# CodeReality-1T Evaluation Benchmarks This directory contains demonstration benchmark scripts for evaluating models on the CodeReality-1T dataset. ## Available Benchmarks ### 1. License Detection Benchmark **File**: `license_detection_benchmark.py` **Purpose**: Evaluates automated license classification systems on deliberately noisy data. **Features**: - Rule-based feature extraction from repository content - Simple classification model for demonstration - Performance metrics on license detection accuracy - Analysis of license distribution patterns **Usage**: ```bash cd /path/to/codereality-1t/eval/benchmarks python3 license_detection_benchmark.py ``` **Expected Results**: - Low accuracy due to deliberately noisy dataset (0% license detection by design) - Demonstrates robustness testing for license detection systems - Outputs detailed distribution analysis ### 2. Code Completion Benchmark **File**: `code_completion_benchmark.py` **Purpose**: Evaluates code completion models using Pass@k metrics on real-world noisy code. **Features**: - Function extraction from Python, JavaScript, Java files - Simple rule-based completion model for demonstration - Pass@1, Pass@3, Pass@5 metric calculation - Multi-language support with language-specific patterns **Usage**: ```bash cd /path/to/codereality-1t/eval/benchmarks python3 code_completion_benchmark.py ``` **Expected Results**: - Baseline performance metrics for comparison - Language distribution analysis - Quality scoring of completions ## Benchmark Characteristics ### Dataset Integration - **Data Source**: Loads from `/mnt/z/CodeReality_Final/unified_dataset` by default - **Sampling**: Uses random sampling for performance (configurable) - **Formats**: Handles JSONL repository format from CodeReality-1T ### Evaluation Philosophy - **Deliberately Noisy**: Tests model robustness on real-world messy data - **Baseline Metrics**: Provides simple baselines for comparison (not production-ready) - **Reproducible**: Deterministic evaluation with random seed control - **Research Focus**: Results show challenges of noisy data, not competitive benchmarks ### Extensibility - **Modular Design**: Easy to extend with new benchmarks - **Configurable**: Sample sizes and evaluation criteria can be adjusted - **Multiple Languages**: Framework supports cross-language evaluation ## Configuration ### Data Path Configuration Update the `data_dir` variable in each script to point to your CodeReality-1T dataset: ```python data_dir = "/path/to/your/codereality-1t/unified_dataset" ``` ### Sample Size Adjustment Modify sample sizes for performance tuning: ```python sample_size = 500 # Adjust based on computational resources ``` ## Output Files Each benchmark generates JSON results files: - `license_detection_results.json` - `code_completion_results.json` These contain detailed metrics and can be used for comparative analysis. ### Sample Results Example results are available in `../results/`: - `license_detection_sample_results.json` - Baseline license detection performance - `code_completion_sample_results.json` - Baseline code completion metrics These demonstrate expected performance on CodeReality-1T's deliberately noisy data. ## Requirements ### Python Dependencies ```bash pip install json os re random typing collections ``` ### System Requirements - **Memory**: Minimum 4GB RAM for default sample sizes - **Storage**: Access to CodeReality-1T dataset (3TB) - **Compute**: Single-core sufficient for demonstration scripts ## Extending the Benchmarks ### Adding New Tasks 1. Create new Python file following naming convention: `{task}_benchmark.py` 2. Implement standard evaluation interface: ```python def load_dataset_sample(data_dir, sample_size) def run_benchmark(repositories) def print_benchmark_results(results) ``` 3. Add task-specific evaluation metrics ### Supported Tasks Current benchmarks cover: - **License Detection**: Classification and compliance - **Code Completion**: Generation and functional correctness **Framework Scaffolds (PLANNED - Implementation Needed)**: - [`bug_detection_benchmark.py`](bug_detection_benchmark.py) - Bug detection on commit pairs (scaffold only) - [`cross_language_translation_benchmark.py`](cross_language_translation_benchmark.py) - Code translation across languages (scaffold only) **Future Planned Benchmarks - Roadmap**: - **v1.1.0 (Q1 2025)**: Complete bug detection and cross-language translation implementations - **v1.2.0 (Q2 2025)**: Repository classification and domain detection benchmarks - **v1.3.0 (Q3 2025)**: Build system analysis and validation frameworks - **v2.0.0 (Q4 2025)**: Commit message generation and issue-to-code alignment benchmarks **Community Priority**: Framework scaffolds ready for community implementation! ## Performance Notes ### Computational Complexity - **License Detection**: O(n) where n = repository count - **Code Completion**: O(n*m) where m = average functions per repository ### Optimization Tips 1. **Sampling**: Reduce sample_size for faster execution 2. **Filtering**: Pre-filter repositories by criteria 3. **Parallelization**: Use multiprocessing for large-scale evaluation 4. **Caching**: Cache extracted features for repeated runs ## Research Applications ### Model Development - **Robustness Testing**: Test models on noisy, real-world data - **Baseline Comparison**: Compare against simple rule-based systems - **Cross-domain Evaluation**: Test generalization across domains ### Data Science Research - **Curation Methods**: Develop better filtering techniques - **Quality Metrics**: Research automated quality assessment - **Bias Analysis**: Study representation bias in large datasets ## Citation When using these benchmarks in research, please cite the CodeReality-1T dataset: ```bibtex @misc{codereality2025, title={CodeReality-1T: A Large-Scale Deliberately Noisy Dataset for Robust Code Understanding}, author={Vincenzo Gallo}, year={2025}, publisher={Hugging Face}, howpublished={\\url{https://huggingface.co/vinsblack}}, note={Version 1.0.0} } ``` ## Support - **Issues**: https://github.com/vinsguru/codereality-1t/issues - **Contact**: vincenzo.gallo77@hotmail.com - **Documentation**: See main dataset README and documentation