Vincenzo Gallo commited on
Commit
6759906
·
1 Parent(s): c072eb2

Add CodeReality-1T Evaluation Subset (19GB)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. EVAL_SUBSET.md +102 -0
  2. Notebook/CodeReality_Full_Dataset_Exploration.ipynb +3 -0
  3. README.md +250 -0
  4. analysis/dataset_index.json +3 -0
  5. analysis/language_stats.json +3 -0
  6. analysis/metrics.json +3 -0
  7. benchmarks/README.md +184 -0
  8. benchmarks/benchmark_summary.csv +3 -0
  9. benchmarks/bug_detection_benchmark.py +278 -0
  10. benchmarks/code_completion_benchmark.py +357 -0
  11. benchmarks/cross_language_translation_benchmark.py +331 -0
  12. benchmarks/license_detection_benchmark.py +197 -0
  13. data/README.md +56 -0
  14. data/enhanced_enhanced_enhanced_sustained_batch_000066_20250902_220910.jsonl +3 -0
  15. data/enhanced_enhanced_enhanced_sustained_batch_000101_20250829_181259.jsonl +3 -0
  16. data/enhanced_enhanced_enhanced_sustained_batch_000138_20250829_063128.jsonl +3 -0
  17. data/enhanced_enhanced_enhanced_sustained_batch_000750_20250829_004837.jsonl +3 -0
  18. data/enhanced_enhanced_enhanced_sustained_batch_001012_20250830_153945.jsonl +3 -0
  19. data/enhanced_enhanced_enhanced_sustained_batch_001122_20250905_155200.jsonl +3 -0
  20. data/enhanced_enhanced_enhanced_sustained_batch_001200_20250908_113430.jsonl +3 -0
  21. data/enhanced_enhanced_enhanced_sustained_batch_001231_20250909_120242.jsonl +3 -0
  22. data/enhanced_enhanced_enhanced_sustained_batch_001636_20250911_144513.jsonl +3 -0
  23. data/enhanced_enhanced_sustained_batch_000012_20250829_082023.jsonl +3 -0
  24. data/enhanced_enhanced_sustained_batch_000022_20250913_172734.jsonl +3 -0
  25. data/enhanced_enhanced_sustained_batch_000023_20250830_052929.jsonl +3 -0
  26. data/enhanced_enhanced_sustained_batch_000026_20250910_170950.jsonl +3 -0
  27. data/enhanced_enhanced_sustained_batch_000037_20250901_115620.jsonl +3 -0
  28. data/enhanced_enhanced_sustained_batch_000037_20250905_185022.jsonl +3 -0
  29. data/enhanced_enhanced_sustained_batch_000042_20250909_195036.jsonl +3 -0
  30. data/enhanced_enhanced_sustained_batch_000052_20250901_000828.jsonl +3 -0
  31. data/enhanced_enhanced_sustained_batch_000055_20250906_072036.jsonl +3 -0
  32. data/enhanced_enhanced_sustained_batch_000065_20250911_175251.jsonl +3 -0
  33. data/enhanced_enhanced_sustained_batch_000068_20250913_181533.jsonl +3 -0
  34. data/enhanced_enhanced_sustained_batch_000071_20250905_193927.jsonl +3 -0
  35. data/enhanced_enhanced_sustained_batch_000075_20250905_194728.jsonl +3 -0
  36. data/enhanced_enhanced_sustained_batch_000080_20250906_140532.jsonl +3 -0
  37. data/enhanced_enhanced_sustained_batch_000086_20250903_223328.jsonl +3 -0
  38. data/enhanced_enhanced_sustained_batch_000092_20250904_224315.jsonl +3 -0
  39. data/enhanced_enhanced_sustained_batch_000100_20250902_010630.jsonl +3 -0
  40. data/enhanced_enhanced_sustained_batch_000106_20250911_182607.jsonl +3 -0
  41. data/enhanced_enhanced_sustained_batch_000107_20250831_125844.jsonl +3 -0
  42. data/enhanced_enhanced_sustained_batch_000112_20250907_203743.jsonl +3 -0
  43. data/enhanced_enhanced_sustained_batch_000116_20250831_130816.jsonl +3 -0
  44. data/enhanced_enhanced_sustained_batch_000133_20250902_013852.jsonl +3 -0
  45. data/enhanced_enhanced_sustained_batch_000139_20250829_183519.jsonl +3 -0
  46. data/enhanced_enhanced_sustained_batch_000144_20250827_222718.jsonl +3 -0
  47. data/enhanced_enhanced_sustained_batch_000145_20250905_213029.jsonl +3 -0
  48. data/enhanced_enhanced_sustained_batch_000148_20250909_211703.jsonl +3 -0
  49. data/enhanced_enhanced_sustained_batch_000175_20250913_200555.jsonl +3 -0
  50. data/enhanced_enhanced_sustained_batch_000192_20250830_192234.jsonl +3 -0
EVAL_SUBSET.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CodeReality-1T Evaluation Subset
2
+
3
+ ## Location
4
+ The completed evaluation subset (19GB) is located at:
5
+ ```
6
+ /mnt/z/CodeReality_Final/codereality-1t/eval/subset/data/
7
+ ```
8
+
9
+ ## Subset Statistics
10
+
11
+ ### Overall Metrics
12
+ - **Files**: 323 JSONL files
13
+ - **Size**: 19.0 GB
14
+ - **Repositories**: 2,049 estimated
15
+ - **Creation**: Research value scoring with diversity sampling
16
+
17
+ ### Research Characteristics
18
+ | Characteristic | Count | Percentage | Details |
19
+ |----------------|--------|------------|---------|
20
+ | Multi-repo files (5+ repos) | 323 | 100% | Files containing 5+ repositories each |
21
+ | Files with commit history | 2,049 | 100% | Complete git history available |
22
+ | Cross-language content | 1,495 | 73% | Repositories with multiple programming languages |
23
+ | Build system configurations | 798 | 39% | Makefile, package.json, build.gradle, pom.xml |
24
+ | Issue tracking data | 1,209 | 59% | GitHub/GitLab issues and discussions |
25
+ | Bug-fix commits | 1,845 | 90% | Commits identified as bug fixes |
26
+ | Test coverage | 1,332 | 65% | Repositories with test files |
27
+ | Documentation | 1,843 | 90% | README and documentation files |
28
+
29
+ ### Repository Size Distribution
30
+ | Size Range | Repositories | Average Size |
31
+ |------------|-------------|--------------|
32
+ | Small (< 10MB) | ~800 | 3.2 MB |
33
+ | Medium (10-100MB) | ~1,100 | 42.1 MB |
34
+ | Large (> 100MB) | ~149 | 187.3 MB |
35
+
36
+ ### Language Diversity (Estimated)
37
+ - **JavaScript/TypeScript**: ~35% of content
38
+ - **Python**: ~20% of content
39
+ - **Java/C/C++**: ~25% of content
40
+ - **Mixed/Other**: ~20% of content
41
+
42
+ ## Structure
43
+ ```
44
+ eval_subset/
45
+ ├── data/ # 280 curated JSONL files (15.1GB)
46
+ ├── docs/ # Usage examples and documentation
47
+ ├── eval_metadata.json # Complete subset metadata
48
+ └── USAGE_EXAMPLES.md # Demonstration code examples
49
+ ```
50
+
51
+ ## Usage
52
+ The subset is ready for:
53
+ - Code completion benchmarks (Pass@k evaluation)
54
+ - License detection training/testing
55
+ - Cross-language analysis
56
+ - Bug detection studies
57
+ - Repository classification
58
+
59
+ ## Access
60
+ To use the evaluation subset:
61
+
62
+ ```python
63
+ import json
64
+ import os
65
+
66
+ eval_dir = "/mnt/z/CodeReality_Final/codereality-1t/eval/subset"
67
+
68
+ # Load metadata
69
+ with open(os.path.join(eval_dir, 'eval_metadata.json'), 'r') as f:
70
+ metadata = json.load(f)
71
+
72
+ print(f"Subset: {metadata['eval_subset_info']['name']}")
73
+ print(f"Files: {metadata['subset_statistics']['total_files']}")
74
+ print(f"Size: {metadata['subset_statistics']['total_size_gb']} GB")
75
+
76
+ # Load sample data
77
+ data_dir = os.path.join(eval_dir, 'data')
78
+ for filename in os.listdir(data_dir)[:5]: # First 5 files
79
+ file_path = os.path.join(data_dir, filename)
80
+ with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
81
+ for line in f:
82
+ repo_data = json.loads(line)
83
+ print(f"Repository: {repo_data.get('name', 'Unknown')}")
84
+ break # Just first repo from each file
85
+ ```
86
+
87
+ ## Benchmarks
88
+ Demonstration benchmarks available in `../benchmarks/`:
89
+ - `license_detection_benchmark.py`
90
+ - `code_completion_benchmark.py`
91
+
92
+ See `../benchmarks/README.md` for detailed usage instructions.
93
+
94
+ ## Metadata
95
+ Complete metadata available in `eval_metadata.json` includes:
96
+ - Selection methodology
97
+ - Research characteristics
98
+ - Size distribution
99
+ - File manifest with checksums
100
+ - Recommended evaluation tasks
101
+
102
+ This subset represents a curated, research-ready portion of the complete CodeReality-1T dataset optimized for standardized evaluation and benchmarking.
Notebook/CodeReality_Full_Dataset_Exploration.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbb16b798b3792c34e14b413f3ac9148d8ae85b3612231bebaf95fe8a5e73bbb
3
+ size 10348
README.md ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CodeReality-1T: Large-Scale Deliberately Noisy Code Dataset
2
+
3
+ ![Dataset Status](https://img.shields.io/badge/status-complete-brightgreen)
4
+ ![BigCode Compliant](https://img.shields.io/badge/BigCode-compliant-blue)
5
+ ![Size](https://img.shields.io/badge/size-3.05TB-orange)
6
+ ![Repositories](https://img.shields.io/badge/repositories-397,475-red)
7
+
8
+ ## ⚠️ Important Limitations
9
+
10
+ > **⚠️ Not Enterprise-Ready**: This dataset is deliberately noisy and designed for research only. Contains mixed/unknown licenses, possible secrets, potential security vulnerabilities, duplicate code, and experimental repositories. **Requires substantial preprocessing for production use.**
11
+ >
12
+ > **Use at your own risk** - this is a research dataset for robustness testing and data curation method development.
13
+
14
+ ## Overview
15
+
16
+ **CodeReality-1T** is a large-scale, deliberately noisy code repository dataset designed for robust AI research. Contains **397,475 repositories** across **21 programming languages** in **3.05 TB** of uncompressed data, specifically curated to test robustness, data curation methods, and real-world code understanding.
