| module_content
				 stringlengths 18 1.05M | 
|---|
| 
	module axi_protocol_converter_v2_1_b2s_simple_fifo #
(
  parameter C_WIDTH  = 8,
  parameter C_AWIDTH = 4,
  parameter C_DEPTH  = 16
)
(
  input  wire               clk,       // Main System Clock  (Sync FIFO)
  input  wire               rst,       // FIFO Counter Reset (Clk
  input  wire               wr_en,     // FIFO Write Enable  (Clk)
  input  wire               rd_en,     // FIFO Read Enable   (Clk)
  input  wire [C_WIDTH-1:0] din,       // FIFO Data Input    (Clk)
  output wire [C_WIDTH-1:0] dout,      // FIFO Data Output   (Clk)
  output wire               a_full,
  output wire               full,      // FIFO FULL Status   (Clk)
  output wire               a_empty,
  output wire               empty      // FIFO EMPTY Status  (Clk)
);
///////////////////////////////////////
// FIFO Local Parameters
///////////////////////////////////////
localparam [C_AWIDTH-1:0] C_EMPTY = ~(0);
localparam [C_AWIDTH-1:0] C_EMPTY_PRE =  (0);
localparam [C_AWIDTH-1:0] C_FULL  = C_EMPTY-1;
localparam [C_AWIDTH-1:0] C_FULL_PRE  = (C_DEPTH < 8) ? C_FULL-1 : C_FULL-(C_DEPTH/8);
 
///////////////////////////////////////
// FIFO Internal Signals
///////////////////////////////////////
reg [C_WIDTH-1:0]  memory [C_DEPTH-1:0];
reg [C_AWIDTH-1:0] cnt_read;
  // synthesis attribute MAX_FANOUT of cnt_read is 10; 
///////////////////////////////////////
// Main simple FIFO Array
///////////////////////////////////////
always @(posedge clk) begin : BLKSRL
integer i;
  if (wr_en) begin
    for (i = 0; i < C_DEPTH-1; i = i + 1) begin
      memory[i+1] <= memory[i];
    end
    memory[0] <= din;
  end
end
///////////////////////////////////////
// Read Index Counter
// Up/Down Counter
//  *** Notice that there is no ***
//  *** OVERRUN protection.     ***
///////////////////////////////////////
always @(posedge clk) begin
  if (rst) cnt_read <= C_EMPTY;
  else if ( wr_en & !rd_en) cnt_read <= cnt_read + 1'b1;
  else if (!wr_en &  rd_en) cnt_read <= cnt_read - 1'b1;
end
///////////////////////////////////////
// Status Flags / Outputs
// These could be registered, but would
// increase logic in order to pre-decode
// FULL/EMPTY status.
///////////////////////////////////////
assign full  = (cnt_read == C_FULL);
assign empty = (cnt_read == C_EMPTY);
assign a_full  = ((cnt_read >= C_FULL_PRE) && (cnt_read != C_EMPTY));
assign a_empty = (cnt_read == C_EMPTY_PRE);
assign dout  = (C_DEPTH == 1) ? memory[0] : memory[cnt_read];
endmodule | 
| 
	module axi_protocol_converter_v2_1_b2s_simple_fifo #
(
  parameter C_WIDTH  = 8,
  parameter C_AWIDTH = 4,
  parameter C_DEPTH  = 16
)
(
  input  wire               clk,       // Main System Clock  (Sync FIFO)
  input  wire               rst,       // FIFO Counter Reset (Clk
  input  wire               wr_en,     // FIFO Write Enable  (Clk)
  input  wire               rd_en,     // FIFO Read Enable   (Clk)
  input  wire [C_WIDTH-1:0] din,       // FIFO Data Input    (Clk)
  output wire [C_WIDTH-1:0] dout,      // FIFO Data Output   (Clk)
  output wire               a_full,
  output wire               full,      // FIFO FULL Status   (Clk)
  output wire               a_empty,
  output wire               empty      // FIFO EMPTY Status  (Clk)
);
///////////////////////////////////////
// FIFO Local Parameters
///////////////////////////////////////
localparam [C_AWIDTH-1:0] C_EMPTY = ~(0);
localparam [C_AWIDTH-1:0] C_EMPTY_PRE =  (0);
localparam [C_AWIDTH-1:0] C_FULL  = C_EMPTY-1;
localparam [C_AWIDTH-1:0] C_FULL_PRE  = (C_DEPTH < 8) ? C_FULL-1 : C_FULL-(C_DEPTH/8);
 
///////////////////////////////////////
// FIFO Internal Signals
///////////////////////////////////////
reg [C_WIDTH-1:0]  memory [C_DEPTH-1:0];
reg [C_AWIDTH-1:0] cnt_read;
  // synthesis attribute MAX_FANOUT of cnt_read is 10; 
///////////////////////////////////////
// Main simple FIFO Array
///////////////////////////////////////
always @(posedge clk) begin : BLKSRL
integer i;
  if (wr_en) begin
    for (i = 0; i < C_DEPTH-1; i = i + 1) begin
      memory[i+1] <= memory[i];
    end
    memory[0] <= din;
  end
end
///////////////////////////////////////
// Read Index Counter
// Up/Down Counter
//  *** Notice that there is no ***
//  *** OVERRUN protection.     ***
///////////////////////////////////////
always @(posedge clk) begin
  if (rst) cnt_read <= C_EMPTY;
  else if ( wr_en & !rd_en) cnt_read <= cnt_read + 1'b1;
  else if (!wr_en &  rd_en) cnt_read <= cnt_read - 1'b1;
end
///////////////////////////////////////
// Status Flags / Outputs
// These could be registered, but would
// increase logic in order to pre-decode
// FULL/EMPTY status.
///////////////////////////////////////
assign full  = (cnt_read == C_FULL);
assign empty = (cnt_read == C_EMPTY);
assign a_full  = ((cnt_read >= C_FULL_PRE) && (cnt_read != C_EMPTY));
assign a_empty = (cnt_read == C_EMPTY_PRE);
assign dout  = (C_DEPTH == 1) ? memory[0] : memory[cnt_read];
endmodule | 
| 
	module axi_protocol_converter_v2_1_b2s_simple_fifo #
(
  parameter C_WIDTH  = 8,
  parameter C_AWIDTH = 4,
  parameter C_DEPTH  = 16
)
(
  input  wire               clk,       // Main System Clock  (Sync FIFO)
  input  wire               rst,       // FIFO Counter Reset (Clk
  input  wire               wr_en,     // FIFO Write Enable  (Clk)
  input  wire               rd_en,     // FIFO Read Enable   (Clk)
  input  wire [C_WIDTH-1:0] din,       // FIFO Data Input    (Clk)
  output wire [C_WIDTH-1:0] dout,      // FIFO Data Output   (Clk)
  output wire               a_full,
  output wire               full,      // FIFO FULL Status   (Clk)
  output wire               a_empty,
  output wire               empty      // FIFO EMPTY Status  (Clk)
);
///////////////////////////////////////
// FIFO Local Parameters
///////////////////////////////////////
localparam [C_AWIDTH-1:0] C_EMPTY = ~(0);
localparam [C_AWIDTH-1:0] C_EMPTY_PRE =  (0);
localparam [C_AWIDTH-1:0] C_FULL  = C_EMPTY-1;
localparam [C_AWIDTH-1:0] C_FULL_PRE  = (C_DEPTH < 8) ? C_FULL-1 : C_FULL-(C_DEPTH/8);
 
