#!/usr/bin/env python3 """ Bug Detection Benchmark for CodeReality-1T Dataset This benchmark evaluates bug detection systems on deliberately noisy code data. Analyzes commit pairs to identify potential bugs and fixes in real-world repositories. Status: PLANNED - Framework scaffold for future implementation """ import json import os import re from typing import Dict, List, Tuple, Any from collections import defaultdict import random def load_dataset_sample(data_dir: str, sample_size: int = 500) -> List[Dict]: """ Load sample of repositories with commit history for bug detection analysis. Args: data_dir: Path to CodeReality-1T unified dataset sample_size: Number of repositories to sample Returns: List of repository data with commit pairs """ # TODO: Implement repository loading with commit history # Focus on repositories with: # - Multiple commits with bug-fix indicators # - Before/after code changes # - Issue tracking data print(f"Loading {sample_size} repositories for bug detection analysis...") return [] def extract_bug_fix_patterns(repositories: List[Dict]) -> List[Dict]: """ Extract potential bug-fix commit pairs from repository history. Args: repositories: List of repository data Returns: List of bug-fix patterns with before/after code """ # TODO: Implement bug-fix pattern extraction # Look for: # - Commit messages with "fix", "bug", "issue" keywords # - Code changes that add null checks, exception handling # - Revert patterns and subsequent fixes patterns = [] bug_keywords = ["fix", "bug", "issue", "error", "crash", "null", "exception"] for repo in repositories: # Extract commit pairs where bug-fix indicators are present pass return patterns def simple_bug_detector(code_before: str, code_after: str) -> Dict[str, Any]: """ Simple rule-based bug detection for demonstration purposes. This is a baseline implementation - real bug detection would use sophisticated ML models, static analysis, or dynamic testing. Args: code_before: Code before the fix code_after: Code after the fix Returns: Detection results with confidence scores """ # TODO: Implement simple pattern-based bug detection # Examples: # - Missing null checks # - Array bounds issues # - Resource leaks # - Logic errors results = { "bug_detected": False, "bug_type": "unknown", "confidence": 0.0, "patterns_matched": [], "fix_applied": False } # Simple pattern matching for demonstration null_check_added = "!= null" in code_after and "!= null" not in code_before bounds_check_added = "length" in code_after and "length" not in code_before if null_check_added: results["bug_detected"] = True results["bug_type"] = "null_pointer" results["confidence"] = 0.7 results["patterns_matched"].append("null_check_added") results["fix_applied"] = True return results def evaluate_bug_detection(bug_patterns: List[Dict]) -> Dict[str, Any]: """ Evaluate bug detection accuracy on commit pairs. Args: bug_patterns: List of bug-fix patterns Returns: Evaluation metrics including precision, recall, F1 """ # TODO: Implement comprehensive evaluation # Metrics: # - True positive rate (bugs correctly identified) # - False positive rate (false alarms) # - Precision, Recall, F1 score # - Bug type classification accuracy total_patterns = len(bug_patterns) detected_bugs = 0 correct_detections = 0 false_positives = 0 for pattern in bug_patterns: # Apply simple bug detector result = simple_bug_detector(pattern.get("code_before", ""), pattern.get("code_after", "")) if result["bug_detected"]: detected_bugs += 1 # In real scenario, would compare against ground truth # For demo, assume 60% accuracy if random.random() < 0.6: correct_detections += 1 else: false_positives += 1 precision = correct_detections / detected_bugs if detected_bugs > 0 else 0 recall = correct_detections / total_patterns if total_patterns > 0 else 0 f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 return { "total_patterns": total_patterns, "detected_bugs": detected_bugs, "correct_detections": correct_detections, "false_positives": false_positives, "precision": precision, "recall": recall, "f1_score": f1_score, "detection_rate": detected_bugs / total_patterns if total_patterns > 0 else 0 } def run_benchmark(repositories: List[Dict]) -> Dict[str, Any]: """ Run complete bug detection benchmark. Args: repositories: List of repository data Returns: Complete benchmark results """ print("Extracting bug-fix patterns...") bug_patterns = extract_bug_fix_patterns(repositories) print("Evaluating bug detection...") metrics = evaluate_bug_detection(bug_patterns) print("Analyzing bug types...") bug_type_distribution = defaultdict(int) for pattern in bug_patterns: bug_type = pattern.get("bug_type", "unknown") bug_type_distribution[bug_type] += 1 return { "benchmark_info": { "name": "Bug Detection Benchmark", "dataset": "CodeReality-1T", "version": "1.0.0", "description": "Evaluates bug detection on commit pairs", "status": "PLANNED - Framework scaffold" }, "dataset_stats": { "total_repositories": len(repositories), "total_bug_patterns": len(bug_patterns), "avg_patterns_per_repo": len(bug_patterns) / len(repositories) if repositories else 0 }, "detection_metrics": metrics, "bug_type_distribution": dict(bug_type_distribution), "insights": [ "This is a planned benchmark - implementation needed", "Real bug detection requires sophisticated analysis", "CodeReality-1T provides rich commit history for training", "Noisy dataset challenges standard detection methods" ], "recommendations": [ "Implement advanced static analysis tools", "Use ML models trained on commit patterns", "Validate with manual inspection of detected bugs", "Consider temporal patterns in bug introduction/fixing" ] } def print_benchmark_results(results: Dict[str, Any]): """Print formatted benchmark results.""" print("\n" + "="*60) print("BUG DETECTION BENCHMARK RESULTS") print("="*60) info = results["benchmark_info"] print(f"Benchmark: {info['name']}") print(f"Dataset: {info['dataset']}") print(f"Status: {info['status']}") print(f"Description: {info['description']}") print("\nDataset Statistics:") stats = results["dataset_stats"] print(f" Total Repositories: {stats['total_repositories']}") print(f" Bug Patterns Found: {stats['total_bug_patterns']}") print(f" Avg Patterns/Repo: {stats['avg_patterns_per_repo']:.2f}") print("\nDetection Metrics:") metrics = results["detection_metrics"] print(f" Precision: {metrics['precision']:.3f}") print(f" Recall: {metrics['recall']:.3f}") print(f" F1 Score: {metrics['f1_score']:.3f}") print(f" Detection Rate: {metrics['detection_rate']:.3f}") print("\nBug Type Distribution:") for bug_type, count in results["bug_type_distribution"].items(): print(f" {bug_type}: {count}") print("\nKey Insights:") for insight in results["insights"]: print(f" • {insight}") print("\nRecommendations:") for rec in results["recommendations"]: print(f" • {rec}") def main(): """Run bug detection benchmark on CodeReality-1T dataset.""" # Configuration data_dir = "/mnt/z/CodeReality_Final/unified_dataset" sample_size = 100 # Reduced for planning phase print("CodeReality-1T Bug Detection Benchmark") print("Status: PLANNED - Framework scaffold only") print(f"Data directory: {data_dir}") print(f"Sample size: {sample_size}") # Load dataset sample print("\nLoading dataset sample...") repositories = load_dataset_sample(data_dir, sample_size) if not repositories: print("No repositories loaded - using mock data for demonstration") # Create mock data for demonstration repositories = [{"name": f"mock_repo_{i}", "commits": []} for i in range(10)] # Run benchmark results = run_benchmark(repositories) # Print results print_benchmark_results(results) # Save results output_file = "bug_detection_results.json" with open(output_file, 'w') as f: json.dump(results, f, indent=2) print(f"\nResults saved to: {output_file}") print("Note: This is a framework scaffold - full implementation needed") if __name__ == "__main__": main()