17
+
18
+ ### Key Features
19
+ - ✅ **Complete Coverage**: 100% analysis of all 397,475 repositories (no sampling)
20
+ - ✅ **BigCode Compliant**: Meets all community standards for transparency and reproducibility
21
+ - ✅ **Deliberately Noisy**: Includes duplicates, incomplete code, and experimental projects
22
+ - ✅ **Rich Metadata**: Enhanced Blueprint metadata with cross-domain classification
23
+ - ✅ **Professional Grade**: 63.7-hour comprehensive analysis with open source tools
24
+
25
+ ## Quick Start
26
+
27
+ ### Dataset Structure
28
+ ```
29
+ codereality-1t/
30
+ ├── data/ # Main dataset location reference
31
+ │ ├── README.md # Data access instructions
32
+ │ └── manifest.json # Integrity verification
33
+ ├── analysis/ # Analysis results
34
+ │ ├── dataset_index.json # Complete file index (29MB)
35
+ │ └── metrics.json # Comprehensive analysis results
36
+ ├── docs/ # Documentation
37
+ │ ├── DATASET_CARD.md # Comprehensive dataset card
38
+ │ └── LICENSE.md # Licensing information
39
+ └── eval/ # Evaluation subset (in progress)
40
+ └── subset/ # Curated 15GB research subset
41
+ ```
42
+
43
+ ### Loading the Dataset
44
+
45
+ ```python
46
+ import json
47
+ import os
48
+
49
+ # Load dataset index
50
+ with open('analysis/dataset_index.json', 'r') as f:
51
+ index = json.load(f)
52
+
53
+ print(f"Files: {len(index['files'])}")
54
+ print(f"Repositories: {sum(f['repository_count'] for f in index['files'])}")
55
+
56
+ # Access data files
57
+ data_dir = "/mnt/z/CodeReality_Final/unified_dataset"
58
+ for file_info in index['files'][:5]: # First 5 files
59
+ file_path = file_info['path']
60
+ with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
61
+ for line in f:
62
+ repo_data = json.loads(line)
63
+ print(f"Repository: {repo_data.get('name', 'Unknown')}")
64
+ break # Just first repo from each file
65
+ ```
66
+
67
+ ## Dataset Statistics
68
+
69
+ ### Scale
70
+ - **Total Repositories**: 397,475
71
+ - **Total Files**: 52,692 JSONL archives
72
+ - **Total Size**: 3.05 TB uncompressed
73
+ - **Languages Detected**: 21
74
+ - **Analysis Coverage**: 100% (no sampling)
75
+
76
+ ### Language Distribution (Top 10)
77
+ | Language | Repositories | Percentage |
78
+ |----------|-------------|------------|
79
+ | Unknown | 389,941 | 98.1% |
80
+ | Python | 4,738 | 1.2% |
81
+ | Shell | 4,505 | 1.1% |
82
+ | C | 3,969 | 1.0% |
83
+ | C++ | 3,339 | 0.8% |
84
+ | HTML | 2,487 | 0.6% |
85
+ | JavaScript | 2,394 | 0.6% |
86
+ | Go | 2,110 | 0.5% |
87
+ | Java | 2,026 | 0.5% |
88
+ | CSS | 1,655 | 0.4% |
89
+
90
+ ### Duplicate Analysis
91
+ **Exact Duplicates**: 0% exact SHA256 duplicates detected across file-level content
92
+ **Semantic Duplicates**: ~18% estimated semantic duplicates and forks preserved by design
93
+ **Research Value**: Duplicates intentionally maintained for real-world code distribution studies
94
+
95
+ ### License Analysis
96
+ **License Detection**: 0% detection rate (design decision for noisy dataset research)
97
+ **Unknown Licenses**: 96.4% of repositories marked as "Unknown" by design
98
+ **Research Purpose**: Preserved to test license detection systems and curation methods
99
+
100
+ ### Security Analysis
101
+ ⚠️ **Security Warning**: Dataset contains potential secrets
102
+ - Password patterns: 1,231,942 occurrences
103
+ - Token patterns: 353,266 occurrences
104
+ - Secret patterns: 71,778 occurrences
105
+ - API key patterns: 4,899 occurrences
106
+
107
+ ## Research Applications
108
+
109
+ ### Primary Use Cases
110
+ 1. **Code LLM Robustness**: Testing model performance on noisy, real-world data
111
+ 2. **Data Curation Research**: Developing automated filtering and cleaning methods
112
+ 3. **License Detection**: Training and evaluating license classification systems
113
+ 4. **Bug-Fix Studies**: Before/after commit analysis for automated debugging
114
+ 5. **Cross-Language Analysis**: Multi-language repository understanding
115
+
116
+ ### Evaluation Subset & Benchmarks
117
+ A curated **19GB evaluation subset** is now available for standardized benchmarks:
118
+ - **323 files** containing **2,049 repositories**
119
+ - Research value scoring with diversity sampling
120
+ - Cross-language implementations and multi-repo analysis
121
+ - Complete build system configurations
122
+ - Enhanced metadata with commit history and issue tracking
123
+
124
+ **Demonstration Benchmarks** available in `eval/benchmarks/`:
125
+ - **License Detection**: Automated license classification evaluation
126
+ - **Code Completion**: Pass@k metrics for code generation models
127
+ - **Extensible Framework**: Easy to add new evaluation tasks
128
+
129
+ ## Benchmarks & Results
130
+
131
+ ### 📊 **Baseline Performance**
132
+ Demonstration benchmark results available in `eval/results/`:
133
+ - [`license_detection_sample_results.json`](eval/results/license_detection_sample_results.json) - 9.8% accuracy (challenging baseline)
134
+ - [`code_completion_sample_results.json`](eval/results/code_completion_sample_results.json) - 14.2% Pass@1 (noisy data challenge)
135
+
136
+ ### 🏃 **Quick Start Benchmarking**
137
+ ```bash
138
+ cd eval/benchmarks
139
+ python3 license_detection_benchmark.py # License classification
140
+ python3 code_completion_benchmark.py # Code generation Pass@k
141
+ ```
142
+
143
+ **Note**: These are demonstration baselines, not production-ready models. Results show expected challenges of deliberately noisy data.
144
+
145
+ ### 📊 **Benchmarks & Results**
146
+ - **License Detection**: 9.8% accuracy baseline ([`license_detection_sample_results.json`](eval/results/license_detection_sample_results.json))
147
+ - **Code Completion**: 14.2% Pass@1, 34.6% Pass@5 ([`code_completion_sample_results.json`](eval/results/code_completion_sample_results.json))
148
+ - **Framework Scaffolds**: Bug detection and cross-language translation ready for community implementation
149
+ - **Complete Analysis**: [`benchmark_summary.csv`](eval/results/benchmark_summary.csv) - All metrics for easy comparison and research use
150
+
151
+ ## Usage Guidelines
152
+
153
+ ### ✅ Recommended Uses
154
+ - Academic research and education
155
+ - Robustness testing of code models
156
+ - Development of data curation methods
157
+ - License detection research
158
+ - Security pattern analysis
159
+
160
+ ### ❌ Important Limitations
161
+ - **No Commercial Use** without individual license verification
162
+ - **Research Only**: Many repositories have unknown licensing
163
+ - **Security Risk**: Contains potential secrets and vulnerabilities
164
+ - **Deliberately Noisy**: Requires preprocessing for most applications
165
+
166
+ ## Documentation
167
+
168
+ | Document | Description |
169
+ |----------|-------------|
170
+ | [Dataset Card](docs/DATASET_CARD.md) | Comprehensive dataset documentation |
171
+ | [License](docs/LICENSE.md) | Licensing terms and legal considerations |
172
+ | [Data README](data/README.md) | Data access and usage instructions |
173
+
174
+ ## Verification
175
+
176
+ Verify dataset integrity:
177
+ ```bash
178
+ # Check file counts
179
+ python3 -c "
180
+ import json
181
+ with open('analysis/dataset_index.json', 'r') as f:
182
+ idx = json.load(f)
183
+ print(f'Files: {len(idx[\"files\"])}')
184
+ print(f'Repositories: {sum(f[\"repository_count\"] for f in idx[\"files\"])}')
185
+ "
186
+
187
+ # Expected output:
188
+ # Files: 52692
189
+ # Repositories: 397475
190
+ ```
191
+
192
+ ## Citation
193
+
194
+ ```bibtex
195
+ @misc{codereality2025,
196
+ title={CodeReality-1T: A Large-Scale Deliberately Noisy Dataset for Robust Code Understanding},
197
+ author={Vincenzo Gallo},
198
+ year={2025},
199
+ publisher={Hugging Face},
200
+ howpublished={\\url{https://huggingface.co/vinsblack}},
201
+ note={Version 1.0.0}
202
+ }
203
+ ```
204
+
205
+ ## Community Contributions
206
+
207
+ We welcome community contributions to improve CodeReality-1T:
208
+
209
+ ### 🛠️ **Data Curation Scripts**
210
+ - Contribute filtering and cleaning scripts for the noisy dataset
211
+ - Share deduplication algorithms and quality improvement tools
212
+ - Submit license detection and classification improvements
213
+
214
+ ### 📊 **New Benchmarks**
215
+ - Add evaluation tasks beyond license detection and code completion
216
+ - Contribute cross-language analysis benchmarks
217
+ - Share bug detection and security analysis evaluations
218
+
219
+ ### 📈 **Future Versions**
220
+ - **v1.1.0**: Enhanced evaluation subset with community feedback
221
+ - **v1.2.0**: Improved license detection and filtering tools
222
+ - **v2.0.0**: Community-curated clean variant with quality filters
223
+
224
+ ### 🤝 **How to Contribute**
225
+ **Community contributions are actively welcomed and encouraged!** Help improve the largest deliberately noisy code dataset.
226
+
227
+ **🎯 Priority Contribution Areas**:
228
+ - **Data Curation**: Cleaning scripts, deduplication algorithms, quality filters
229
+ - **Benchmarks**: New evaluation tasks, improved baselines, framework implementations
230
+ - **Analysis Tools**: Visualization, statistics, metadata enhancement
231
+ - **Documentation**: Usage examples, tutorials, case studies
232
+
233
+ **📋 Contribution Process**:
234
+ 1. Fork: https://github.com/vinsguru/codereality-1t
235
+ 2. Check Issues for current needs and coordination
236
+ 3. Create feature branch for your contribution
237
+ 4. Submit pull request with detailed description and testing
238
+ 5. Engage in community review and discussions
239
+
240
+ **💡 Join the Community**: Share your research, tools, and insights using CodeReality-1T!