///////////////////////////////////////
// FIFO Internal Signals
///////////////////////////////////////
reg [C_WIDTH-1:0]  memory [C_DEPTH-1:0];
reg [C_AWIDTH-1:0] cnt_read;
  // synthesis attribute MAX_FANOUT of cnt_read is 10; 
///////////////////////////////////////
// Main simple FIFO Array
///////////////////////////////////////
always @(posedge clk) begin : BLKSRL
integer i;
  if (wr_en) begin
    for (i = 0; i < C_DEPTH-1; i = i + 1) begin
      memory[i+1] <= memory[i];
    end
    memory[0] <= din;
  end
end
///////////////////////////////////////
// Read Index Counter
// Up/Down Counter
//  *** Notice that there is no ***
//  *** OVERRUN protection.     ***
///////////////////////////////////////
always @(posedge clk) begin
  if (rst) cnt_read <= C_EMPTY;
  else if ( wr_en & !rd_en) cnt_read <= cnt_read + 1'b1;
  else if (!wr_en &  rd_en) cnt_read <= cnt_read - 1'b1;
end
///////////////////////////////////////
// Status Flags / Outputs
// These could be registered, but would
// increase logic in order to pre-decode
// FULL/EMPTY status.
///////////////////////////////////////
assign full  = (cnt_read == C_FULL);
assign empty = (cnt_read == C_EMPTY);
assign a_full  = ((cnt_read >= C_FULL_PRE) && (cnt_read != C_EMPTY));
assign a_empty = (cnt_read == C_EMPTY_PRE);
assign dout  = (C_DEPTH == 1) ? memory[0] : memory[cnt_read];
endmodule | 
| 
	module axi_protocol_converter_v2_1_b2s_simple_fifo #
(
  parameter C_WIDTH  = 8,
  parameter C_AWIDTH = 4,
  parameter C_DEPTH  = 16
)
(
  input  wire               clk,       // Main System Clock  (Sync FIFO)
  input  wire               rst,       // FIFO Counter Reset (Clk
  input  wire               wr_en,     // FIFO Write Enable  (Clk)
  input  wire               rd_en,     // FIFO Read Enable   (Clk)
  input  wire [C_WIDTH-1:0] din,       // FIFO Data Input    (Clk)
  output wire [C_WIDTH-1:0] dout,      // FIFO Data Output   (Clk)
  output wire               a_full,
  output wire               full,      // FIFO FULL Status   (Clk)
  output wire               a_empty,
  output wire               empty      // FIFO EMPTY Status  (Clk)
);
///////////////////////////////////////
// FIFO Local Parameters
///////////////////////////////////////
localparam [C_AWIDTH-1:0] C_EMPTY = ~(0);
localparam [C_AWIDTH-1:0] C_EMPTY_PRE =  (0);
localparam [C_AWIDTH-1:0] C_FULL  = C_EMPTY-1;
localparam [C_AWIDTH-1:0] C_FULL_PRE  = (C_DEPTH < 8) ? C_FULL-1 : C_FULL-(C_DEPTH/8);
 
///////////////////////////////////////
// FIFO Internal Signals
///////////////////////////////////////
reg [C_WIDTH-1:0]  memory [C_DEPTH-1:0];
reg [C_AWIDTH-1:0] cnt_read;
  // synthesis attribute MAX_FANOUT of cnt_read is 10; 
///////////////////////////////////////
// Main simple FIFO Array
///////////////////////////////////////
always @(posedge clk) begin : BLKSRL
integer i;
  if (wr_en) begin
    for (i = 0; i < C_DEPTH-1; i = i + 1) begin
      memory[i+1] <= memory[i];
    end
    memory[0] <= din;
  end
end
///////////////////////////////////////
// Read Index Counter
// Up/Down Counter
//  *** Notice that there is no ***
//  *** OVERRUN protection.     ***
///////////////////////////////////////
always @(posedge clk) begin
  if (rst) cnt_read <= C_EMPTY;
  else if ( wr_en & !rd_en) cnt_read <= cnt_read + 1'b1;
  else if (!wr_en &  rd_en) cnt_read <= cnt_read - 1'b1;
end
///////////////////////////////////////
// Status Flags / Outputs
// These could be registered, but would
// increase logic in order to pre-decode
// FULL/EMPTY status.
///////////////////////////////////////
assign full  = (cnt_read == C_FULL);
assign empty = (cnt_read == C_EMPTY);
assign a_full  = ((cnt_read >= C_FULL_PRE) && (cnt_read != C_EMPTY));
assign a_empty = (cnt_read == C_EMPTY_PRE);
assign dout  = (C_DEPTH == 1) ? memory[0] : memory[cnt_read];
endmodule | 
| 
	module sha256_transform #(
	parameter LOOP = 7'd64		// For ltcminer
) (
	input clk,
	input feedback,
	input [5:0] cnt,
	input [255:0] rx_state,
	input [511:0] rx_input,
	output reg [255:0] tx_hash
);
	// Constants defined by the SHA-2 standard.
	localparam Ks = {
		32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5,
		32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5,
		32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3,
		32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174,
		32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc,
		32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da,
		32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7,
		32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967,
		32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13,
		32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85,
		32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3,
		32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070,
		32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5,
		32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3,
		32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208,
		32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2};
	genvar i;
	generate
		for (i = 0; i < 64/LOOP; i = i + 1) begin : HASHERS
			// These are declared as registers in sha256_digester
			wire [511:0] W;			// reg tx_w
			wire [255:0] state;		// reg tx_state
			if(i == 0)
				sha256_digester U (
					.clk(clk),
					.k(Ks[32*(63-cnt) +: 32]),
					.rx_w(feedback ? W : rx_input),
					.rx_state(feedback ? state : rx_state),
					.tx_w(W),
					.tx_state(state)
				);
			else
				sha256_digester U (
					.clk(clk),
					.k(Ks[32*(63-LOOP*i-cnt) +: 32]),
					.rx_w(feedback ? W : HASHERS[i-1].W),
					.rx_state(feedback ? state : HASHERS[i-1].state),
					.tx_w(W),
					.tx_state(state)
				);
		end
	endgenerate
	always @ (posedge clk)
	begin
		if (!feedback)
		begin
			tx_hash[`IDX(0)] <= rx_state[`IDX(0)] + HASHERS[64/LOOP-6'd1].state[`IDX(0)];
			tx_hash[`IDX(1)] <= rx_state[`IDX(1)] + HASHERS[64/LOOP-6'd1].state[`IDX(1)];
			tx_hash[`IDX(2)] <= rx_state[`IDX(2)] + HASHERS[64/LOOP-6'd1].state[`IDX(2)];
			tx_hash[`IDX(3)] <= rx_state[`IDX(3)] + HASHERS[64/LOOP-6'd1].state[`IDX(3)];
			tx_hash[`IDX(4)] <= rx_state[`IDX(4)] + HASHERS[64/LOOP-6'd1].state[`IDX(4)];
			tx_hash[`IDX(5)] <= rx_state[`IDX(5)] + HASHERS[64/LOOP-6'd1].state[`IDX(5)];
			tx_hash[`IDX(6)] <= rx_state[`IDX(6)] + HASHERS[64/LOOP-6'd1].state[`IDX(6)];
			tx_hash[`IDX(7)] <= rx_state[`IDX(7)] + HASHERS[64/LOOP-6'd1].state[`IDX(7)];
		end
	end
endmodule | 
| 
	module sha256_digester (clk, k, rx_w, rx_state, tx_w, tx_state);
	input clk;
	input [31:0] k;
	input [511:0] rx_w;
	input [255:0] rx_state;
	output reg [511:0] tx_w;
	output reg [255:0] tx_state;
	wire [31:0] e0_w, e1_w, ch_w, maj_w, s0_w, s1_w;
	e0	e0_blk	(rx_state[`IDX(0)], e0_w);
	e1	e1_blk	(rx_state[`IDX(4)], e1_w);
	ch	ch_blk	(rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w);
	maj	maj_blk	(rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w);
	s0	s0_blk	(rx_w[63:32], s0_w);
	s1	s1_blk	(rx_w[479:448], s1_w);
	wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k;
	wire [31:0] t2 = e0_w + maj_w;
	wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0];
	
