogue when used directly. Secondly,\nthere is an absence of objective and fair benchmark that encompass most\nchemistry tasks. Here, we introduce ChemLLM, a comprehensive framework that\nfeatures the first LLM dedicated to chemistry. It also includes ChemData, a\ndataset specifically designed for instruction tuning, and ChemBench, a robust\nbenchmark covering nine essential chemistry tasks. ChemLLM is adept at\nperforming various tasks across chemical disciplines with fluid dialogue\ninteraction. Notably, ChemLLM achieves results comparable to GPT-4 on the core\nchemical tasks and demonstrates competitive performance with LLMs of similar\nsize in general scenarios. ChemLLM paves a new path for exploration in chemical\nstudies, and our method of incorporating structured chemical knowledge into\ndialogue systems sets a new standard for developing LLMs in various scientific\nfields. Codes, Datasets, and Model weights are publicly accessible at\nhttps://hf.co/AI4Chem", + "authors": "Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang, Xiangyu Yue, Wanli Ouyang, Dongzhan Zhou, Shufei Zhang, Mao Su, Han-Sen Zhong, Yuqiang Li", + "published": "2024-02-10", + "updated": "2024-04-25", + "primary_cat": "cs.AI", + "cats": [ + "cs.AI", + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.18130v2", + "title": "DELPHI: Data for Evaluating LLMs' Performance in Handling Controversial Issues", + "abstract": "Controversy is a reflection of our zeitgeist, and an important aspect to any\ndiscourse. The rise of large language models (LLMs) as conversational systems\nhas increased public reliance on these systems for answers to their various\nquestions. Consequently, it is crucial to systematically examine how these\nmodels respond to questions that pertaining to ongoing debates. However, few\nsuch datasets exist in providing human-annotated labels reflecting the\ncontemporary discussions. To foster research in this area, we propose a novel\nconstruction of a controversial questions dataset, expanding upon the publicly\nreleased Quora Question Pairs Dataset. This dataset presents challenges\nconcerning knowledge recency, safety, fairness, and bias. We evaluate different\nLLMs using a subset of this dataset, illuminating how they handle controversial\nissues and the stances they adopt. This research ultimately contributes to our\nunderstanding of LLMs' interaction with controversial issues, paving the way\nfor improvements in their comprehension and handling of complex societal\ndebates.", + "authors": "David Q. Sun, Artem Abzaliev, Hadas Kotek, Zidi Xiu, Christopher Klein, Jason D. Williams", + "published": "2023-10-27", + "updated": "2023-11-07", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.HC" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2310.18333v3", + "title": "She had Cobalt Blue Eyes: Prompt Testing to Create Aligned and Sustainable Language Models", + "abstract": "As the use of large language models (LLMs) increases within society, as does\nthe risk of their misuse. Appropriate safeguards must be in place to ensure LLM\noutputs uphold the ethical standards of society, highlighting the positive role\nthat artificial intelligence technologies can have. Recent events indicate\nethical concerns around conventionally trained LLMs, leading to overall unsafe\nuser experiences. This motivates our research question: how do we ensure LLM\nalignment? In this work, we introduce a test suite of unique prompts to foster\nthe development of aligned LLMs that are fair, safe, and robust. We show that\nprompting LLMs at every step of the development pipeline, including data\ncuration, pre-training, and fine-tuning, will result in an overall more\nresponsible model. Our test suite evaluates outputs from four state-of-the-art\nlanguage models: GPT-3.5, GPT-4, OPT, and LLaMA-2. The assessment presented in\nthis paper highlights a gap between societal alignment and the capabilities of\ncurrent LLMs. Additionally, implementing a test suite such as ours lowers the\nenvironmental overhead of making models safe and fair.", + "authors": "Veronica Chatrath, Oluwanifemi Bamgbose, Shaina Raza", + "published": "2023-10-20", + "updated": "2023-12-15", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.09447v2", + "title": "How Trustworthy are Open-Source LLMs? An Assessment under Malicious Demonstrations Shows their Vulnerabilities", + "abstract": "The rapid progress in open-source Large Language Models (LLMs) is\nsignificantly driving AI development forward. However, there is still a limited\nunderstanding of their trustworthiness. Deploying these models at scale without\nsufficient trustworthiness can pose significant risks, highlighting the need to\nuncover these issues promptly. In this work, we conduct an adversarial\nassessment of open-source LLMs on trustworthiness, scrutinizing them across\neight different aspects including toxicity, stereotypes, ethics, hallucination,\nfairness, sycophancy, privacy, and robustness against adversarial\ndemonstrations. We propose advCoU, an extended Chain of Utterances-based (CoU)\nprompting strategy by incorporating carefully crafted malicious demonstrations\nfor trustworthiness attack. Our extensive experiments encompass recent and\nrepresentative series of open-source LLMs, including