241
+
242
+ ## Support
243
+
244
+ - **Documentation**: See `docs/` directory
245
+ - **Issues**: https://github.com/vinsguru/codereality-1t/issues
246
+ - **Contact**: [email protected]
247
+
248
+ ---
249
+
250
+ *Dataset created using BigCode-compliant methodology with complete transparency and reproducibility. Analysis completed in 63.7 hours with 100% coverage and no sampling.*
analysis/dataset_index.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e39d4864fbe89229e1df541a3871512b20285bc4630bfad83c4cdedd746d35f3
3
+ size 29381456
analysis/language_stats.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e39d4864fbe89229e1df541a3871512b20285bc4630bfad83c4cdedd746d35f3
3
+ size 29381456
analysis/metrics.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79330a07c49c814dab4036b8b0959a11b5cc7bc4f6f9f8a62dc8a9fde62022df
3
+ size 4455
benchmarks/README.md ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CodeReality-1T Evaluation Benchmarks
2
+
3
+ This directory contains demonstration benchmark scripts for evaluating models on the CodeReality-1T dataset.
4
+
5
+ ## Available Benchmarks
6
+
7
+ ### 1. License Detection Benchmark
8
+ **File**: `license_detection_benchmark.py`
9
+
10
+ **Purpose**: Evaluates automated license classification systems on deliberately noisy data.
11
+
12
+ **Features**:
13
+ - Rule-based feature extraction from repository content
14
+ - Simple classification model for demonstration
15
+ - Performance metrics on license detection accuracy
16
+ - Analysis of license distribution patterns
17
+
18
+ **Usage**:
19
+ ```bash
20
+ cd /path/to/codereality-1t/eval/benchmarks
21
+ python3 license_detection_benchmark.py
22
+ ```
23
+
24
+ **Expected Results**:
25
+ - Low accuracy due to deliberately noisy dataset (0% license detection by design)
26
+ - Demonstrates robustness testing for license detection systems
27
+ - Outputs detailed distribution analysis
28
+
29
+ ### 2. Code Completion Benchmark
30
+ **File**: `code_completion_benchmark.py`
31
+
32
+ **Purpose**: Evaluates code completion models using Pass@k metrics on real-world noisy code.
33
+
34
+ **Features**:
35
+ - Function extraction from Python, JavaScript, Java files
36
+ - Simple rule-based completion model for demonstration
37
+ - Pass@1, Pass@3, Pass@5 metric calculation
38
+ - Multi-language support with language-specific patterns
39
+
40
+ **Usage**:
41
+ ```bash
42
+ cd /path/to/codereality-1t/eval/benchmarks
43
+ python3 code_completion_benchmark.py
44
+ ```
45
+
46
+ **Expected Results**:
47
+ - Baseline performance metrics for comparison
48
+ - Language distribution analysis
49
+ - Quality scoring of completions
50
+
51
+ ## Benchmark Characteristics
52
+
53
+ ### Dataset Integration
54
+ - **Data Source**: Loads from `/mnt/z/CodeReality_Final/unified_dataset` by default
55
+ - **Sampling**: Uses random sampling for performance (configurable)
56
+ - **Formats**: Handles JSONL repository format from CodeReality-1T
57
+
58
+ ### Evaluation Philosophy
59
+ - **Deliberately Noisy**: Tests model robustness on real-world messy data
60
+ - **Baseline Metrics**: Provides simple baselines for comparison (not production-ready)
61
+ - **Reproducible**: Deterministic evaluation with random seed control
62
+ - **Research Focus**: Results show challenges of noisy data, not competitive benchmarks
63
+
64
+ ### Extensibility
65
+ - **Modular Design**: Easy to extend with new benchmarks
66
+ - **Configurable**: Sample sizes and evaluation criteria can be adjusted
67
+ - **Multiple Languages**: Framework supports cross-language evaluation
68
+
69
+ ## Configuration
70
+
71
+ ### Data Path Configuration
72
+ Update the `data_dir` variable in each script to point to your CodeReality-1T dataset:
73
+
74
+ ```python
75
+ data_dir = "/path/to/your/codereality-1t/unified_dataset"
76
+ ```
77
+
78
+ ### Sample Size Adjustment
79
+ Modify sample sizes for performance tuning:
80
+
81
+ ```python
82
+ sample_size = 500 # Adjust based on computational resources
83
+ ```
84
+
85
+ ## Output Files
86
+
87
+ Each benchmark generates JSON results files:
88
+ - `license_detection_results.json`
89
+ - `code_completion_results.json`
90
+
91
+ These contain detailed metrics and can be used for comparative analysis.
92
+
93
+ ### Sample Results
94
+ Example results are available in `../results/`:
95
+ - `license_detection_sample_results.json` - Baseline license detection performance
96
+ - `code_completion_sample_results.json` - Baseline code completion metrics
97
+
98
+ These demonstrate expected performance on CodeReality-1T's deliberately noisy data.
99
+
100
+ ## Requirements
101
+
102
+ ### Python Dependencies
103
+ ```bash
104
+ pip install json os re random typing collections
105
+ ```
106
+
107
+ ### System Requirements
108
+ - **Memory**: Minimum 4GB RAM for default sample sizes
109
+ - **Storage**: Access to CodeReality-1T dataset (3TB)
110
+ - **Compute**: Single-core sufficient for demonstration scripts
111
+
112
+ ## Extending the Benchmarks
113
+
114
+ ### Adding New Tasks
115
+ 1. Create new Python file following naming convention: `{task}_benchmark.py`
116
+ 2. Implement standard evaluation interface:
117
+ ```python
118
+ def load_dataset_sample(data_dir, sample_size)
119
+ def run_benchmark(repositories)
120
+ def print_benchmark_results(results)
121
+ ```
122
+ 3. Add task-specific evaluation metrics
123
+
124
+ ### Supported Tasks
125
+ Current benchmarks cover:
126
+ - **License Detection**: Classification and compliance
127
+ - **Code Completion**: Generation and functional correctness
128
+
129
+ **Framework Scaffolds (PLANNED - Implementation Needed)**:
130
+ - [`bug_detection_benchmark.py`](bug_detection_benchmark.py) - Bug detection on commit pairs (scaffold only)
131
+ - [`cross_language_translation_benchmark.py`](cross_language_translation_benchmark.py) - Code translation across languages (scaffold only)
132
+
133
+ **Future Planned Benchmarks - Roadmap**:
134
+ - **v1.1.0 (Q1 2025)**: Complete bug detection and cross-language translation implementations
135
+ - **v1.2.0 (Q2 2025)**: Repository classification and domain detection benchmarks
136
+ - **v1.3.0 (Q3 2025)**: Build system analysis and validation frameworks
137
+ - **v2.0.0 (Q4 2025)**: Commit message generation and issue-to-code alignment benchmarks
138
+
139
+ **Community Priority**: Framework scaffolds ready for community implementation!
140
+
141
+ ## Performance Notes
142
+
143
+ ### Computational Complexity
144
+ - **License Detection**: O(n) where n = repository count
145
+ - **Code Completion**: O(n*m) where m = average functions per repository
146
+
147
+ ### Optimization Tips
148
+ 1. **Sampling**: Reduce sample_size for faster execution
149
+ 2. **Filtering**: Pre-filter repositories by criteria
150
+ 3. **Parallelization**: Use multiprocessing for large-scale evaluation
151
+ 4. **Caching**: Cache extracted features for repeated runs
152
+
153
+ ## Research Applications
154
+
155
+ ### Model Development
156
+ - **Robustness Testing**: Test models on noisy, real-world data
157
+ - **Baseline Comparison**: Compare against simple rule-based systems
158
+ - **Cross-domain Evaluation**: Test generalization across domains
159
+
160
+ ### Data Science Research
161
+ - **Curation Methods**: Develop better filtering techniques
162
+ - **Quality Metrics**: Research automated quality assessment
163
+ - **Bias Analysis**: Study representation bias in large datasets
164
+
165
+ ## Citation
166
+
167
+ When using these benchmarks in research, please cite the CodeReality-1T dataset:
168
+
169
+ ```bibtex
170
+ @misc{codereality2025,
171
+ title={CodeReality-1T: A Large-Scale Deliberately Noisy Dataset for Robust Code Understanding},
172
+ author={Vincenzo Gallo},
173
+ year={2025},
174
+ publisher={Hugging Face},
175
+ howpublished={\\url{https://huggingface.co/vinsblack}},
176
+ note={Version 1.0.0}
177
+ }
178
+ ```
179
+
180
+ ## Support
181
+
182
+ - **Issues**: https://github.com/vinsguru/codereality-1t/issues
183
+ - **Contact**: [email protected]
184
+ - **Documentation**: See main dataset README and documentation
benchmarks/benchmark_summary.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77f33c2e4d97d666b3bf48dc9a9a94854d39f475c5c565bf7878eea9148489a9
3
+ size 1842
benchmarks/bug_detection_benchmark.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Bug Detection Benchmark for CodeReality-1T Dataset
4
+
5
+ This benchmark evaluates bug detection systems on deliberately noisy code data.
6
+ Analyzes commit pairs to identify potential bugs and fixes in real-world repositories.
7
+
8
+ Status: PLANNED - Framework scaffold for future implementation
9
+ """
10
+
11
+ import json
12
+ import os
13
+ import re
14
+ from typing import Dict, List, Tuple, Any
15
+ from collections import defaultdict
16
+ import random
17
+
18
+ def load_dataset_sample(data_dir: str, sample_size: int = 500) -> List[Dict]:
19
+ """
20
+ Load sample of repositories with commit history for bug detection analysis.
21
+
22
+ Args:
23
+ data_dir: Path to CodeReality-1T unified dataset
24
+ sample_size: Number of repositories to sample
25
+
26
+ Returns:
27
+ List of repository data with commit pairs
28
+ """
29
+ # TODO: Implement repository loading with commit history
30
+ # Focus on repositories with:
31
+ # - Multiple commits with bug-fix indicators
32
+ # - Before/after code changes
33
+ # - Issue tracking data
34
+ print(f"Loading {sample_size} repositories for bug detection analysis...")
35
+ return []
36
+
37
+ def extract_bug_fix_patterns(repositories: List[Dict]) -> List[Dict]:
38
+ """
39
+ Extract potential bug-fix commit pairs from repository history.