	always @ (posedge clk)
	begin
		tx_w[511:480] <= new_w;
		tx_w[479:0] <= rx_w[511:32];
		tx_state[`IDX(7)] <= rx_state[`IDX(6)];
		tx_state[`IDX(6)] <= rx_state[`IDX(5)];
		tx_state[`IDX(5)] <= rx_state[`IDX(4)];
		tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1;
		tx_state[`IDX(3)] <= rx_state[`IDX(2)];
		tx_state[`IDX(2)] <= rx_state[`IDX(1)];
		tx_state[`IDX(1)] <= rx_state[`IDX(0)];
		tx_state[`IDX(0)] <= t1 + t2;
	end
endmodule | 
| 
	module sha256_transform #(
	parameter LOOP = 7'd64		// For ltcminer
) (
	input clk,
	input feedback,
	input [5:0] cnt,
	input [255:0] rx_state,
	input [511:0] rx_input,
	output reg [255:0] tx_hash
);
	// Constants defined by the SHA-2 standard.
	localparam Ks = {
		32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5,
		32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5,
		32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3,
		32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174,
		32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc,
		32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da,
		32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7,
		32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967,
		32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13,
		32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85,
		32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3,
		32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070,
		32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5,
		32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3,
		32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208,
		32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2};
	genvar i;
	generate
		for (i = 0; i < 64/LOOP; i = i + 1) begin : HASHERS
			// These are declared as registers in sha256_digester
			wire [511:0] W;			// reg tx_w
			wire [255:0] state;		// reg tx_state
			if(i == 0)
				sha256_digester U (
					.clk(clk),
					.k(Ks[32*(63-cnt) +: 32]),
					.rx_w(feedback ? W : rx_input),
					.rx_state(feedback ? state : rx_state),
					.tx_w(W),
					.tx_state(state)
				);
			else
				sha256_digester U (
					.clk(clk),
					.k(Ks[32*(63-LOOP*i-cnt) +: 32]),
					.rx_w(feedback ? W : HASHERS[i-1].W),
					.rx_state(feedback ? state : HASHERS[i-1].state),
					.tx_w(W),
					.tx_state(state)
				);
		end
	endgenerate
	always @ (posedge clk)
	begin
		if (!feedback)
		begin
			tx_hash[`IDX(0)] <= rx_state[`IDX(0)] + HASHERS[64/LOOP-6'd1].state[`IDX(0)];
			tx_hash[`IDX(1)] <= rx_state[`IDX(1)] + HASHERS[64/LOOP-6'd1].state[`IDX(1)];
			tx_hash[`IDX(2)] <= rx_state[`IDX(2)] + HASHERS[64/LOOP-6'd1].state[`IDX(2)];
			tx_hash[`IDX(3)] <= rx_state[`IDX(3)] + HASHERS[64/LOOP-6'd1].state[`IDX(3)];
			tx_hash[`IDX(4)] <= rx_state[`IDX(4)] + HASHERS[64/LOOP-6'd1].state[`IDX(4)];
			tx_hash[`IDX(5)] <= rx_state[`IDX(5)] + HASHERS[64/LOOP-6'd1].state[`IDX(5)];
			tx_hash[`IDX(6)] <= rx_state[`IDX(6)] + HASHERS[64/LOOP-6'd1].state[`IDX(6)];
			tx_hash[`IDX(7)] <= rx_state[`IDX(7)] + HASHERS[64/LOOP-6'd1].state[`IDX(7)];
		end
	end
endmodule | 
| 
	module sha256_digester (clk, k, rx_w, rx_state, tx_w, tx_state);
	input clk;
	input [31:0] k;
	input [511:0] rx_w;
	input [255:0] rx_state;
	output reg [511:0] tx_w;
	output reg [255:0] tx_state;
	wire [31:0] e0_w, e1_w, ch_w, maj_w, s0_w, s1_w;
	e0	e0_blk	(rx_state[`IDX(0)], e0_w);
	e1	e1_blk	(rx_state[`IDX(4)], e1_w);
	ch	ch_blk	(rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w);
	maj	maj_blk	(rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w);
	s0	s0_blk	(rx_w[63:32], s0_w);
	s1	s1_blk	(rx_w[479:448], s1_w);
	wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k;
	wire [31:0] t2 = e0_w + maj_w;
	wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0];
	