Vicuna, MPT, Falcon,\nMistral, and Llama 2. The empirical outcomes underscore the efficacy of our\nattack strategy across diverse aspects. More interestingly, our result analysis\nreveals that models with superior performance in general NLP tasks do not\nalways have greater trustworthiness; in fact, larger models can be more\nvulnerable to attacks. Additionally, models that have undergone instruction\ntuning, focusing on instruction following, tend to be more susceptible,\nalthough fine-tuning LLMs for safety alignment proves effective in mitigating\nadversarial trustworthiness attacks.", + "authors": "Lingbo Mo, Boshi Wang, Muhao Chen, Huan Sun", + "published": "2023-11-15", + "updated": "2024-04-02", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.18502v1", + "title": "Few-Shot Fairness: Unveiling LLM's Potential for Fairness-Aware Classification", + "abstract": "Employing Large Language Models (LLM) in various downstream applications such\nas classification is crucial, especially for smaller companies lacking the\nexpertise and resources required for fine-tuning a model. Fairness in LLMs\nhelps ensure inclusivity, equal representation based on factors such as race,\ngender and promotes responsible AI deployment. As the use of LLMs has become\nincreasingly prevalent, it is essential to assess whether LLMs can generate\nfair outcomes when subjected to considerations of fairness. In this study, we\nintroduce a framework outlining fairness regulations aligned with various\nfairness definitions, with each definition being modulated by varying degrees\nof abstraction. We explore the configuration for in-context learning and the\nprocedure for selecting in-context demonstrations using RAG, while\nincorporating fairness rules into the process. Experiments conducted with\ndifferent LLMs indicate that GPT-4 delivers superior results in terms of both\naccuracy and fairness compared to other models. This work is one of the early\nattempts to achieve fairness in prediction tasks by utilizing LLMs through\nin-context learning.", + "authors": "Garima Chhikara, Anurag Sharma, Kripabandhu Ghosh, Abhijnan Chakraborty", + "published": "2024-02-28", + "updated": "2024-02-28", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2311.18580v1", + "title": "FFT: Towards Harmlessness Evaluation and Analysis for LLMs with Factuality, Fairness, Toxicity", + "abstract": "The widespread of generative artificial intelligence has heightened concerns\nabout the potential harms posed by AI-generated texts, primarily stemming from\nfactoid, unfair, and toxic content. Previous researchers have invested much\neffort in assessing the harmlessness of generative language models. However,\nexisting benchmarks are struggling in the era of large language models (LLMs),\ndue to the stronger language generation and instruction following capabilities,\nas well as wider applications. In this paper, we propose FFT, a new benchmark\nwith 2116 elaborated-designed instances, for LLM harmlessness evaluation with\nfactuality, fairness, and toxicity. To investigate the potential harms of LLMs,\nwe evaluate 9 representative LLMs covering various parameter scales, training\nstages, and creators. Experiments show that the harmlessness of LLMs is still\nunder-satisfactory, and extensive analysis derives some insightful findings\nthat could inspire future research for harmless LLM research.", + "authors": "Shiyao Cui, Zhenyu Zhang, Yilong Chen, Wenyuan Zhang, Tianyun Liu, Siqi Wang, Tingwen Liu", + "published": "2023-11-30", + "updated": "2023-11-30", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.CR" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2307.11761v1", + "title": "Fairness of ChatGPT and the Role Of Explainable-Guided Prompts", + "abstract": "Our research investigates the potential of Large-scale Language Models\n(LLMs), specifically OpenAI's GPT, in credit risk assessment-a binary\nclassification task. Our findings suggest that LLMs, when directed by\njudiciously designed prompts and supplemented with domain-specific knowledge,\ncan parallel the performance of traditional Machine Learning (ML) models.\nIntriguingly, they achieve this with significantly less data-40 times less,\nutilizing merely 20 data points compared to the ML's 800. LLMs particularly\nexcel in minimizing false positives and enhancing fairness, both being vital\naspects of risk analysis. While our results did not surpass those of classical\nML models, they underscore the potential of LLMs in analogous tasks, laying a\ngroundwork for future explorations into harnessing the capabilities of LLMs in\ndiverse ML tasks.", + "authors": "Yashar Deldjoo", + "published": "2023-07-14", + "updated": "2023-07-14", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2309.08836v2", + "title": "Bias and Fairness in Chatbots: An Overview", + "abstract": "Chatbots have been studied for more than half a century. With the rapid\ndevelopment of natural language processing (NLP) technologies in recent years,\nchatbots using large language models (LLMs) have received much attention\nnowadays. Compared with traditional ones, modern chatbots are more powerful and\nhave been used in real-world applications. There are however, bias and fairness\nconcerns in modern chatbot design. Due to the huge