40
+
41
+ Args:
42
+ repositories: List of repository data
43
+
44
+ Returns:
45
+ List of bug-fix patterns with before/after code
46
+ """
47
+ # TODO: Implement bug-fix pattern extraction
48
+ # Look for:
49
+ # - Commit messages with "fix", "bug", "issue" keywords
50
+ # - Code changes that add null checks, exception handling
51
+ # - Revert patterns and subsequent fixes
52
+ patterns = []
53
+
54
+ bug_keywords = ["fix", "bug", "issue", "error", "crash", "null", "exception"]
55
+
56
+ for repo in repositories:
57
+ # Extract commit pairs where bug-fix indicators are present
58
+ pass
59
+
60
+ return patterns
61
+
62
+ def simple_bug_detector(code_before: str, code_after: str) -> Dict[str, Any]:
63
+ """
64
+ Simple rule-based bug detection for demonstration purposes.
65
+
66
+ This is a baseline implementation - real bug detection would use
67
+ sophisticated ML models, static analysis, or dynamic testing.
68
+
69
+ Args:
70
+ code_before: Code before the fix
71
+ code_after: Code after the fix
72
+
73
+ Returns:
74
+ Detection results with confidence scores
75
+ """
76
+ # TODO: Implement simple pattern-based bug detection
77
+ # Examples:
78
+ # - Missing null checks
79
+ # - Array bounds issues
80
+ # - Resource leaks
81
+ # - Logic errors
82
+
83
+ results = {
84
+ "bug_detected": False,
85
+ "bug_type": "unknown",
86
+ "confidence": 0.0,
87
+ "patterns_matched": [],
88
+ "fix_applied": False
89
+ }
90
+
91
+ # Simple pattern matching for demonstration
92
+ null_check_added = "!= null" in code_after and "!= null" not in code_before
93
+ bounds_check_added = "length" in code_after and "length" not in code_before
94
+
95
+ if null_check_added:
96
+ results["bug_detected"] = True
97
+ results["bug_type"] = "null_pointer"
98
+ results["confidence"] = 0.7
99
+ results["patterns_matched"].append("null_check_added")
100
+ results["fix_applied"] = True
101
+
102
+ return results
103
+
104
+ def evaluate_bug_detection(bug_patterns: List[Dict]) -> Dict[str, Any]:
105
+ """
106
+ Evaluate bug detection accuracy on commit pairs.
107
+
108
+ Args:
109
+ bug_patterns: List of bug-fix patterns
110
+
111
+ Returns:
112
+ Evaluation metrics including precision, recall, F1
113
+ """
114
+ # TODO: Implement comprehensive evaluation
115
+ # Metrics:
116
+ # - True positive rate (bugs correctly identified)
117
+ # - False positive rate (false alarms)
118
+ # - Precision, Recall, F1 score
119
+ # - Bug type classification accuracy
120
+
121
+ total_patterns = len(bug_patterns)
122
+ detected_bugs = 0
123
+ correct_detections = 0
124
+ false_positives = 0
125
+
126
+ for pattern in bug_patterns:
127
+ # Apply simple bug detector
128
+ result = simple_bug_detector(pattern.get("code_before", ""),
129
+ pattern.get("code_after", ""))
130
+
131
+ if result["bug_detected"]:
132
+ detected_bugs += 1
133
+ # In real scenario, would compare against ground truth
134
+ # For demo, assume 60% accuracy
135
+ if random.random() < 0.6:
136
+ correct_detections += 1
137
+ else:
138
+ false_positives += 1
139
+
140
+ precision = correct_detections / detected_bugs if detected_bugs > 0 else 0
141
+ recall = correct_detections / total_patterns if total_patterns > 0 else 0
142
+ f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
143
+
144
+ return {
145
+ "total_patterns": total_patterns,
146
+ "detected_bugs": detected_bugs,
147
+ "correct_detections": correct_detections,
148
+ "false_positives": false_positives,
149
+ "precision": precision,
150
+ "recall": recall,
151
+ "f1_score": f1_score,
152
+ "detection_rate": detected_bugs / total_patterns if total_patterns > 0 else 0
153
+ }
154
+
155
+ def run_benchmark(repositories: List[Dict]) -> Dict[str, Any]:
156
+ """
157
+ Run complete bug detection benchmark.
158
+
159
+ Args:
160
+ repositories: List of repository data
161
+
162
+ Returns:
163
+ Complete benchmark results
164
+ """
165
+ print("Extracting bug-fix patterns...")
166
+ bug_patterns = extract_bug_fix_patterns(repositories)
167
+
168
+ print("Evaluating bug detection...")
169
+ metrics = evaluate_bug_detection(bug_patterns)
170
+
171
+ print("Analyzing bug types...")
172
+ bug_type_distribution = defaultdict(int)
173
+ for pattern in bug_patterns:
174
+ bug_type = pattern.get("bug_type", "unknown")
175
+ bug_type_distribution[bug_type] += 1
176
+
177
+ return {
178
+ "benchmark_info": {
179
+ "name": "Bug Detection Benchmark",
180
+ "dataset": "CodeReality-1T",
181
+ "version": "1.0.0",
182
+ "description": "Evaluates bug detection on commit pairs",
183
+ "status": "PLANNED - Framework scaffold"
184
+ },
185
+ "dataset_stats": {
186
+ "total_repositories": len(repositories),
187
+ "total_bug_patterns": len(bug_patterns),
188
+ "avg_patterns_per_repo": len(bug_patterns) / len(repositories) if repositories else 0
189
+ },
190
+ "detection_metrics": metrics,
191
+ "bug_type_distribution": dict(bug_type_distribution),
192
+ "insights": [
193
+ "This is a planned benchmark - implementation needed",
194
+ "Real bug detection requires sophisticated analysis",
195
+ "CodeReality-1T provides rich commit history for training",
196
+ "Noisy dataset challenges standard detection methods"
197
+ ],
198
+ "recommendations": [
199
+ "Implement advanced static analysis tools",
200
+ "Use ML models trained on commit patterns",
201
+ "Validate with manual inspection of detected bugs",
202
+ "Consider temporal patterns in bug introduction/fixing"
203
+ ]
204
+ }
205
+
206
+ def print_benchmark_results(results: Dict[str, Any]):
207
+ """Print formatted benchmark results."""
208
+ print("\n" + "="*60)
209
+ print("BUG DETECTION BENCHMARK RESULTS")
210
+ print("="*60)
211
+
212
+ info = results["benchmark_info"]
213
+ print(f"Benchmark: {info['name']}")
214
+ print(f"Dataset: {info['dataset']}")
215
+ print(f"Status: {info['status']}")
216
+ print(f"Description: {info['description']}")
217
+
218
+ print("\nDataset Statistics:")
219
+ stats = results["dataset_stats"]
220
+ print(f" Total Repositories: {stats['total_repositories']}")
221
+ print(f" Bug Patterns Found: {stats['total_bug_patterns']}")
222
+ print(f" Avg Patterns/Repo: {stats['avg_patterns_per_repo']:.2f}")
223
+
224
+ print("\nDetection Metrics:")
225
+ metrics = results["detection_metrics"]
226
+ print(f" Precision: {metrics['precision']:.3f}")
227
+ print(f" Recall: {metrics['recall']:.3f}")
228
+ print(f" F1 Score: {metrics['f1_score']:.3f}")
229
+ print(f" Detection Rate: {metrics['detection_rate']:.3f}")
230
+
231
+ print("\nBug Type Distribution:")
232
+ for bug_type, count in results["bug_type_distribution"].items():
233
+ print(f" {bug_type}: {count}")
234
+
235
+ print("\nKey Insights:")
236
+ for insight in results["insights"]:
237
+ print(f" • {insight}")
238
+
239
+ print("\nRecommendations:")
240
+ for rec in results["recommendations"]:
241
+ print(f" • {rec}")
242
+
243
+ def main():
244
+ """Run bug detection benchmark on CodeReality-1T dataset."""
245
+ # Configuration
246
+ data_dir = "/mnt/z/CodeReality_Final/unified_dataset"
247
+ sample_size = 100 # Reduced for planning phase
248
+
249
+ print("CodeReality-1T Bug Detection Benchmark")
250
+ print("Status: PLANNED - Framework scaffold only")
251
+ print(f"Data directory: {data_dir}")
252
+ print(f"Sample size: {sample_size}")
253
+
254
+ # Load dataset sample
255
+ print("\nLoading dataset sample...")
256
+ repositories = load_dataset_sample(data_dir, sample_size)
257
+
258
+ if not repositories:
259
+ print("No repositories loaded - using mock data for demonstration")
260
+ # Create mock data for demonstration
261
+ repositories = [{"name": f"mock_repo_{i}", "commits": []} for i in range(10)]
262
+
263
+ # Run benchmark
264
+ results = run_benchmark(repositories)
265
+
266
+ # Print results
267
+ print_benchmark_results(results)
268
+
269
+ # Save results
270
+ output_file = "bug_detection_results.json"
271
+ with open(output_file, 'w') as f:
272
+ json.dump(results, f, indent=2)
273
+
274
+ print(f"\nResults saved to: {output_file}")
275
+ print("Note: This is a framework scaffold - full implementation needed")
276
+
277
+ if __name__ == "__main__":
278
+ main()
benchmarks/code_completion_benchmark.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Code Completion Benchmark for CodeReality-1T Dataset
4
+ Evaluates code completion models using Pass@k metrics
5
+ """
6
+
7
+ import json
8
+ import os
9
+ import re
10
+ import random
11
+ from typing import Dict, List, Tuple, Optional
12
+ from collections import defaultdict
13
+
14
+ def load_dataset_sample(data_dir: str, sample_size: int = 200) -> List[Dict]:
15
+ """Load sample of repositories with code files."""
16
+ print(f"🔍 Loading sample of {sample_size} repositories with code files...")
17
+
18
+ repositories = []
19
+ files = [f for f in os.listdir(data_dir) if f.endswith('.jsonl')]
20
+ random.shuffle(files)
21
+
22
+ for filename in files[:15]: # Sample from first 15 files
23
+ file_path = os.path.join(data_dir, filename)
24
+ try:
25
+ with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
26
+ for line in f:
27
+ if len(repositories) >= sample_size:
28
+ break
29
+ try:
30
+ repo_data = json.loads(line)
31
+ # Filter repositories with code files
32
+ if has_code_files(repo_data):
33
+ repositories.append(repo_data)
34
+ except json.JSONDecodeError:
35
+ continue
36
+ except Exception as e:
37
+ continue
38
+
39
+ if len(repositories) >= sample_size:
40
+ break
41
+
42
+ print(f"✅ Loaded {len(repositories)} repositories with code files")
43
+ return repositories
44
+
45
+ def has_code_files(repo: Dict) -> bool:
46
+ """Check if repository contains code files."""
47
+ code_extensions = {'.py', '.js', '.java', '.cpp', '.c', '.go', '.rs', '.ts'}
48
+
49
+ files = repo.get('files', [])
50
+ for file_obj in files:
51
+ if isinstance(file_obj, dict):
52
+ file_path = file_obj.get('path', '')
53
+ if any(file_path.endswith(ext) for ext in code_extensions):
54
+ return True
55
+ return False
56
+
57
+ def extract_function_snippets(repo: Dict, language: str = 'python') -> List[Dict]:
58
+ """Extract function definitions for completion tasks."""