	always @ (posedge clk)
	begin
		tx_w[511:480] <= new_w;
		tx_w[479:0] <= rx_w[511:32];
		tx_state[`IDX(7)] <= rx_state[`IDX(6)];
		tx_state[`IDX(6)] <= rx_state[`IDX(5)];
		tx_state[`IDX(5)] <= rx_state[`IDX(4)];
		tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1;
		tx_state[`IDX(3)] <= rx_state[`IDX(2)];
		tx_state[`IDX(2)] <= rx_state[`IDX(1)];
		tx_state[`IDX(1)] <= rx_state[`IDX(0)];
		tx_state[`IDX(0)] <= t1 + t2;
	end
endmodule | 
| 
	module sha256_transform #(
	parameter LOOP = 7'd64		// For ltcminer
) (
	input clk,
	input feedback,
	input [5:0] cnt,
	input [255:0] rx_state,
	input [511:0] rx_input,
	output reg [255:0] tx_hash
);
	// Constants defined by the SHA-2 standard.
	localparam Ks = {
		32'h428a2f98, 32'h71374491, 32'hb5c0fbcf, 32'he9b5dba5,
		32'h3956c25b, 32'h59f111f1, 32'h923f82a4, 32'hab1c5ed5,
		32'hd807aa98, 32'h12835b01, 32'h243185be, 32'h550c7dc3,
		32'h72be5d74, 32'h80deb1fe, 32'h9bdc06a7, 32'hc19bf174,
		32'he49b69c1, 32'hefbe4786, 32'h0fc19dc6, 32'h240ca1cc,
		32'h2de92c6f, 32'h4a7484aa, 32'h5cb0a9dc, 32'h76f988da,
		32'h983e5152, 32'ha831c66d, 32'hb00327c8, 32'hbf597fc7,
		32'hc6e00bf3, 32'hd5a79147, 32'h06ca6351, 32'h14292967,
		32'h27b70a85, 32'h2e1b2138, 32'h4d2c6dfc, 32'h53380d13,
		32'h650a7354, 32'h766a0abb, 32'h81c2c92e, 32'h92722c85,
		32'ha2bfe8a1, 32'ha81a664b, 32'hc24b8b70, 32'hc76c51a3,
		32'hd192e819, 32'hd6990624, 32'hf40e3585, 32'h106aa070,
		32'h19a4c116, 32'h1e376c08, 32'h2748774c, 32'h34b0bcb5,
		32'h391c0cb3, 32'h4ed8aa4a, 32'h5b9cca4f, 32'h682e6ff3,
		32'h748f82ee, 32'h78a5636f, 32'h84c87814, 32'h8cc70208,
		32'h90befffa, 32'ha4506ceb, 32'hbef9a3f7, 32'hc67178f2};
	genvar i;
	generate
		for (i = 0; i < 64/LOOP; i = i + 1) begin : HASHERS
			// These are declared as registers in sha256_digester
			wire [511:0] W;			// reg tx_w
			wire [255:0] state;		// reg tx_state
			if(i == 0)
				sha256_digester U (
					.clk(clk),
					.k(Ks[32*(63-cnt) +: 32]),
					.rx_w(feedback ? W : rx_input),
					.rx_state(feedback ? state : rx_state),
					.tx_w(W),
					.tx_state(state)
				);
			else
				sha256_digester U (
					.clk(clk),
					.k(Ks[32*(63-LOOP*i-cnt) +: 32]),
					.rx_w(feedback ? W : HASHERS[i-1].W),
					.rx_state(feedback ? state : HASHERS[i-1].state),
					.tx_w(W),
					.tx_state(state)
				);
		end
	endgenerate
	always @ (posedge clk)
	begin
		if (!feedback)
		begin
			tx_hash[`IDX(0)] <= rx_state[`IDX(0)] + HASHERS[64/LOOP-6'd1].state[`IDX(0)];
			tx_hash[`IDX(1)] <= rx_state[`IDX(1)] + HASHERS[64/LOOP-6'd1].state[`IDX(1)];
			tx_hash[`IDX(2)] <= rx_state[`IDX(2)] + HASHERS[64/LOOP-6'd1].state[`IDX(2)];
			tx_hash[`IDX(3)] <= rx_state[`IDX(3)] + HASHERS[64/LOOP-6'd1].state[`IDX(3)];
			tx_hash[`IDX(4)] <= rx_state[`IDX(4)] + HASHERS[64/LOOP-6'd1].state[`IDX(4)];
			tx_hash[`IDX(5)] <= rx_state[`IDX(5)] + HASHERS[64/LOOP-6'd1].state[`IDX(5)];
			tx_hash[`IDX(6)] <= rx_state[`IDX(6)] + HASHERS[64/LOOP-6'd1].state[`IDX(6)];
			tx_hash[`IDX(7)] <= rx_state[`IDX(7)] + HASHERS[64/LOOP-6'd1].state[`IDX(7)];
		end
	end
endmodule | 
| 
	module sha256_digester (clk, k, rx_w, rx_state, tx_w, tx_state);
	input clk;
	input [31:0] k;
	input [511:0] rx_w;
	input [255:0] rx_state;
	output reg [511:0] tx_w;
	output reg [255:0] tx_state;
	wire [31:0] e0_w, e1_w, ch_w, maj_w, s0_w, s1_w;
	e0	e0_blk	(rx_state[`IDX(0)], e0_w);
	e1	e1_blk	(rx_state[`IDX(4)], e1_w);
	ch	ch_blk	(rx_state[`IDX(4)], rx_state[`IDX(5)], rx_state[`IDX(6)], ch_w);
	maj	maj_blk	(rx_state[`IDX(0)], rx_state[`IDX(1)], rx_state[`IDX(2)], maj_w);
	s0	s0_blk	(rx_w[63:32], s0_w);
	s1	s1_blk	(rx_w[479:448], s1_w);
	wire [31:0] t1 = rx_state[`IDX(7)] + e1_w + ch_w + rx_w[31:0] + k;
	wire [31:0] t2 = e0_w + maj_w;
	wire [31:0] new_w = s1_w + rx_w[319:288] + s0_w + rx_w[31:0];
	
	always @ (posedge clk)
	begin
		tx_w[511:480] <= new_w;
		tx_w[479:0] <= rx_w[511:32];
		tx_state[`IDX(7)] <= rx_state[`IDX(6)];
		tx_state[`IDX(6)] <= rx_state[`IDX(5)];
		tx_state[`IDX(5)] <= rx_state[`IDX(4)];
		tx_state[`IDX(4)] <= rx_state[`IDX(3)] + t1;
		tx_state[`IDX(3)] <= rx_state[`IDX(2)];
		tx_state[`IDX(2)] <= rx_state[`IDX(1)];
		tx_state[`IDX(1)] <= rx_state[`IDX(0)];
		tx_state[`IDX(0)] <= t1 + t2;
	end
endmodule | 
| 
	module testbed_hi_simulate;
	reg  pck0;
	reg  [7:0] adc_d;
	reg  mod_type;
	wire pwr_lo;
	wire adc_clk;
	reg ck_1356meg;
	reg  ck_1356megb;
	wire ssp_frame;
	wire ssp_din;
	wire ssp_clk;
	reg  ssp_dout;
	wire pwr_hi;
	wire pwr_oe1;
	wire pwr_oe2;
	wire pwr_oe3;
	wire pwr_oe4;
	wire cross_lo;
	wire cross_hi;
	wire dbg;
	hi_simulate #(5,200) dut(
	.pck0(pck0),
	.ck_1356meg(ck_1356meg),
	.ck_1356megb(ck_1356megb),
	.pwr_lo(pwr_lo),
	.pwr_hi(pwr_hi),
	.pwr_oe1(pwr_oe1),
	.pwr_oe2(pwr_oe2),
	.pwr_oe3(pwr_oe3),
	.pwr_oe4(pwr_oe4),
	.adc_d(adc_d),
	.adc_clk(adc_clk),
	.ssp_frame(ssp_frame),
	.ssp_din(ssp_din),
	.ssp_dout(ssp_dout),
	.ssp_clk(ssp_clk),
	.cross_hi(cross_hi),
	.cross_lo(cross_lo),
	.dbg(dbg),
	.mod_type(mod_type)
	);
	integer idx, i;
	// main clock
	always #5 begin 
		ck_1356megb = !ck_1356megb;
		ck_1356meg = ck_1356megb;
	end
	always begin 
		@(negedge adc_clk) ;
		adc_d = $random;
	end
	//crank DUT
	task crank_dut;
		begin
			@(negedge ssp_clk) ;
			ssp_dout = $random;
		end
	endtask
	initial begin
		// init inputs
		ck_1356megb = 0;
		// random values
		adc_d = 0;
		ssp_dout=1;
		// shallow modulation off
		mod_type=0;
		for (i = 0 ;  i < 16 ;  i = i + 1) begin
			crank_dut;
		end
		// shallow modulation on
		mod_type=1;
		for (i = 0 ;  i < 16 ;  i = i + 1) begin
			crank_dut;
		end
		$finish;
	end
	
