| import os | |
| import time | |
| import json | |
| import markdown | |
| import requests | |
| import argparse | |
| from pathlib import Path | |
| from bs4 import BeautifulSoup | |
| from utils import read_file_paths, validate_json_save_path, load_json_file | |
| CATEGORY_MAP = { | |
| "text": "paragraph", | |
| "heading": "heading1", | |
| "table": "table" | |
| } | |
| class LlamaParseInference: | |
| def __init__( | |
| self, | |
| save_path, | |
| input_formats=[".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic"] | |
| ): | |
| """Initialize the LlamaParseInference class | |
| Args: | |
| save_path (str): the json path to save the results | |
| input_formats (list, optional): the supported file formats. | |
| """ | |
| self.formats = input_formats | |
| self.api_key = os.getenv("LLAMAPARSE_API_KEY") or "" | |
| self.post_url = os.getenv("LLAMAPARSE_POST_URL") or "" | |
| self.get_url = os.getenv("LLAMAPARSE_GET_URL") or "" | |
| if not all([self.api_key, self.post_url, self.get_url]): | |
| raise ValueError("Please set the environment variables for LlamaParse") | |
| self.headers = { | |
| "Accept": "application/json", | |
| "Authorization": f"Bearer {self.api_key}", | |
| } | |
| validate_json_save_path(save_path) | |
| self.save_path = save_path | |
| self.processed_data = load_json_file(save_path) | |
| def post_process(self, data): | |
| processed_dict = {} | |
| for input_key in data.keys(): | |
| output_data = data[input_key] | |
| processed_dict[input_key] = { | |
| "elements": [] | |
| } | |
| id_counter = 0 | |
| for elem in output_data["pages"]: | |
| for item in elem["items"]: | |
| coord = [[0, 0], [0, 0], [0, 0], [0, 0]] | |
| category = item["type"] | |
| if category == "table": | |
| transcription = markdown.markdown( | |
| item["md"], | |
| extensions=["markdown.extensions.tables"] | |
| ) | |
| transcription = transcription.replace("\n", "") | |
| else: | |
| transcription = item["value"] | |
| pts = item["bBox"] | |
| if "x" in pts and "y" in pts and \ | |
| "w" in pts and "h" in pts: | |
| coord = [ | |
| [pts["x"], pts["y"]], | |
| [pts["x"] + pts["w"], pts["y"]], | |
| [pts["x"] + pts["w"], pts["y"] + pts["h"]], | |
| [pts["x"], pts["y"] + pts["h"]], | |
| ] | |
| xy_coord = [{"x": x, "y": y} for x, y in coord] | |
| category = CATEGORY_MAP.get(category, "paragraph") | |
| data_dict = { | |
| "coordinates": xy_coord, | |
| "category": category, | |
| "id": id_counter, | |
| "content": { | |
| "text": transcription if category != "table" else "", | |
| "html": transcription if category == "table" else "", | |
| "markdown": "" | |
| } | |
| } | |
| processed_dict[input_key]["elements"].append(data_dict) | |
| id_counter += 1 | |
| for key in self.processed_data: | |
| processed_dict[key] = self.processed_data[key] | |
| return processed_dict | |
| def infer(self, file_path): | |
| """Infer the layout of the documents in the given file path | |
| Args: | |
| file_path (str): the path to the file or directory containing the documents to process | |
| """ | |
| paths = read_file_paths(file_path, supported_formats=self.formats) | |
| error_files = [] | |
| result_dict = {} | |
| for filepath in paths: | |
| print("({}/{}) Processing {}".format(paths.index(filepath) + 1, len(paths), filepath)) | |
| filename = filepath.name | |
| if filename in self.processed_data.keys(): | |
| print(f"'{filename}' is already in the loaded dictionary. Skipping this sample") | |
| continue | |
| try: | |
| with open(filepath, "rb") as file_data: | |
| file_data = { | |
| "file": ("dummy.pdf", file_data, "") | |
| } | |
| data = { | |
| "invalidate_cache": True, | |
| "premium_mode": True, | |
| "disable_ocr": False | |
| } | |
| response = requests.post( | |
| self.post_url, headers=self.headers, files=file_data, data=data | |
| ) | |
| result_data = response.json() | |
| status = result_data["status"] | |
| id_ = result_data["id"] | |
| while status == "PENDING": | |
| get_url = f"{self.get_url}/{id_}" | |
| response = requests.get(get_url, headers=self.headers) | |
| response_json = response.json() | |
| status = response_json["status"] | |
| if status == "SUCCESS": | |
| get_url = f"{self.get_url}/{id_}/result/json" | |
| response = requests.get(get_url, headers=self.headers) | |
| break | |
| time.sleep(1) | |
| result_dict[filename] = response.json() | |
| except Exception as e: | |
| print(e) | |
| print("Error processing document..") | |
| error_files.append(filepath) | |
| continue | |
| result_dict = self.post_process(result_dict) | |
| with open(self.save_path, "w") as f: | |
| json.dump(result_dict, f) | |
| for error_file in error_files: | |
| print(f"Error processing file: {error_file}") | |
| print("Finished processing all documents") | |
| print("Results saved to: {}".format(self.save_path)) | |
| print("Number of errors: {}".format(len(error_files))) | |
| if __name__ == "__main__": | |
| args = argparse.ArgumentParser() | |
| args.add_argument( | |
| "--data_path", | |
| type=str, default="", required=True, | |
| help="Path containing the documents to process" | |
| ) | |
| args.add_argument( | |
| "--save_path", | |
| type=str, default="", required=True, | |
| help="Path to save the results" | |
| ) | |
| args.add_argument( | |
| "--input_formats", | |
| type=list, default=[ | |
| ".pdf", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".heic" | |
| ], | |
| help="Supported input file formats" | |
| ) | |
| args = args.parse_args() | |
| llamaparse_inference = LlamaParseInference( | |
| args.save_path, | |
| input_formats=args.input_formats | |
| ) | |
| llamaparse_inference.infer(args.data_path) | |