59
+ snippets = []
60
+
61
+ # Language-specific patterns
62
+ patterns = {
63
+ 'python': r'def\s+(\w+)\s*\([^)]*\):\s*',
64
+ 'javascript': r'function\s+(\w+)\s*\([^)]*\)\s*{',
65
+ 'java': r'(?:public|private|protected)?\s*(?:static)?\s*\w+\s+(\w+)\s*\([^)]*\)\s*{',
66
+ 'cpp': r'\w+\s+(\w+)\s*\([^)]*\)\s*{',
67
+ }
68
+
69
+ if language not in patterns:
70
+ return snippets
71
+
72
+ pattern = patterns[language]
73
+ extension_map = {
74
+ 'python': '.py',
75
+ 'javascript': '.js',
76
+ 'java': '.java',
77
+ 'cpp': '.cpp'
78
+ }
79
+
80
+ target_ext = extension_map[language]
81
+
82
+ files = repo.get('files', [])
83
+ for file_obj in files:
84
+ if isinstance(file_obj, dict):
85
+ file_path = file_obj.get('path', '')
86
+ content = file_obj.get('content', '')
87
+
88
+ if file_path.endswith(target_ext) and content:
89
+ matches = list(re.finditer(pattern, content, re.MULTILINE))
90
+
91
+ for match in matches:
92
+ start_pos = match.start()
93
+ function_name = match.group(1)
94
+
95
+ # Get context before function
96
+ lines_before = content[:start_pos].split('\n')
97
+ context_lines = lines_before[-5:] if len(lines_before) >= 5 else lines_before
98
+ context = '\n'.join(context_lines)
99
+
100
+ # Get function body (simplified - until next function or end)
101
+ remaining_content = content[start_pos:]
102
+ lines = remaining_content.split('\n')
103
+
104
+ function_lines = []
105
+ indent_level = None
106
+
107
+ for i, line in enumerate(lines):
108
+ if i == 0:
109
+ function_lines.append(line)
110
+ continue
111
+
112
+ # Detect indentation level
113
+ if indent_level is None and line.strip():
114
+ indent_level = len(line) - len(line.lstrip())
115
+
116
+ # Stop if we hit same or lower indentation level (end of function)
117
+ if line.strip() and indent_level is not None:
118
+ current_indent = len(line) - len(line.lstrip())
119
+ if current_indent <= indent_level and not line.strip().startswith(('if', 'for', 'while', 'try', 'except', 'else', 'elif')):
120
+ break
121
+
122
+ function_lines.append(line)
123
+
124
+ # Limit function length
125
+ if len(function_lines) > 20:
126
+ break
127
+
128
+ function_body = '\n'.join(function_lines)
129
+
130
+ # Create completion task: provide function signature, expect body
131
+ if len(function_lines) > 3: # Only meaningful functions
132
+ snippets.append({
133
+ 'function_name': function_name,
134
+ 'context': context,
135
+ 'prompt': function_lines[0], # Function signature
136
+ 'completion': '\n'.join(function_lines[1:]), # Function body
137
+ 'file_path': file_path,
138
+ 'language': language
139
+ })
140
+
141
+ return snippets
142
+
143
+ def simple_code_completion_model(prompt: str, language: str) -> List[str]:
144
+ """Simple rule-based code completion for demonstration."""
145
+ completions = []
146
+
147
+ # Generate multiple completions (for Pass@k evaluation)
148
+ templates = {
149
+ 'python': [
150
+ " pass",
151
+ " return None",
152
+ " # TODO: implement this function\n pass",
153
+ " result = None\n return result",
154
+ " # Implementation needed\n raise NotImplementedError()"
155
+ ],
156
+ 'javascript': [
157
+ " return null;",
158
+ " // TODO: implement\n return;",
159
+ " throw new Error('Not implemented');",
160
+ " var result = null;\n return result;",
161
+ " console.log('Function called');\n return;"
162
+ ],
163
+ 'java': [
164
+ " return null;",
165
+ " // TODO: implement this method\n return null;",
166
+ " throw new UnsupportedOperationException();",
167
+ " Object result = null;\n return result;",
168
+ " System.out.println(\"Method called\");\n return null;"
169
+ ]
170
+ }
171
+
172
+ if language in templates:
173
+ # Return multiple variations for Pass@k evaluation
174
+ return templates[language]
175
+ else:
176
+ return ["// TODO: implement"]
177
+
178
+ def evaluate_completion_quality(predicted: str, actual: str) -> float:
179
+ """Simple evaluation of completion quality."""
180
+ # Normalize strings
181
+ pred_lines = [line.strip() for line in predicted.split('\n') if line.strip()]
182
+ actual_lines = [line.strip() for line in actual.split('\n') if line.strip()]
183
+
184
+ if not actual_lines:
185
+ return 0.0
186
+
187
+ # Check for basic structural similarity
188
+ score = 0.0
189
+
190
+ # Check if both are empty implementations
191
+ empty_indicators = ['pass', 'todo', 'not implemented', 'null', 'return;', 'return null'}
192
+ pred_empty = any(indicator in predicted.lower() for indicator in empty_indicators)
193
+ actual_empty = any(indicator in actual.lower() for indicator in empty_indicators)
194
+
195
+ if pred_empty and actual_empty:
196
+ score += 0.8
197
+ elif not pred_empty and not actual_empty:
198
+ # Check for keyword similarity
199
+ pred_keywords = set(re.findall(r'\b\w+\b', predicted.lower()))
200
+ actual_keywords = set(re.findall(r'\b\w+\b', actual.lower()))
201
+
202
+ if actual_keywords:
203
+ keyword_overlap = len(pred_keywords & actual_keywords) / len(actual_keywords)
204
+ score += keyword_overlap * 0.6
205
+
206
+ # Check for similar line count
207
+ line_ratio = min(len(pred_lines), len(actual_lines)) / max(len(pred_lines), len(actual_lines))
208
+ score += line_ratio * 0.4
209
+
210
+ return min(score, 1.0)
211
+
212
+ def calculate_pass_at_k(completion_results: List[Tuple[List[str], str]], k: int = 1) -> float:
213
+ """Calculate Pass@k metric."""
214
+ if k <= 0:
215
+ return 0.0
216
+
217
+ total_passed = 0
218
+
219
+ for completions, ground_truth in completion_results:
220
+ # Take top k completions
221
+ top_k_completions = completions[:k]
222
+
223
+ # Check if any completion passes
224
+ passed = False
225
+ for completion in top_k_completions:
226
+ quality_score = evaluate_completion_quality(completion, ground_truth)
227
+ if quality_score > 0.5: # Threshold for "passing"
228
+ passed = True
229
+ break
230
+
231
+ if passed:
232
+ total_passed += 1
233
+
234
+ return total_passed / len(completion_results) if completion_results else 0.0
235
+
236
+ def run_completion_benchmark(repositories: List[Dict]) -> Dict:
237
+ """Run code completion benchmark."""
238
+ print("🧮 Running code completion benchmark...")
239
+
240
+ results = {
241
+ 'total_repositories': len(repositories),
242
+ 'completion_tasks': [],
243
+ 'language_stats': defaultdict(int),
244
+ 'pass_at_1': 0.0,
245
+ 'pass_at_3': 0.0,
246
+ 'pass_at_5': 0.0,
247
+ 'average_quality': 0.0
248
+ }
249
+
250
+ completion_results = []
251
+ quality_scores = []
252
+
253
+ # Extract function snippets from repositories
254
+ for repo in repositories:
255
+ for language in ['python', 'javascript', 'java']:
256
+ snippets = extract_function_snippets(repo, language)
257
+
258
+ for snippet in snippets[:2]: # Limit per repo for performance
259
+ results['language_stats'][language] += 1
260
+
261
+ # Generate completions
262
+ completions = simple_code_completion_model(snippet['prompt'], language)
263
+ ground_truth = snippet['completion']
264
+
265
+ completion_results.append((completions, ground_truth))
266
+
267
+ # Calculate quality for first completion
268
+ if completions:
269
+ quality = evaluate_completion_quality(completions[0], ground_truth)
270
+ quality_scores.append(quality)
271
+
272
+ results['completion_tasks'].append({
273
+ 'function_name': snippet['function_name'],
274
+ 'language': language,
275
+ 'prompt_length': len(snippet['prompt']),
276
+ 'completion_length': len(ground_truth)
277
+ })
278
+
279
+ # Calculate metrics
280
+ results['pass_at_1'] = calculate_pass_at_k(completion_results, 1)
281
+ results['pass_at_3'] = calculate_pass_at_k(completion_results, 3)
282
+ results['pass_at_5'] = calculate_pass_at_k(completion_results, 5)
283
+ results['average_quality'] = sum(quality_scores) / len(quality_scores) if quality_scores else 0.0
284
+
285
+ return results
286
+
287
+ def print_benchmark_results(results: Dict):
288
+ """Print formatted benchmark results."""
289
+ print("=" * 60)
290
+ print("🎯 CODE COMPLETION BENCHMARK RESULTS")
291
+ print("=" * 60)
292
+
293
+ print(f"Total repositories: {results['total_repositories']}")
294
+ print(f"Completion tasks: {len(results['completion_tasks'])}")
295
+
296
+ print(f"\n📊 Pass@k Metrics:")
297
+ print(f" Pass@1: {results['pass_at_1']:.3f}")
298
+ print(f" Pass@3: {results['pass_at_3']:.3f}")
299
+ print(f" Pass@5: {results['pass_at_5']:.3f}")
300
+ print(f" Average Quality: {results['average_quality']:.3f}")
301
+
302
+ print(f"\n🔤 Language Distribution:")
303
+ for language, count in sorted(results['language_stats'].items(), key=lambda x: x[1], reverse=True):
304
+ print(f" {language}: {count} functions")
305
+
306
+ print(f"\n💡 Insights:")
307
+ print("- This is a simplified demonstration benchmark")
308
+ print("- Real evaluation requires more sophisticated code execution")
309
+ print("- CodeReality-1T provides diverse, noisy code for robust testing")
310
+ print("- Consider functional correctness testing for production models")
311
+
312
+ def main():
313
+ """Run code completion benchmark."""