endmodule | 
| 
	module processing_system7_v5_5_atc #
  (
   parameter         C_FAMILY                         = "rtl",
                       // FPGA Family. Current version: virtex6, spartan6 or later.
   parameter integer C_AXI_ID_WIDTH                   = 4,
                       // Width of all ID signals on SI and MI side of checker.
                       // Range: >= 1.
   parameter integer C_AXI_ADDR_WIDTH                 = 32,
                       // Width of all ADDR signals on SI and MI side of checker.
                       // Range: 32.
   parameter integer C_AXI_DATA_WIDTH                 = 64,
                       // Width of all DATA signals on SI and MI side of checker.
                       // Range: 64.
   parameter integer C_AXI_AWUSER_WIDTH               = 1,
                       // Width of AWUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_ARUSER_WIDTH               = 1,
                       // Width of ARUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_WUSER_WIDTH                = 1,
                       // Width of WUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_RUSER_WIDTH                = 1,
                       // Width of RUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_BUSER_WIDTH                = 1
                       // Width of BUSER signals. 
                       // Range: >= 1.
   )
  (
   // Global Signals
   input  wire                                  ACLK,
   input  wire                                  ARESETN,
   // Slave Interface Write Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_AWID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_AWADDR,
   input  wire [4-1:0]                          S_AXI_AWLEN,
   input  wire [3-1:0]                          S_AXI_AWSIZE,
   input  wire [2-1:0]                          S_AXI_AWBURST,
   input  wire [2-1:0]                          S_AXI_AWLOCK,
   input  wire [4-1:0]                          S_AXI_AWCACHE,
   input  wire [3-1:0]                          S_AXI_AWPROT,
   input  wire [C_AXI_AWUSER_WIDTH-1:0]         S_AXI_AWUSER,
   input  wire                                  S_AXI_AWVALID,
   output wire                                  S_AXI_AWREADY,
   // Slave Interface Write Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_WID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_WDATA,
   input  wire [C_AXI_DATA_WIDTH/8-1:0]         S_AXI_WSTRB,
   input  wire                                  S_AXI_WLAST,
   input  wire [C_AXI_WUSER_WIDTH-1:0]          S_AXI_WUSER,
   input  wire                                  S_AXI_WVALID,
   output wire                                  S_AXI_WREADY,
   // Slave Interface Write Response Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_BID,
   output wire [2-1:0]                          S_AXI_BRESP,
   output wire [C_AXI_BUSER_WIDTH-1:0]          S_AXI_BUSER,
   output wire                                  S_AXI_BVALID,
   input  wire                                  S_AXI_BREADY,
   // Slave Interface Read Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_ARID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_ARADDR,
   input  wire [4-1:0]                          S_AXI_ARLEN,
   input  wire [3-1:0]                          S_AXI_ARSIZE,
   input  wire [2-1:0]                          S_AXI_ARBURST,
   input  wire [2-1:0]                          S_AXI_ARLOCK,
   input  wire [4-1:0]                          S_AXI_ARCACHE,
   input  wire [3-1:0]                          S_AXI_ARPROT,
   input  wire [C_AXI_ARUSER_WIDTH-1:0]         S_AXI_ARUSER,
   input  wire                                  S_AXI_ARVALID,
   output wire                                  S_AXI_ARREADY,
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_RDATA,
   output wire [2-1:0]                          S_AXI_RRESP,
   output wire                                  S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0]          S_AXI_RUSER,
   output wire                                  S_AXI_RVALID,
   input  wire                                  S_AXI_RREADY,
   // Master Interface Write Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_AWID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_AWADDR,
   output wire [4-1:0]                          M_AXI_AWLEN,
   output wire [3-1:0]                          M_AXI_AWSIZE,
   output wire [2-1:0]                          M_AXI_AWBURST,
   output wire [2-1:0]                          M_AXI_AWLOCK,
   output wire [4-1:0]                          M_AXI_AWCACHE,
   output wire [3-1:0]                          M_AXI_AWPROT,
   output wire [C_AXI_AWUSER_WIDTH-1:0]         M_AXI_AWUSER,
   output wire                                  M_AXI_AWVALID,
   input  wire                                  M_AXI_AWREADY,
   // Master Interface Write Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_WID,
   output wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_WDATA,
   output wire [C_AXI_DATA_WIDTH/8-1:0]         M_AXI_WSTRB,
   output wire                                  M_AXI_WLAST,
   output wire [C_AXI_WUSER_WIDTH-1:0]          M_AXI_WUSER,
   output wire                                  M_AXI_WVALID,
   input  wire                                  M_AXI_WREADY,
   // Master Interface Write Response Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_BID,
   input  wire [2-1:0]                          M_AXI_BRESP,
   input  wire [C_AXI_BUSER_WIDTH-1:0]          M_AXI_BUSER,
   input  wire                                  M_AXI_BVALID,
   output wire                                  M_AXI_BREADY,
   // Master Interface Read Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_ARID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_ARADDR,
   output wire [4-1:0]                          M_AXI_ARLEN,
   output wire [3-1:0]                          M_AXI_ARSIZE,
   output wire [2-1:0]                          M_AXI_ARBURST,
   output wire [2-1:0]                          M_AXI_ARLOCK,
   output wire [4-1:0]                          M_AXI_ARCACHE,
   output wire [3-1:0]                          M_AXI_ARPROT,
   output wire [C_AXI_ARUSER_WIDTH-1:0]         M_AXI_ARUSER,
   output wire                                  M_AXI_ARVALID,
   input  wire                                  M_AXI_ARREADY,
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_RDATA,
   input  wire [2-1:0]                          M_AXI_RRESP,
   input  wire                                  M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0]          M_AXI_RUSER,
   input  wire                                  M_AXI_RVALID,
   output wire                                  M_AXI_RREADY,
   
   output wire                                  ERROR_TRIGGER,
   output wire [C_AXI_ID_WIDTH-1:0]             ERROR_TRANSACTION_ID
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  localparam C_FIFO_DEPTH_LOG            = 4;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Internal reset.
  reg                                   ARESET;
  
