#!/usr/bin/env python3 """ Code Completion Benchmark for CodeReality-1T Dataset Evaluates code completion models using Pass@k metrics """ import json import os import re import random from typing import Dict, List, Tuple, Optional from collections import defaultdict def load_dataset_sample(data_dir: str, sample_size: int = 200) -> List[Dict]: """Load sample of repositories with code files.""" print(f"šŸ” Loading sample of {sample_size} repositories with code files...") repositories = [] files = [f for f in os.listdir(data_dir) if f.endswith('.jsonl')] random.shuffle(files) for filename in files[:15]: # Sample from first 15 files file_path = os.path.join(data_dir, filename) try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: for line in f: if len(repositories) >= sample_size: break try: repo_data = json.loads(line) # Filter repositories with code files if has_code_files(repo_data): repositories.append(repo_data) except json.JSONDecodeError: continue except Exception as e: continue if len(repositories) >= sample_size: break print(f"āœ… Loaded {len(repositories)} repositories with code files") return repositories def has_code_files(repo: Dict) -> bool: """Check if repository contains code files.""" code_extensions = {'.py', '.js', '.java', '.cpp', '.c', '.go', '.rs', '.ts'} files = repo.get('files', []) for file_obj in files: if isinstance(file_obj, dict): file_path = file_obj.get('path', '') if any(file_path.endswith(ext) for ext in code_extensions): return True return False def extract_function_snippets(repo: Dict, language: str = 'python') -> List[Dict]: """Extract function definitions for completion tasks.""" snippets = [] # Language-specific patterns patterns = { 'python': r'def\s+(\w+)\s*\([^)]*\):\s*', 'javascript': r'function\s+(\w+)\s*\([^)]*\)\s*{', 'java': r'(?:public|private|protected)?\s*(?:static)?\s*\w+\s+(\w+)\s*\([^)]*\)\s*{', 'cpp': r'\w+\s+(\w+)\s*\([^)]*\)\s*{', } if language not in patterns: return snippets pattern = patterns[language] extension_map = { 'python': '.py', 'javascript': '.js', 'java': '.java', 'cpp': '.cpp' } target_ext = extension_map[language] files = repo.get('files', []) for file_obj in files: if isinstance(file_obj, dict): file_path = file_obj.get('path', '') content = file_obj.get('content', '') if file_path.endswith(target_ext) and content: matches = list(re.finditer(pattern, content, re.MULTILINE)) for match in matches: start_pos = match.start() function_name = match.group(1) # Get context before function lines_before = content[:start_pos].split('\n') context_lines = lines_before[-5:] if len(lines_before) >= 5 else lines_before context = '\n'.join(context_lines) # Get function body (simplified - until next function or end) remaining_content = content[start_pos:] lines = remaining_content.split('\n') function_lines = [] indent_level = None for i, line in enumerate(lines): if i == 0: function_lines.append(line) continue # Detect indentation level if indent_level is None and line.strip(): indent_level = len(line) - len(line.lstrip()) # Stop if we hit same or lower indentation level (end of function) if line.strip() and indent_level is not None: current_indent = len(line) - len(line.lstrip()) if current_indent <= indent_level and not line.strip().startswith(('if', 'for', 'while', 'try', 'except', 'else', 'elif')): break function_lines.append(line) # Limit function length if len(function_lines) > 20: break function_body = '\n'.join(function_lines) # Create completion task: provide function signature, expect body if len(function_lines) > 3: # Only meaningful functions snippets.append({ 'function_name': function_name, 'context': context, 'prompt': function_lines[0], # Function signature 'completion': '\n'.join(function_lines[1:]), # Function body 'file_path': file_path, 'language': language }) return snippets def simple_code_completion_model(prompt: str, language: str) -> List[str]: """Simple rule-based code completion for demonstration.""" completions = [] # Generate multiple completions (for Pass@k evaluation) templates = { 'python': [ " pass", " return None", " # TODO: implement this function\n pass", " result = None\n return result", " # Implementation needed\n raise NotImplementedError()" ], 'javascript': [ " return null;", " // TODO: implement\n return;", " throw new Error('Not implemented');", " var result = null;\n return result;", " console.log('Function called');\n return;" ], 'java': [ " return null;", " // TODO: implement this method\n return null;", " throw new UnsupportedOperationException();", " Object result = null;\n return result;", " System.out.println(\"Method called\");\n return null;" ] } if language in templates: # Return multiple variations for Pass@k evaluation return templates[language] else: return ["// TODO: implement"] def evaluate_completion_quality(predicted: str, actual: str) -> float: """Simple evaluation of completion quality.""" # Normalize strings pred_lines = [line.strip() for line in predicted.split('\n') if line.strip()] actual_lines = [line.strip() for line in actual.split('\n') if line.strip()] if not actual_lines: return 0.0 # Check for basic structural similarity score = 0.0 # Check if both are empty implementations