#!/usr/bin/env python3 """ License Detection Benchmark for CodeReality-1T Dataset Evaluates automated license classification systems """ import json import os from typing import Dict, List, Tuple from collections import defaultdict import random def load_dataset_sample(data_dir: str, sample_size: int = 1000) -> List[Dict]: """Load random sample of repositories from dataset.""" print(f"šŸ” Loading sample of {sample_size} repositories...") repositories = [] # Get available files files = [f for f in os.listdir(data_dir) if f.endswith('.jsonl')] random.shuffle(files) for filename in files[:10]: # Sample from first 10 files file_path = os.path.join(data_dir, filename) try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: for line in f: if len(repositories) >= sample_size: break try: repo_data = json.loads(line) repositories.append(repo_data) except json.JSONDecodeError: continue except Exception as e: print(f"āš ļø Error reading {filename}: {e}") continue if len(repositories) >= sample_size: break print(f"āœ… Loaded {len(repositories)} repositories") return repositories def extract_license_features(repo: Dict) -> Dict: """Extract features that could indicate license presence.""" features = { 'has_license_file': False, 'has_readme': False, 'license_keywords_count': 0, 'copyright_mentions': 0, 'file_count': 0, 'detected_license': repo.get('license', 'Unknown') } files = repo.get('files', []) features['file_count'] = len(files) license_keywords = ['license', 'mit', 'apache', 'gpl', 'bsd', 'copyright'] for file_obj in files: if isinstance(file_obj, dict): file_path = file_obj.get('path', '').lower() content = file_obj.get('content', '').lower() # Check for license files if any(keyword in file_path for keyword in ['license', 'copying', 'legal']): features['has_license_file'] = True # Check for README if 'readme' in file_path: features['has_readme'] = True # Count license keywords for keyword in license_keywords: features['license_keywords_count'] += content.count(keyword) # Count copyright mentions features['copyright_mentions'] += content.count('copyright') return features def simple_license_classifier(features: Dict) -> str: """Simple rule-based license classifier for demonstration.""" # Rule-based classification if features['has_license_file']: if features['license_keywords_count'] > 10: return 'MIT' # Most common elif features['copyright_mentions'] > 5: return 'Apache-2.0' else: return 'GPL-3.0' elif features['has_readme'] and features['license_keywords_count'] > 3: return 'MIT' elif features['file_count'] > 50 and features['copyright_mentions'] > 2: return 'Apache-2.0' else: return 'Unknown' def evaluate_license_detection(repositories: List[Dict]) -> Dict: """Evaluate license detection performance.""" print("🧮 Evaluating license detection...") results = { 'total_repos': len(repositories), 'predictions': [], 'ground_truth': [], 'accuracy': 0.0, 'license_distribution': defaultdict(int), 'prediction_distribution': defaultdict(int) } for repo in repositories: features = extract_license_features(repo) predicted_license = simple_license_classifier(features) actual_license = features['detected_license'] results['predictions'].append(predicted_license) results['ground_truth'].append(actual_license) results['license_distribution'][actual_license] += 1 results['prediction_distribution'][predicted_license] += 1 # Calculate accuracy (note: actual dataset has mostly 'Unknown' licenses) correct = sum(1 for p, a in zip(results['predictions'], results['ground_truth']) if p == a) results['accuracy'] = correct / len(repositories) if repositories else 0 return results def print_benchmark_results(results: Dict): """Print formatted benchmark results.""" print("=" * 60) print("šŸ“Š LICENSE DETECTION BENCHMARK RESULTS") print("=" * 60) print(f"Total repositories evaluated: {results['total_repos']}") print(f"Overall accuracy: {results['accuracy']:.3f}") print("\nšŸ“ˆ Ground Truth Distribution:") for license_type, count in sorted(results['license_distribution'].items(), key=lambda x: x[1], reverse=True)[:10]: percentage = (count / results['total_repos']) * 100 print(f" {license_type}: {count} ({percentage:.1f}%)") print("\nšŸŽÆ Prediction Distribution:") for license_type, count in sorted(results['prediction_distribution'].items(), key=lambda x: x[1], reverse=True): percentage = (count / results['total_repos']) * 100 print(f" {license_type}: {count} ({percentage:.1f}%)") print("\nšŸ’” Insights:") print("- CodeReality-1T is deliberately noisy with 0% license detection") print("- This benchmark demonstrates the challenge of license classification") print("- Most repositories lack clear licensing information") print("- Perfect for testing robustness of license detection systems") def main(): """Run license detection benchmark.""" print("šŸš€ CodeReality-1T License Detection Benchmark") print("=" * 60) # Configuration data_dir = "/mnt/z/CodeReality_Final/unified_dataset" sample_size = 500 if not os.path.exists(data_dir): print(f"āŒ Dataset directory not found: {data_dir}") print("Please update the data_dir path to point to your CodeReality-1T dataset") return # Load dataset sample repositories = load_dataset_sample(data_dir, sample_size) if not repositories: print("āŒ No repositories loaded. Check dataset path.") return # Run evaluation results = evaluate_license_detection(repositories) # Print results print_benchmark_results(results) # Save results output_file = "license_detection_results.json" with open(output_file, 'w') as f: # Convert defaultdict to regular dict for JSON serialization results_json = { 'total_repos': results['total_repos'], 'accuracy': results['accuracy'], 'license_distribution': dict(results['license_distribution']), 'prediction_distribution': dict(results['prediction_distribution']) } json.dump(results_json, f, indent=2) print(f"\nšŸ’¾ Results saved to: {output_file}") if __name__ == "__main__": main()