  // AW->W command queue signals.
  wire                                  cmd_w_valid;
  wire                                  cmd_w_check;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_w_id;
  wire                                  cmd_w_ready;
  
  // W->B command queue signals.
  wire                                  cmd_b_push;
  wire                                  cmd_b_error;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_b_id;
  wire                                  cmd_b_full;
  wire [C_FIFO_DEPTH_LOG-1:0]           cmd_b_addr;
  wire                                  cmd_b_ready;
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Internal Reset
  /////////////////////////////////////////////////////////////////////////////
  always @ (posedge ACLK) begin
    ARESET <= !ARESETN;
  end
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Write Channels (AW/W/B)
  /////////////////////////////////////////////////////////////////////////////
  
  // Write Address Channel.
  processing_system7_v5_5_aw_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_ADDR_WIDTH            (C_AXI_ADDR_WIDTH),
   .C_AXI_AWUSER_WIDTH          (C_AXI_AWUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_addr_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (Out)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
   
    // Slave Interface Write Address Ports
    .S_AXI_AWID                 (S_AXI_AWID),
    .S_AXI_AWADDR               (S_AXI_AWADDR),
    .S_AXI_AWLEN                (S_AXI_AWLEN),
    .S_AXI_AWSIZE               (S_AXI_AWSIZE),
    .S_AXI_AWBURST              (S_AXI_AWBURST),
    .S_AXI_AWLOCK               (S_AXI_AWLOCK),
    .S_AXI_AWCACHE              (S_AXI_AWCACHE),
    .S_AXI_AWPROT               (S_AXI_AWPROT),
    .S_AXI_AWUSER               (S_AXI_AWUSER),
    .S_AXI_AWVALID              (S_AXI_AWVALID),
    .S_AXI_AWREADY              (S_AXI_AWREADY),
    
    // Master Interface Write Address Port
    .M_AXI_AWID                 (M_AXI_AWID),
    .M_AXI_AWADDR               (M_AXI_AWADDR),
    .M_AXI_AWLEN                (M_AXI_AWLEN),
    .M_AXI_AWSIZE               (M_AXI_AWSIZE),
    .M_AXI_AWBURST              (M_AXI_AWBURST),
    .M_AXI_AWLOCK               (M_AXI_AWLOCK),
    .M_AXI_AWCACHE              (M_AXI_AWCACHE),
    .M_AXI_AWPROT               (M_AXI_AWPROT),
    .M_AXI_AWUSER               (M_AXI_AWUSER),
    .M_AXI_AWVALID              (M_AXI_AWVALID),
    .M_AXI_AWREADY              (M_AXI_AWREADY)
   );
   
  // Write Data channel.
  processing_system7_v5_5_w_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_DATA_WIDTH            (C_AXI_DATA_WIDTH),
   .C_AXI_WUSER_WIDTH           (C_AXI_WUSER_WIDTH)
    ) write_data_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    
    // Command Interface (Out)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    
    // Slave Interface Write Data Ports
    .S_AXI_WID                  (S_AXI_WID),
    .S_AXI_WDATA                (S_AXI_WDATA),
    .S_AXI_WSTRB                (S_AXI_WSTRB),
    .S_AXI_WLAST                (S_AXI_WLAST),
    .S_AXI_WUSER                (S_AXI_WUSER),
    .S_AXI_WVALID               (S_AXI_WVALID),
    .S_AXI_WREADY               (S_AXI_WREADY),
    
    // Master Interface Write Data Ports
    .M_AXI_WID                  (M_AXI_WID),
    .M_AXI_WDATA                (M_AXI_WDATA),
    .M_AXI_WSTRB                (M_AXI_WSTRB),
    .M_AXI_WLAST                (M_AXI_WLAST),
    .M_AXI_WUSER                (M_AXI_WUSER),
    .M_AXI_WVALID               (M_AXI_WVALID),
    .M_AXI_WREADY               (M_AXI_WREADY)
   );
   
  // Write Response channel.
  processing_system7_v5_5_b_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_BUSER_WIDTH           (C_AXI_BUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_response_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
    
    // Slave Interface Write Response Ports
    .S_AXI_BID                  (S_AXI_BID),
    .S_AXI_BRESP                (S_AXI_BRESP),
    .S_AXI_BUSER                (S_AXI_BUSER),
    .S_AXI_BVALID               (S_AXI_BVALID),
    .S_AXI_BREADY               (S_AXI_BREADY),
    
    // Master Interface Write Response Ports
    .M_AXI_BID                  (M_AXI_BID),
    .M_AXI_BRESP                (M_AXI_BRESP),
    .M_AXI_BUSER                (M_AXI_BUSER),
    .M_AXI_BVALID               (M_AXI_BVALID),
    .M_AXI_BREADY               (M_AXI_BREADY),
    
    // Trigger detection
    .ERROR_TRIGGER              (ERROR_TRIGGER),
    .ERROR_TRANSACTION_ID       (ERROR_TRANSACTION_ID)
   );
  
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Read Channels (AR/R)
  /////////////////////////////////////////////////////////////////////////////
  // Read Address Port
  assign M_AXI_ARID     = S_AXI_ARID;
  assign M_AXI_ARADDR   = S_AXI_ARADDR;
  assign M_AXI_ARLEN    = S_AXI_ARLEN;
  assign M_AXI_ARSIZE   = S_AXI_ARSIZE;
  assign M_AXI_ARBURST  = S_AXI_ARBURST;
  assign M_AXI_ARLOCK   = S_AXI_ARLOCK;
  assign M_AXI_ARCACHE  = S_AXI_ARCACHE;
  assign M_AXI_ARPROT   = S_AXI_ARPROT;
  assign M_AXI_ARUSER   = S_AXI_ARUSER;
  assign M_AXI_ARVALID  = S_AXI_ARVALID;
  assign S_AXI_ARREADY  = M_AXI_ARREADY;
   