314
+ print("🚀 CodeReality-1T Code Completion Benchmark")
315
+ print("=" * 60)
316
+
317
+ # Configuration
318
+ data_dir = "/mnt/z/CodeReality_Final/unified_dataset"
319
+ sample_size = 100
320
+
321
+ if not os.path.exists(data_dir):
322
+ print(f"❌ Dataset directory not found: {data_dir}")
323
+ print("Please update the data_dir path to point to your CodeReality-1T dataset")
324
+ return
325
+
326
+ # Load dataset sample
327
+ repositories = load_dataset_sample(data_dir, sample_size)
328
+
329
+ if not repositories:
330
+ print("❌ No repositories loaded. Check dataset path.")
331
+ return
332
+
333
+ # Run benchmark
334
+ results = run_completion_benchmark(repositories)
335
+
336
+ # Print results
337
+ print_benchmark_results(results)
338
+
339
+ # Save results
340
+ output_file = "code_completion_results.json"
341
+ with open(output_file, 'w') as f:
342
+ # Convert defaultdict to regular dict for JSON serialization
343
+ results_json = {
344
+ 'total_repositories': results['total_repositories'],
345
+ 'completion_tasks': results['completion_tasks'],
346
+ 'language_stats': dict(results['language_stats']),
347
+ 'pass_at_1': results['pass_at_1'],
348
+ 'pass_at_3': results['pass_at_3'],
349
+ 'pass_at_5': results['pass_at_5'],
350
+ 'average_quality': results['average_quality']
351
+ }
352
+ json.dump(results_json, f, indent=2)
353
+
354
+ print(f"\n💾 Results saved to: {output_file}")
355
+
356
+ if __name__ == "__main__":
357
+ main()
benchmarks/cross_language_translation_benchmark.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Cross-Language Translation Benchmark for CodeReality-1T Dataset
4
+
5
+ This benchmark evaluates cross-language code translation systems on deliberately noisy data.
6
+ Analyzes equivalent implementations across different programming languages.
7
+
8
+ Status: PLANNED - Framework scaffold for future implementation
9
+ """
10
+
11
+ import json
12
+ import os
13
+ import re
14
+ from typing import Dict, List, Tuple, Any
15
+ from collections import defaultdict
16
+ import random
17
+
18
+ def load_dataset_sample(data_dir: str, sample_size: int = 500) -> List[Dict]:
19
+ """
20
+ Load sample of repositories with cross-language implementations.
21
+
22
+ Args:
23
+ data_dir: Path to CodeReality-1T unified dataset
24
+ sample_size: Number of repositories to sample
25
+
26
+ Returns:
27
+ List of repository data with multi-language content
28
+ """
29
+ # TODO: Implement repository loading with cross-language focus
30
+ # Target repositories with:
31
+ # - Multiple programming languages
32
+ # - Similar algorithms in different languages
33
+ # - Bindings or wrapper implementations
34
+ print(f"Loading {sample_size} multi-language repositories...")
35
+ return []
36
+
37
+ def extract_language_pairs(repositories: List[Dict]) -> List[Dict]:
38
+ """
39
+ Extract equivalent code implementations across different languages.
40
+
41
+ Args:
42
+ repositories: List of repository data
43
+
44
+ Returns:
45
+ List of language pairs with equivalent functionality
46
+ """
47
+ # TODO: Implement language pair extraction
48
+ # Look for:
49
+ # - Similar function names across languages
50
+ # - Algorithm implementations in multiple languages
51
+ # - Test files that indicate equivalent functionality
52
+ # - Documentation mentioning language equivalence
53
+
54
+ language_pairs = []
55
+
56
+ common_pairs = [
57
+ ("python", "javascript"),
58
+ ("java", "c++"),
59
+ ("python", "java"),
60
+ ("javascript", "typescript"),
61
+ ("c", "c++"),
62
+ ("python", "go"),
63
+ ("java", "c#"),
64
+ ("rust", "c++")
65
+ ]
66
+
67
+ for repo in repositories:
68
+ # Extract code snippets that appear to implement similar functionality
69
+ pass
70
+
71
+ return language_pairs
72
+
73
+ def simple_translation_evaluator(source_code: str, target_code: str,
74
+ source_lang: str, target_lang: str) -> Dict[str, Any]:
75
+ """
76
+ Simple rule-based translation evaluation for demonstration purposes.
77
+
78
+ This is a baseline implementation - real translation evaluation would use
79
+ sophisticated semantic analysis, execution testing, or ML-based similarity.
80
+
81
+ Args:
82
+ source_code: Source language implementation
83
+ target_code: Target language implementation
84
+ source_lang: Source programming language
85
+ target_lang: Target programming language
86
+
87
+ Returns:
88
+ Translation quality assessment
89
+ """
90
+ # TODO: Implement comprehensive translation evaluation
91
+ # Methods:
92
+ # - Structural similarity analysis
93
+ # - API usage pattern matching
94
+ # - Execution behavior comparison
95
+ # - Performance characteristic analysis
96
+
97
+ results = {
98
+ "translation_quality": 0.0,
99
+ "structural_similarity": 0.0,
100
+ "semantic_equivalence": 0.0,
101
+ "syntax_correctness": 0.0,
102
+ "functionality_preserved": False,
103
+ "common_patterns": [],
104
+ "differences": []
105
+ }
106
+
107
+ # Simple pattern matching for demonstration
108
+ # Count similar keywords, structure patterns
109
+ source_tokens = re.findall(r'\w+', source_code.lower())
110
+ target_tokens = re.findall(r'\w+', target_code.lower())
111
+
112
+ # Language-agnostic concepts
113
+ common_concepts = ["function", "class", "method", "variable", "loop", "condition"]
114
+ source_concepts = [t for t in source_tokens if t in common_concepts]
115
+ target_concepts = [t for t in target_tokens if t in common_concepts]
116
+
117
+ if source_concepts and target_concepts:
118
+ structural_sim = len(set(source_concepts) & set(target_concepts)) / len(set(source_concepts) | set(target_concepts))
119
+ results["structural_similarity"] = structural_sim
120
+
121
+ # Mock semantic equivalence (in real implementation, would use AST analysis)
122
+ results["semantic_equivalence"] = random.uniform(0.3, 0.8)
123
+ results["syntax_correctness"] = random.uniform(0.6, 0.95)
124
+ results["translation_quality"] = (results["structural_similarity"] +
125
+ results["semantic_equivalence"] +
126
+ results["syntax_correctness"]) / 3
127
+
128
+ results["functionality_preserved"] = results["translation_quality"] > 0.6
129
+
130
+ return results
131
+
132
+ def evaluate_translation_pairs(language_pairs: List[Dict]) -> Dict[str, Any]:
133
+ """
134
+ Evaluate translation quality across language pairs.
135
+
136
+ Args:
137
+ language_pairs: List of cross-language implementation pairs
138
+
139
+ Returns:
140
+ Comprehensive translation evaluation metrics
141
+ """
142
+ # TODO: Implement comprehensive evaluation
143
+ # Metrics:
144
+ # - Translation accuracy by language pair
145
+ # - Semantic preservation scores
146
+ # - Syntax correctness rates
147
+ # - Performance equivalence
148
+
149
+ total_pairs = len(language_pairs)
150
+ successful_translations = 0
151
+ quality_scores = []
152
+ language_pair_performance = defaultdict(list)
153
+
154
+ for pair in language_pairs:
155
+ source_code = pair.get("source_code", "")
156
+ target_code = pair.get("target_code", "")
157
+ source_lang = pair.get("source_language", "unknown")
158
+ target_lang = pair.get("target_language", "unknown")
159
+
160
+ result = simple_translation_evaluator(source_code, target_code,
161
+ source_lang, target_lang)
162
+
163
+ quality = result["translation_quality"]
164
+ quality_scores.append(quality)
165
+
166
+ if result["functionality_preserved"]:
167
+ successful_translations += 1
168
+
169
+ pair_key = f"{source_lang}->{target_lang}"
170
+ language_pair_performance[pair_key].append(quality)
171
+
172
+ # Calculate aggregate metrics
173
+ avg_quality = sum(quality_scores) / len(quality_scores) if quality_scores else 0
174
+ success_rate = successful_translations / total_pairs if total_pairs > 0 else 0
175
+
176
+ # Language pair performance
177
+ pair_stats = {}
178
+ for pair_key, scores in language_pair_performance.items():
179
+ pair_stats[pair_key] = {
180
+ "count": len(scores),
181
+ "avg_quality": sum(scores) / len(scores),
182
+ "success_rate": sum(1 for s in scores if s > 0.6) / len(scores)
183
+ }
184
+
185
+ return {
186
+ "total_pairs": total_pairs,
187
+ "successful_translations": successful_translations,
188
+ "success_rate": success_rate,
189
+ "average_quality": avg_quality,
190
+ "quality_distribution": {
191
+ "excellent": sum(1 for q in quality_scores if q > 0.8),
192
+ "good": sum(1 for q in quality_scores if 0.6 < q <= 0.8),
193
+ "fair": sum(1 for q in quality_scores if 0.4 < q <= 0.6),
194
+ "poor": sum(1 for q in quality_scores if q <= 0.4)
195
+ },
196
+ "language_pair_performance": pair_stats
197
+ }
198
+
199
+ def run_benchmark(repositories: List[Dict]) -> Dict[str, Any]:
200
+ """
201
+ Run complete cross-language translation benchmark.
202
+
203
+ Args:
204
+ repositories: List of repository data
205
+
206
+ Returns:
207
+ Complete benchmark results
208
+ """
209
+ print("Extracting cross-language pairs...")
210
+ language_pairs = extract_language_pairs(repositories)
211
+
212
+ print("Evaluating translation quality...")
213
+ metrics = evaluate_translation_pairs(language_pairs)
214
+
215
+ print("Analyzing language coverage...")
216
+ language_coverage = defaultdict(int)
217
+ for pair in language_pairs:
218
+ source_lang = pair.get("source_language", "unknown")
219
+ target_lang = pair.get("target_language", "unknown")
220
+ language_coverage[source_lang] += 1
221
+ language_coverage[target_lang] += 1
222
+
223
+ return {
224
+ "benchmark_info": {
225
+ "name": "Cross-Language Translation Benchmark",
226
+ "dataset": "CodeReality-1T",
227
+ "version": "1.0.0",
228
+ "description": "Evaluates code translation across programming languages",
229
+ "status": "PLANNED - Framework scaffold"
230
+ },
231
+ "dataset_stats": {
232
+ "total_repositories": len(repositories),
233
+ "total_language_pairs": len(language_pairs),
234
+ "avg_pairs_per_repo": len(language_pairs) / len(repositories) if repositories else 0,
235
+ "unique_languages": len(language_coverage)
236
+ },
237
+ "translation_metrics": metrics,
238
+ "language_coverage": dict(language_coverage),
239
+ "insights": [
240
+ "This is a planned benchmark - implementation needed",
241
+ "Cross-language translation requires semantic understanding",
242
+ "CodeReality-1T provides diverse language combinations",
243
+ "Noisy dataset challenges automated translation systems"
244
+ ],
245
+ "recommendations": [
246
+ "Implement AST-based semantic analysis",
247
+ "Use execution-based validation when possible",
248
+ "Consider language-specific idiom preservation",
249
+ "Validate with human expert review for complex cases"
250
+ ]
251
+ }
252
+
253
+ def print_benchmark_results(results: Dict[str, Any]):
254
+ """Print formatted benchmark results."""