empty_indicators = ['pass', 'todo', 'not implemented', 'null', 'return;', 'return null'} pred_empty = any(indicator in predicted.lower() for indicator in empty_indicators) actual_empty = any(indicator in actual.lower() for indicator in empty_indicators) if pred_empty and actual_empty: score += 0.8 elif not pred_empty and not actual_empty: # Check for keyword similarity pred_keywords = set(re.findall(r'\b\w+\b', predicted.lower())) actual_keywords = set(re.findall(r'\b\w+\b', actual.lower())) if actual_keywords: keyword_overlap = len(pred_keywords & actual_keywords) / len(actual_keywords) score += keyword_overlap * 0.6 # Check for similar line count line_ratio = min(len(pred_lines), len(actual_lines)) / max(len(pred_lines), len(actual_lines)) score += line_ratio * 0.4 return min(score, 1.0) def calculate_pass_at_k(completion_results: List[Tuple[List[str], str]], k: int = 1) -> float: """Calculate Pass@k metric.""" if k <= 0: return 0.0 total_passed = 0 for completions, ground_truth in completion_results: # Take top k completions top_k_completions = completions[:k] # Check if any completion passes passed = False for completion in top_k_completions: quality_score = evaluate_completion_quality(completion, ground_truth) if quality_score > 0.5: # Threshold for "passing" passed = True break if passed: total_passed += 1 return total_passed / len(completion_results) if completion_results else 0.0 def run_completion_benchmark(repositories: List[Dict]) -> Dict: """Run code completion benchmark.""" print("🧮 Running code completion benchmark...") results = { 'total_repositories': len(repositories), 'completion_tasks': [], 'language_stats': defaultdict(int), 'pass_at_1': 0.0, 'pass_at_3': 0.0, 'pass_at_5': 0.0, 'average_quality': 0.0 } completion_results = [] quality_scores = [] # Extract function snippets from repositories for repo in repositories: for language in ['python', 'javascript', 'java']: snippets = extract_function_snippets(repo, language) for snippet in snippets[:2]: # Limit per repo for performance results['language_stats'][language] += 1 # Generate completions completions = simple_code_completion_model(snippet['prompt'], language) ground_truth = snippet['completion'] completion_results.append((completions, ground_truth)) # Calculate quality for first completion if completions: quality = evaluate_completion_quality(completions[0], ground_truth) quality_scores.append(quality) results['completion_tasks'].append({ 'function_name': snippet['function_name'], 'language': language, 'prompt_length': len(snippet['prompt']), 'completion_length': len(ground_truth) }) # Calculate metrics results['pass_at_1'] = calculate_pass_at_k(completion_results, 1) results['pass_at_3'] = calculate_pass_at_k(completion_results, 3) results['pass_at_5'] = calculate_pass_at_k(completion_results, 5) results['average_quality'] = sum(quality_scores) / len(quality_scores) if quality_scores else 0.0 return results def print_benchmark_results(results: Dict): """Print formatted benchmark results.""" print("=" * 60) print("šŸŽÆ CODE COMPLETION BENCHMARK RESULTS") print("=" * 60) print(f"Total repositories: {results['total_repositories']}") print(f"Completion tasks: {len(results['completion_tasks'])}") print(f"\nšŸ“Š Pass@k Metrics:") print(f" Pass@1: {results['pass_at_1']:.3f}") print(f" Pass@3: {results['pass_at_3']:.3f}") print(f" Pass@5: {results['pass_at_5']:.3f}") print(f" Average Quality: {results['average_quality']:.3f}") print(f"\nšŸ”¤ Language Distribution:") for language, count in sorted(results['language_stats'].items(), key=lambda x: x[1], reverse=True): print(f" {language}: {count} functions") print(f"\nšŸ’” Insights:") print("- This is a simplified demonstration benchmark") print("- Real evaluation requires more sophisticated code execution") print("- CodeReality-1T provides diverse, noisy code for robust testing") print("- Consider functional correctness testing for production models") def main(): """Run code completion benchmark.""" print("šŸš€ CodeReality-1T Code Completion Benchmark") print("=" * 60) # Configuration data_dir = "/mnt/z/CodeReality_Final/unified_dataset" sample_size = 100 if not os.path.exists(data_dir): print(f"āŒ Dataset directory not found: {data_dir}") print("Please update the data_dir path to point to your CodeReality-1T dataset") return # Load dataset sample repositories = load_dataset_sample(data_dir, sample_size) if not repositories: print("āŒ No repositories loaded. Check dataset path.") return # Run benchmark results = run_completion_benchmark(repositories) # Print results print_benchmark_results(results) # Save results output_file = "code_completion_results.json" with open(output_file, 'w') as f: # Convert defaultdict to regular dict for JSON serialization results_json = { 'total_repositories': results['total_repositories'], 'completion_tasks': results['completion_tasks'], 'language_stats': dict(results['language_stats']), 'pass_at_1': results['pass_at_1'], 'pass_at_3': results['pass_at_3'], 'pass_at_5': results['pass_at_5'], 'average_quality': results['average_quality'] } json.dump(results_json, f, indent=2) print(f"\nšŸ’¾ Results saved to: {output_file}") if __name__ == "__main__": main()