  // Read Data Port
  assign S_AXI_RID      = M_AXI_RID;
  assign S_AXI_RDATA    = M_AXI_RDATA;
  assign S_AXI_RRESP    = M_AXI_RRESP;
  assign S_AXI_RLAST    = M_AXI_RLAST;
  assign S_AXI_RUSER    = M_AXI_RUSER;
  assign S_AXI_RVALID   = M_AXI_RVALID;
  assign M_AXI_RREADY   = S_AXI_RREADY;
  
  
endmodule | 
| 
	module processing_system7_v5_5_atc #
  (
   parameter         C_FAMILY                         = "rtl",
                       // FPGA Family. Current version: virtex6, spartan6 or later.
   parameter integer C_AXI_ID_WIDTH                   = 4,
                       // Width of all ID signals on SI and MI side of checker.
                       // Range: >= 1.
   parameter integer C_AXI_ADDR_WIDTH                 = 32,
                       // Width of all ADDR signals on SI and MI side of checker.
                       // Range: 32.
   parameter integer C_AXI_DATA_WIDTH                 = 64,
                       // Width of all DATA signals on SI and MI side of checker.
                       // Range: 64.
   parameter integer C_AXI_AWUSER_WIDTH               = 1,
                       // Width of AWUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_ARUSER_WIDTH               = 1,
                       // Width of ARUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_WUSER_WIDTH                = 1,
                       // Width of WUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_RUSER_WIDTH                = 1,
                       // Width of RUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_BUSER_WIDTH                = 1
                       // Width of BUSER signals. 
                       // Range: >= 1.
   )
  (
   // Global Signals
   input  wire                                  ACLK,
   input  wire                                  ARESETN,
   // Slave Interface Write Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_AWID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_AWADDR,
   input  wire [4-1:0]                          S_AXI_AWLEN,
   input  wire [3-1:0]                          S_AXI_AWSIZE,
   input  wire [2-1:0]                          S_AXI_AWBURST,
   input  wire [2-1:0]                          S_AXI_AWLOCK,
   input  wire [4-1:0]                          S_AXI_AWCACHE,
   input  wire [3-1:0]                          S_AXI_AWPROT,
   input  wire [C_AXI_AWUSER_WIDTH-1:0]         S_AXI_AWUSER,
   input  wire                                  S_AXI_AWVALID,
   output wire                                  S_AXI_AWREADY,
   // Slave Interface Write Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_WID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_WDATA,
   input  wire [C_AXI_DATA_WIDTH/8-1:0]         S_AXI_WSTRB,
   input  wire                                  S_AXI_WLAST,
   input  wire [C_AXI_WUSER_WIDTH-1:0]          S_AXI_WUSER,
   input  wire                                  S_AXI_WVALID,
   output wire                                  S_AXI_WREADY,
   // Slave Interface Write Response Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_BID,
   output wire [2-1:0]                          S_AXI_BRESP,
   output wire [C_AXI_BUSER_WIDTH-1:0]          S_AXI_BUSER,
   output wire                                  S_AXI_BVALID,
   input  wire                                  S_AXI_BREADY,
   // Slave Interface Read Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_ARID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_ARADDR,
   input  wire [4-1:0]                          S_AXI_ARLEN,
   input  wire [3-1:0]                          S_AXI_ARSIZE,
   input  wire [2-1:0]                          S_AXI_ARBURST,
   input  wire [2-1:0]                          S_AXI_ARLOCK,
   input  wire [4-1:0]                          S_AXI_ARCACHE,
   input  wire [3-1:0]                          S_AXI_ARPROT,
   input  wire [C_AXI_ARUSER_WIDTH-1:0]         S_AXI_ARUSER,
   input  wire                                  S_AXI_ARVALID,
   output wire                                  S_AXI_ARREADY,
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_RDATA,
   output wire [2-1:0]                          S_AXI_RRESP,
   output wire                                  S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0]          S_AXI_RUSER,
   output wire                                  S_AXI_RVALID,
   input  wire                                  S_AXI_RREADY,
   // Master Interface Write Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_AWID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_AWADDR,
   output wire [4-1:0]                          M_AXI_AWLEN,
   output wire [3-1:0]                          M_AXI_AWSIZE,
   output wire [2-1:0]                          M_AXI_AWBURST,
   output wire [2-1:0]                          M_AXI_AWLOCK,
   output wire [4-1:0]                          M_AXI_AWCACHE,
   output wire [3-1:0]                          M_AXI_AWPROT,
   output wire [C_AXI_AWUSER_WIDTH-1:0]         M_AXI_AWUSER,
   output wire                                  M_AXI_AWVALID,
   input  wire                                  M_AXI_AWREADY,
   // Master Interface Write Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_WID,
   output wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_WDATA,
   output wire [C_AXI_DATA_WIDTH/8-1:0]         M_AXI_WSTRB,
   output wire                                  M_AXI_WLAST,
   output wire [C_AXI_WUSER_WIDTH-1:0]          M_AXI_WUSER,
   output wire                                  M_AXI_WVALID,
   input  wire                                  M_AXI_WREADY,
   // Master Interface Write Response Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_BID,
   input  wire [2-1:0]                          M_AXI_BRESP,
   input  wire [C_AXI_BUSER_WIDTH-1:0]          M_AXI_BUSER,
   input  wire                                  M_AXI_BVALID,
   output wire                                  M_AXI_BREADY,
   // Master Interface Read Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_ARID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_ARADDR,
   output wire [4-1:0]                          M_AXI_ARLEN,
   output wire [3-1:0]                          M_AXI_ARSIZE,
   output wire [2-1:0]                          M_AXI_ARBURST,
   output wire [2-1:0]                          M_AXI_ARLOCK,
   output wire [4-1:0]                          M_AXI_ARCACHE,
   output wire [3-1:0]                          M_AXI_ARPROT,
   output wire [C_AXI_ARUSER_WIDTH-1:0]         M_AXI_ARUSER,
   output wire                                  M_AXI_ARVALID,
   input  wire                                  M_AXI_ARREADY,
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_RDATA,
   input  wire [2-1:0]                          M_AXI_RRESP,
   input  wire                                  M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0]          M_AXI_RUSER,
   input  wire                                  M_AXI_RVALID,
   output wire                                  M_AXI_RREADY,
   
   output wire                                  ERROR_TRIGGER,
   output wire [C_AXI_ID_WIDTH-1:0]             ERROR_TRANSACTION_ID
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  localparam C_FIFO_DEPTH_LOG            = 4;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Internal reset.
  reg                                   ARESET;
  
  // AW->W command queue signals.
  wire                                  cmd_w_valid;
  wire                                  cmd_w_check;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_w_id;
  wire                                  cmd_w_ready;
  
  // W->B command queue signals.
  wire                                  cmd_b_push;
  wire                                  cmd_b_error;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_b_id;
  wire                                  cmd_b_full;
  wire [C_FIFO_DEPTH_LOG-1:0]           cmd_b_addr;
  wire                                  cmd_b_ready;
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Internal Reset
  /////////////////////////////////////////////////////////////////////////////
  always @ (posedge ACLK) begin
    ARESET <= !ARESETN;
  end
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Write Channels (AW/W/B)
  /////////////////////////////////////////////////////////////////////////////
  
  // Write Address Channel.
  processing_system7_v5_5_aw_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_ADDR_WIDTH            (C_AXI_ADDR_WIDTH),
   .C_AXI_AWUSER_WIDTH          (C_AXI_AWUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_addr_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (Out)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
   