255
+ print("\n" + "="*60)
256
+ print("CROSS-LANGUAGE TRANSLATION BENCHMARK RESULTS")
257
+ print("="*60)
258
+
259
+ info = results["benchmark_info"]
260
+ print(f"Benchmark: {info['name']}")
261
+ print(f"Dataset: {info['dataset']}")
262
+ print(f"Status: {info['status']}")
263
+ print(f"Description: {info['description']}")
264
+
265
+ print("\nDataset Statistics:")
266
+ stats = results["dataset_stats"]
267
+ print(f" Total Repositories: {stats['total_repositories']}")
268
+ print(f" Language Pairs Found: {stats['total_language_pairs']}")
269
+ print(f" Avg Pairs/Repo: {stats['avg_pairs_per_repo']:.2f}")
270
+ print(f" Unique Languages: {stats['unique_languages']}")
271
+
272
+ print("\nTranslation Metrics:")
273
+ metrics = results["translation_metrics"]
274
+ print(f" Success Rate: {metrics['success_rate']:.3f}")
275
+ print(f" Average Quality: {metrics['average_quality']:.3f}")
276
+
277
+ print("\nQuality Distribution:")
278
+ dist = metrics["quality_distribution"]
279
+ print(f" Excellent (>0.8): {dist['excellent']}")
280
+ print(f" Good (0.6-0.8): {dist['good']}")
281
+ print(f" Fair (0.4-0.6): {dist['fair']}")
282
+ print(f" Poor (≤0.4): {dist['poor']}")
283
+
284
+ print("\nLanguage Coverage:")
285
+ for lang, count in results["language_coverage"].items():
286
+ print(f" {lang}: {count}")
287
+
288
+ print("\nKey Insights:")
289
+ for insight in results["insights"]:
290
+ print(f" • {insight}")
291
+
292
+ print("\nRecommendations:")
293
+ for rec in results["recommendations"]:
294
+ print(f" • {rec}")
295
+
296
+ def main():
297
+ """Run cross-language translation benchmark on CodeReality-1T dataset."""
298
+ # Configuration
299
+ data_dir = "/mnt/z/CodeReality_Final/unified_dataset"
300
+ sample_size = 100 # Reduced for planning phase
301
+
302
+ print("CodeReality-1T Cross-Language Translation Benchmark")
303
+ print("Status: PLANNED - Framework scaffold only")
304
+ print(f"Data directory: {data_dir}")
305
+ print(f"Sample size: {sample_size}")
306
+
307
+ # Load dataset sample
308
+ print("\nLoading dataset sample...")
309
+ repositories = load_dataset_sample(data_dir, sample_size)
310
+
311
+ if not repositories:
312
+ print("No repositories loaded - using mock data for demonstration")
313
+ # Create mock data for demonstration
314
+ repositories = [{"name": f"multilang_repo_{i}", "languages": ["python", "javascript"]} for i in range(10)]
315
+
316
+ # Run benchmark
317
+ results = run_benchmark(repositories)
318
+
319
+ # Print results
320
+ print_benchmark_results(results)
321
+
322
+ # Save results
323
+ output_file = "cross_language_translation_results.json"
324
+ with open(output_file, 'w') as f:
325
+ json.dump(results, f, indent=2)
326
+
327
+ print(f"\nResults saved to: {output_file}")
328
+ print("Note: This is a framework scaffold - full implementation needed")
329
+
330
+ if __name__ == "__main__":
331
+ main()
benchmarks/license_detection_benchmark.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ License Detection Benchmark for CodeReality-1T Dataset
4
+ Evaluates automated license classification systems
5
+ """
6
+
7
+ import json
8
+ import os
9
+ from typing import Dict, List, Tuple
10
+ from collections import defaultdict
11
+ import random
12
+
13
+ def load_dataset_sample(data_dir: str, sample_size: int = 1000) -> List[Dict]:
14
+ """Load random sample of repositories from dataset."""
15
+ print(f"🔍 Loading sample of {sample_size} repositories...")
16
+
17
+ repositories = []
18
+
19
+ # Get available files
20
+ files = [f for f in os.listdir(data_dir) if f.endswith('.jsonl')]
21
+ random.shuffle(files)
22
+
23
+ for filename in files[:10]: # Sample from first 10 files
24
+ file_path = os.path.join(data_dir, filename)
25
+ try:
26
+ with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
27
+ for line in f:
28
+ if len(repositories) >= sample_size:
29
+ break
30
+ try:
31
+ repo_data = json.loads(line)
32
+ repositories.append(repo_data)
33
+ except json.JSONDecodeError:
34
+ continue
35
+ except Exception as e:
36
+ print(f"⚠️ Error reading {filename}: {e}")
37
+ continue
38
+
39
+ if len(repositories) >= sample_size:
40
+ break
41
+
42
+ print(f"✅ Loaded {len(repositories)} repositories")
43
+ return repositories
44
+
45
+ def extract_license_features(repo: Dict) -> Dict:
46
+ """Extract features that could indicate license presence."""
47
+ features = {
48
+ 'has_license_file': False,
49
+ 'has_readme': False,
50
+ 'license_keywords_count': 0,
51
+ 'copyright_mentions': 0,
52
+ 'file_count': 0,
53
+ 'detected_license': repo.get('license', 'Unknown')
54
+ }
55
+
56
+ files = repo.get('files', [])
57
+ features['file_count'] = len(files)
58
+
59
+ license_keywords = ['license', 'mit', 'apache', 'gpl', 'bsd', 'copyright']
60
+
61
+ for file_obj in files:
62
+ if isinstance(file_obj, dict):
63
+ file_path = file_obj.get('path', '').lower()
64
+ content = file_obj.get('content', '').lower()
65
+
66
+ # Check for license files
67
+ if any(keyword in file_path for keyword in ['license', 'copying', 'legal']):
68
+ features['has_license_file'] = True
69
+
70
+ # Check for README
71
+ if 'readme' in file_path:
72
+ features['has_readme'] = True
73
+
74
+ # Count license keywords
75
+ for keyword in license_keywords:
76
+ features['license_keywords_count'] += content.count(keyword)
77
+
78
+ # Count copyright mentions
79
+ features['copyright_mentions'] += content.count('copyright')
80
+
81
+ return features
82
+
83
+ def simple_license_classifier(features: Dict) -> str:
84
+ """Simple rule-based license classifier for demonstration."""
85
+
86
+ # Rule-based classification
87
+ if features['has_license_file']:
88
+ if features['license_keywords_count'] > 10:
89
+ return 'MIT' # Most common
90
+ elif features['copyright_mentions'] > 5:
91
+ return 'Apache-2.0'
92
+ else:
93
+ return 'GPL-3.0'
94
+ elif features['has_readme'] and features['license_keywords_count'] > 3:
95
+ return 'MIT'
96
+ elif features['file_count'] > 50 and features['copyright_mentions'] > 2:
97
+ return 'Apache-2.0'
98
+ else:
99
+ return 'Unknown'
100
+
101
+ def evaluate_license_detection(repositories: List[Dict]) -> Dict:
102
+ """Evaluate license detection performance."""
103
+ print("🧮 Evaluating license detection...")
104
+
105
+ results = {
106
+ 'total_repos': len(repositories),
107
+ 'predictions': [],
108
+ 'ground_truth': [],
109
+ 'accuracy': 0.0,
110
+ 'license_distribution': defaultdict(int),
111
+ 'prediction_distribution': defaultdict(int)
112
+ }
113
+
114
+ for repo in repositories:
115
+ features = extract_license_features(repo)
116
+ predicted_license = simple_license_classifier(features)
117
+ actual_license = features['detected_license']
118
+
119
+ results['predictions'].append(predicted_license)
120
+ results['ground_truth'].append(actual_license)
121
+ results['license_distribution'][actual_license] += 1
122
+ results['prediction_distribution'][predicted_license] += 1
123
+
124
+ # Calculate accuracy (note: actual dataset has mostly 'Unknown' licenses)
125
+ correct = sum(1 for p, a in zip(results['predictions'], results['ground_truth']) if p == a)
126
+ results['accuracy'] = correct / len(repositories) if repositories else 0
127
+
128
+ return results
129
+
130
+ def print_benchmark_results(results: Dict):
131
+ """Print formatted benchmark results."""
132
+ print("=" * 60)
133
+ print("📊 LICENSE DETECTION BENCHMARK RESULTS")
134
+ print("=" * 60)
135
+
136
+ print(f"Total repositories evaluated: {results['total_repos']}")
137
+ print(f"Overall accuracy: {results['accuracy']:.3f}")
138
+
139
+ print("\n📈 Ground Truth Distribution:")
140
+ for license_type, count in sorted(results['license_distribution'].items(), key=lambda x: x[1], reverse=True)[:10]:
141
+ percentage = (count / results['total_repos']) * 100
142
+ print(f" {license_type}: {count} ({percentage:.1f}%)")
143
+
144
+ print("\n🎯 Prediction Distribution:")
145
+ for license_type, count in sorted(results['prediction_distribution'].items(), key=lambda x: x[1], reverse=True):
146
+ percentage = (count / results['total_repos']) * 100
147
+ print(f" {license_type}: {count} ({percentage:.1f}%)")
148
+
149
+ print("\n💡 Insights:")
150
+ print("- CodeReality-1T is deliberately noisy with 0% license detection")
151
+ print("- This benchmark demonstrates the challenge of license classification")
152
+ print("- Most repositories lack clear licensing information")
153
+ print("- Perfect for testing robustness of license detection systems")
154
+
155
+ def main():
156
+ """Run license detection benchmark."""
157
+ print("🚀 CodeReality-1T License Detection Benchmark")
158
+ print("=" * 60)
159
+
160
+ # Configuration
161
+ data_dir = "/mnt/z/CodeReality_Final/unified_dataset"
162
+ sample_size = 500
163
+
164
+ if not os.path.exists(data_dir):
165
+ print(f"❌ Dataset directory not found: {data_dir}")
166
+ print("Please update the data_dir path to point to your CodeReality-1T dataset")
167
+ return
168
+
169
+ # Load dataset sample
170
+ repositories = load_dataset_sample(data_dir, sample_size)
171
+
172
+ if not repositories:
173
+ print("❌ No repositories loaded. Check dataset path.")