amounts of training data,\nextremely large model sizes, and lack of interpretability, bias mitigation and\nfairness preservation of modern chatbots are challenging. Thus, a comprehensive\noverview on bias and fairness in chatbot systems is given in this paper. The\nhistory of chatbots and their categories are first reviewed. Then, bias sources\nand potential harms in applications are analyzed. Considerations in designing\nfair and unbiased chatbot systems are examined. Finally, future research\ndirections are discussed.", + "authors": "Jintang Xue, Yun-Cheng Wang, Chengwei Wei, Xiaofeng Liu, Jonghye Woo, C. -C. Jay Kuo", + "published": "2023-09-16", + "updated": "2023-12-10", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI", + "cs.CY" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2402.04489v1", + "title": "De-amplifying Bias from Differential Privacy in Language Model Fine-tuning", + "abstract": "Fairness and privacy are two important values machine learning (ML)\npractitioners often seek to operationalize in models. Fairness aims to reduce\nmodel bias for social/demographic sub-groups. Privacy via differential privacy\n(DP) mechanisms, on the other hand, limits the impact of any individual's\ntraining data on the resulting model. The trade-offs between privacy and\nfairness goals of trustworthy ML pose a challenge to those wishing to address\nboth. We show that DP amplifies gender, racial, and religious bias when\nfine-tuning large language models (LLMs), producing models more biased than\nones fine-tuned without DP. We find the cause of the amplification to be a\ndisparity in convergence of gradients across sub-groups. Through the case of\nbinary gender bias, we demonstrate that Counterfactual Data Augmentation (CDA),\na known method for addressing bias, also mitigates bias amplification by DP. As\na consequence, DP and CDA together can be used to fine-tune models while\nmaintaining both fairness and privacy.", + "authors": "Sanjari Srivastava, Piotr Mardziel, Zhikhun Zhang, Archana Ahlawat, Anupam Datta, John C Mitchell", + "published": "2024-02-07", + "updated": "2024-02-07", + "primary_cat": "cs.LG", + "cats": [ + "cs.LG", + "cs.CR", + "cs.CY", + "stat.ME" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2305.11595v3", + "title": "Examining Inter-Consistency of Large Language Models Collaboration: An In-depth Analysis via Debate", + "abstract": "Large Language Models (LLMs) have shown impressive capabilities in various\napplications, but they still face various inconsistency issues. Existing works\nprimarily focus on the inconsistency issues within a single LLM, while we\ncomplementarily explore the inter-consistency among multiple LLMs for\ncollaboration. To examine whether LLMs can collaborate effectively to achieve a\nconsensus for a shared goal, we focus on commonsense reasoning, and introduce a\nformal debate framework (FORD) to conduct a three-stage debate among LLMs with\nreal-world scenarios alignment: fair debate, mismatched debate, and roundtable\ndebate. Through extensive experiments on various datasets, LLMs can effectively\ncollaborate to reach a consensus despite noticeable inter-inconsistencies, but\nimbalances in their abilities can lead to domination by superior LLMs.\nLeveraging a more advanced LLM like GPT-4 as an authoritative judge can boost\ncollaboration performance. Our work contributes to understanding the\ninter-consistency among LLMs and lays the foundation for developing future\ncollaboration methods. Codes and data are available at\nhttps://github.com/Waste-Wood/FORD", + "authors": "Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, Bing Qin", + "published": "2023-05-19", + "updated": "2023-10-18", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + }, + { + "url": "http://arxiv.org/abs/2404.01349v1", + "title": "Fairness in Large Language Models: A Taxonomic Survey", + "abstract": "Large Language Models (LLMs) have demonstrated remarkable success across\nvarious domains. However, despite their promising performance in numerous\nreal-world applications, most of these algorithms lack fairness considerations.\nConsequently, they may lead to discriminatory outcomes against certain\ncommunities, particularly marginalized populations, prompting extensive study\nin fair LLMs. On the other hand, fairness in LLMs, in contrast to fairness in\ntraditional machine learning, entails exclusive backgrounds, taxonomies, and\nfulfillment techniques. To this end, this survey presents a comprehensive\noverview of recent advances in the existing literature concerning fair LLMs.\nSpecifically, a brief introduction to LLMs is provided, followed by an analysis\nof factors contributing to bias in LLMs. Additionally, the concept of fairness\nin LLMs is discussed categorically, summarizing metrics for evaluating bias in\nLLMs and existing algorithms for promoting fairness. Furthermore, resources for\nevaluating bias in LLMs, including toolkits and datasets, are summarized.\nFinally, existing research challenges and open questions are discussed.", + "authors": "Zhibo Chu, Zichong Wang, Wenbin Zhang", + "published": "2024-03-31", + "updated": "2024-03-31", + "primary_cat": "cs.CL", + "cats": [ + "cs.CL", + "cs.AI" + ], + "category": "LLM Fairness" + } +] \ No newline at end of file