174
+ return
175
+
176
+ # Run evaluation
177
+ results = evaluate_license_detection(repositories)
178
+
179
+ # Print results
180
+ print_benchmark_results(results)
181
+
182
+ # Save results
183
+ output_file = "license_detection_results.json"
184
+ with open(output_file, 'w') as f:
185
+ # Convert defaultdict to regular dict for JSON serialization
186
+ results_json = {
187
+ 'total_repos': results['total_repos'],
188
+ 'accuracy': results['accuracy'],
189
+ 'license_distribution': dict(results['license_distribution']),
190
+ 'prediction_distribution': dict(results['prediction_distribution'])
191
+ }
192
+ json.dump(results_json, f, indent=2)
193
+
194
+ print(f"\n💾 Results saved to: {output_file}")
195
+
196
+ if __name__ == "__main__":
197
+ main()
data/README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CodeReality-1T Data Directory
2
+
3
+ ## Location
4
+ The complete 3TB dataset is located at:
5
+ ```
6
+ /mnt/z/CodeReality_Final/unified_dataset/
7
+ ```
8
+
9
+ ## Contents
10
+ - **52,692 JSONL files** containing 397,475 repositories
11
+ - **Total size**: 3.05 TB uncompressed
12
+ - **Format**: JSONL (JSON Lines) with complete repository metadata
13
+
14
+ ## File Structure
15
+ Each JSONL file contains repositories with:
16
+ - Source code files with full paths
17
+ - Git commit history and messages
18
+ - Issue tracking data
19
+ - Repository metadata (stars, forks, topics)
20
+ - License information
21
+ - Enhanced Blueprint metadata
22
+
23
+ ## Usage
24
+ To access the data programmatically:
25
+
26
+ ```python
27
+ import json
28
+ import os
29
+
30
+ data_dir = "/mnt/z/CodeReality_Final/unified_dataset"
31
+ for filename in os.listdir(data_dir):
32
+ if filename.endswith('.jsonl'):
33
+ with open(os.path.join(data_dir, filename), 'r') as f:
34
+ for line in f:
35
+ repo_data = json.loads(line)
36
+ # Process repository data
37
+ print(repo_data.get('name', 'Unknown'))
38
+ ```
39
+
40
+ ## Integrity Verification
41
+ Use the dataset index file for verification:
42
+ ```bash
43
+ # Verify against index
44
+ python3 -c "
45
+ import json
46
+ with open('../analysis/dataset_index.json', 'r') as f:
47
+ index = json.load(f)
48
+ print(f'Total files: {len(index[\"files\"])}')
49
+ print(f'Total repositories: {sum(f[\"repository_count\"] for f in index[\"files\"])}')
50
+ "
51
+ ```
52
+
53
+ ## See Also
54
+ - Dataset Card: `../docs/DATASET_CARD.md`
55
+ - Analysis Results: `../analysis/metrics.json`
56
+ - Evaluation Subset: `../eval/subset/`
data/enhanced_enhanced_enhanced_sustained_batch_000066_20250902_220910.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:152bae10366e4f91ed02998485c3146f089c0cbb978a83a1cb9fb67a3b2653c2
3
+ size 24399741
data/enhanced_enhanced_enhanced_sustained_batch_000101_20250829_181259.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:618eca264bfc53c294abd5ca803cab8a697530b03ebfda81c9d0b3980ecad1ce
3
+ size 14569292
data/enhanced_enhanced_enhanced_sustained_batch_000138_20250829_063128.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa23c0660cb88b8d0d5819670c3bc00ba80f2f79d3ef35dfb290c734f84b06c0
3
+ size 47493673
data/enhanced_enhanced_enhanced_sustained_batch_000750_20250829_004837.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f5a7c153dff6879503795bb9822179aa620b96127d2d4b739a9bfb39fb22ff8
3
+ size 42909991
data/enhanced_enhanced_enhanced_sustained_batch_001012_20250830_153945.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8920dc536f1e67aaa8e00265c4cc173b58a235562917cfa8a1d28fde5b0a7b9
3
+ size 50237646
data/enhanced_enhanced_enhanced_sustained_batch_001122_20250905_155200.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0600c087b08c7183ea0ad75c846a366f59628f8762e8e37b7cb446e7ec04821c
3
+ size 172512507
data/enhanced_enhanced_enhanced_sustained_batch_001200_20250908_113430.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:651bae562d7e12a8511b357d045931b4a49c5f80883f96208a055e0eeb11f9e8
3
+ size 35007374
data/enhanced_enhanced_enhanced_sustained_batch_001231_20250909_120242.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ed9ab836f80f065ae0ae83d2f8583e2126ab0bfc36d8bc15c5253c8dbf96f69
3
+ size 46636495
data/enhanced_enhanced_enhanced_sustained_batch_001636_20250911_144513.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e577e7d7a36b15375b23585b130dc33e434fdbb2433f5ae59ddbbb1844bb3124
3
+ size 90108127
data/enhanced_enhanced_sustained_batch_000012_20250829_082023.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:661ee288ad2bd9e300e66d7a9159e7c1ea751809d553b59609b2f7e808c33dd1
3
+ size 13526675
data/enhanced_enhanced_sustained_batch_000022_20250913_172734.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae073dbc9b76fa1ae5cef4c7c90cc60c8f58d27f3fec331288f6b19d2d9e03c0
3
+ size 67672664
data/enhanced_enhanced_sustained_batch_000023_20250830_052929.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0d01a206057fcabd4666d849fee72d49f2713ad5b720e2bc5c099407bf40e38
3
+ size 17901677
data/enhanced_enhanced_sustained_batch_000026_20250910_170950.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55b73ad18759878cc0a92a1bca76ebce1aebe080759d60e38ab963e980d1a7f7
3
+ size 46780942
data/enhanced_enhanced_sustained_batch_000037_20250901_115620.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac2142a89a59723365a8a6c66665e614f2a48b9d1666097445486e56e1dd8798
3
+ size 30124818
data/enhanced_enhanced_sustained_batch_000037_20250905_185022.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21c9a9d9d1a994c294469117b65e85294bd8ceaa0c32f11536ca8332d1810857
3
+ size 99216661
data/enhanced_enhanced_sustained_batch_000042_20250909_195036.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fb1d4a6078b90e758145333d328c2719c5b2385c398b648bf40bbc591b34686
3
+ size 84983248
data/enhanced_enhanced_sustained_batch_000052_20250901_000828.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c038e55b0eba2ba221f34f8573f42e712dc457e92b61485d87d10f72b7880a6
3
+ size 82877450
data/enhanced_enhanced_sustained_batch_000055_20250906_072036.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d4fb115385a2e7351050ee2b1eae715755f01ae6424145b6e5a295388ebddb4
3
+ size 19245001
data/enhanced_enhanced_sustained_batch_000065_20250911_175251.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ffc86b15620503198c17fe20a4d473ca7352acc0b96e8be57fadd3a363d4a0d
3
+ size 56399520
data/enhanced_enhanced_sustained_batch_000068_20250913_181533.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92004e3ac137d1bb936b9d5c46f3463836a3b78e292ed33cbd41dd984fa77e3e
3
+ size 51179247
data/enhanced_enhanced_sustained_batch_000071_20250905_193927.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:141fbb88ed0e8caff85f1da92403776f26598fed7ad7e5abd1164c2b15d2e5d6
3
+ size 100104895
data/enhanced_enhanced_sustained_batch_000075_20250905_194728.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd2c8a341db9149fda9dcf1afd44c54061349a9e81aac564c27f549400ce8f45
3
+ size 58335276
data/enhanced_enhanced_sustained_batch_000080_20250906_140532.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1616cd71737022d1e01edbfd484227b8b851f201ab3bc9b916d067be9d82a499
3
+ size 99218381
data/enhanced_enhanced_sustained_batch_000086_20250903_223328.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b90b78fa18d59c9445f5aa57e566d83781cd019fb6d8c3054d0081d18570c4b
3
+ size 51919759
data/enhanced_enhanced_sustained_batch_000092_20250904_224315.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:282210672f7ed5a8c91460516b7bf7a38e8fefd1450e440607539cc6343a43a9
3
+ size 51884141
data/enhanced_enhanced_sustained_batch_000100_20250902_010630.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:779716fab7aa2f7ac359316d60fe093f2715aa407ed9aa0a89d39aef94547b0d
3
+ size 22062752
data/enhanced_enhanced_sustained_batch_000106_20250911_182607.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f04d1bc1d1866af28f845b459e81851affa38a587b33a0a3627811495d35b2e9
3
+ size 46704056
data/enhanced_enhanced_sustained_batch_000107_20250831_125844.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20f77e511e6ac18063be909291b222fffb7405cf5613eefd0e16efe038f5241
3
+ size 51908668
data/enhanced_enhanced_sustained_batch_000112_20250907_203743.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:906540c6c314c174d91e68e3f0ad54aabcba16aed6f7a6700549d6a25f535402
3
+ size 90415466
data/enhanced_enhanced_sustained_batch_000116_20250831_130816.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c606bf0ea7da59679f7fcd5f9820a5036d5690aa0de44f34ec2778845bdccc
3
+ size 72071363
data/enhanced_enhanced_sustained_batch_000133_20250902_013852.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ace196dad6f0f75c85bcf03e8003694ed1acca85842558a830659aecc7888f0
3
+ size 22277384
data/enhanced_enhanced_sustained_batch_000139_20250829_183519.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:796c98b2953c813858cce3f7c48d24ffad1212f520dd2c6c62b22f6e281bbb05
3
+ size 17902843
data/enhanced_enhanced_sustained_batch_000144_20250827_222718.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2166e686dc9db105868228bc84aa91202b30a3086f43e41d407dd1013ef70aad
3
+ size 28235648
data/enhanced_enhanced_sustained_batch_000145_20250905_213029.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bae958e64b7980aa5ad7aa3188b718c20b31d9f705924a8d8eb892043745327
3
+ size 99216255
data/enhanced_enhanced_sustained_batch_000148_20250909_211703.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8d1949dfdb3ddc2607085025f0f6c04c81e11f46faa1e91b927b8646b853596
3
+ size 90437958
data/enhanced_enhanced_sustained_batch_000175_20250913_200555.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c7f0432e24a23238cbd5ec4d04ae6e03523cd1de35c5b2197d65bfe7659fef3
3
+ size 55360172
data/enhanced_enhanced_sustained_batch_000192_20250830_192234.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e8c1d8b21b50b1a7b490db7bbb3abc089d23cf1e9e37c43ada99faa29934929
3
+ size 43453726