    // Slave Interface Write Address Ports
    .S_AXI_AWID                 (S_AXI_AWID),
    .S_AXI_AWADDR               (S_AXI_AWADDR),
    .S_AXI_AWLEN                (S_AXI_AWLEN),
    .S_AXI_AWSIZE               (S_AXI_AWSIZE),
    .S_AXI_AWBURST              (S_AXI_AWBURST),
    .S_AXI_AWLOCK               (S_AXI_AWLOCK),
    .S_AXI_AWCACHE              (S_AXI_AWCACHE),
    .S_AXI_AWPROT               (S_AXI_AWPROT),
    .S_AXI_AWUSER               (S_AXI_AWUSER),
    .S_AXI_AWVALID              (S_AXI_AWVALID),
    .S_AXI_AWREADY              (S_AXI_AWREADY),
    
    // Master Interface Write Address Port
    .M_AXI_AWID                 (M_AXI_AWID),
    .M_AXI_AWADDR               (M_AXI_AWADDR),
    .M_AXI_AWLEN                (M_AXI_AWLEN),
    .M_AXI_AWSIZE               (M_AXI_AWSIZE),
    .M_AXI_AWBURST              (M_AXI_AWBURST),
    .M_AXI_AWLOCK               (M_AXI_AWLOCK),
    .M_AXI_AWCACHE              (M_AXI_AWCACHE),
    .M_AXI_AWPROT               (M_AXI_AWPROT),
    .M_AXI_AWUSER               (M_AXI_AWUSER),
    .M_AXI_AWVALID              (M_AXI_AWVALID),
    .M_AXI_AWREADY              (M_AXI_AWREADY)
   );
   
  // Write Data channel.
  processing_system7_v5_5_w_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_DATA_WIDTH            (C_AXI_DATA_WIDTH),
   .C_AXI_WUSER_WIDTH           (C_AXI_WUSER_WIDTH)
    ) write_data_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    
    // Command Interface (Out)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    
    // Slave Interface Write Data Ports
    .S_AXI_WID                  (S_AXI_WID),
    .S_AXI_WDATA                (S_AXI_WDATA),
    .S_AXI_WSTRB                (S_AXI_WSTRB),
    .S_AXI_WLAST                (S_AXI_WLAST),
    .S_AXI_WUSER                (S_AXI_WUSER),
    .S_AXI_WVALID               (S_AXI_WVALID),
    .S_AXI_WREADY               (S_AXI_WREADY),
    
    // Master Interface Write Data Ports
    .M_AXI_WID                  (M_AXI_WID),
    .M_AXI_WDATA                (M_AXI_WDATA),
    .M_AXI_WSTRB                (M_AXI_WSTRB),
    .M_AXI_WLAST                (M_AXI_WLAST),
    .M_AXI_WUSER                (M_AXI_WUSER),
    .M_AXI_WVALID               (M_AXI_WVALID),
    .M_AXI_WREADY               (M_AXI_WREADY)
   );
   
  // Write Response channel.
  processing_system7_v5_5_b_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_BUSER_WIDTH           (C_AXI_BUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_response_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
    
    // Slave Interface Write Response Ports
    .S_AXI_BID                  (S_AXI_BID),
    .S_AXI_BRESP                (S_AXI_BRESP),
    .S_AXI_BUSER                (S_AXI_BUSER),
    .S_AXI_BVALID               (S_AXI_BVALID),
    .S_AXI_BREADY               (S_AXI_BREADY),
    
    // Master Interface Write Response Ports
    .M_AXI_BID                  (M_AXI_BID),
    .M_AXI_BRESP                (M_AXI_BRESP),
    .M_AXI_BUSER                (M_AXI_BUSER),
    .M_AXI_BVALID               (M_AXI_BVALID),
    .M_AXI_BREADY               (M_AXI_BREADY),
    
    // Trigger detection
    .ERROR_TRIGGER              (ERROR_TRIGGER),
    .ERROR_TRANSACTION_ID       (ERROR_TRANSACTION_ID)
   );
  
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Read Channels (AR/R)
  /////////////////////////////////////////////////////////////////////////////
  // Read Address Port
  assign M_AXI_ARID     = S_AXI_ARID;
  assign M_AXI_ARADDR   = S_AXI_ARADDR;
  assign M_AXI_ARLEN    = S_AXI_ARLEN;
  assign M_AXI_ARSIZE   = S_AXI_ARSIZE;
  assign M_AXI_ARBURST  = S_AXI_ARBURST;
  assign M_AXI_ARLOCK   = S_AXI_ARLOCK;
  assign M_AXI_ARCACHE  = S_AXI_ARCACHE;
  assign M_AXI_ARPROT   = S_AXI_ARPROT;
  assign M_AXI_ARUSER   = S_AXI_ARUSER;
  assign M_AXI_ARVALID  = S_AXI_ARVALID;
  assign S_AXI_ARREADY  = M_AXI_ARREADY;
   
  // Read Data Port
  assign S_AXI_RID      = M_AXI_RID;
  assign S_AXI_RDATA    = M_AXI_RDATA;
  assign S_AXI_RRESP    = M_AXI_RRESP;
  assign S_AXI_RLAST    = M_AXI_RLAST;
  assign S_AXI_RUSER    = M_AXI_RUSER;
  assign S_AXI_RVALID   = M_AXI_RVALID;
  assign M_AXI_RREADY   = S_AXI_RREADY;
  
  
endmodule | 
| 
	module processing_system7_v5_5_atc #
  (
   parameter         C_FAMILY                         = "rtl",
                       // FPGA Family. Current version: virtex6, spartan6 or later.
   parameter integer C_AXI_ID_WIDTH                   = 4,
                       // Width of all ID signals on SI and MI side of checker.
                       // Range: >= 1.
   parameter integer C_AXI_ADDR_WIDTH                 = 32,
                       // Width of all ADDR signals on SI and MI side of checker.
                       // Range: 32.
   parameter integer C_AXI_DATA_WIDTH                 = 64,
                       // Width of all DATA signals on SI and MI side of checker.
                       // Range: 64.
   parameter integer C_AXI_AWUSER_WIDTH               = 1,
                       // Width of AWUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_ARUSER_WIDTH               = 1,
                       // Width of ARUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_WUSER_WIDTH                = 1,
                       // Width of WUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_RUSER_WIDTH                = 1,
                       // Width of RUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_BUSER_WIDTH                = 1
                       // Width of BUSER signals. 
                       // Range: >= 1.
   )
  (
   // Global Signals
   input  wire                                  ACLK,
   input  wire                                  ARESETN,
   // Slave Interface Write Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_AWID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_AWADDR,
   input  wire [4-1:0]                          S_AXI_AWLEN,
   input  wire [3-1:0]                          S_AXI_AWSIZE,
   input  wire [2-1:0]                          S_AXI_AWBURST,
   input  wire [2-1:0]                          S_AXI_AWLOCK,
   input  wire [4-1:0]                          S_AXI_AWCACHE,
   input  wire [3-1:0]                          S_AXI_AWPROT,
   input  wire [C_AXI_AWUSER_WIDTH-1:0]         S_AXI_AWUSER,
   input  wire                                  S_AXI_AWVALID,
   output wire                                  S_AXI_AWREADY,
   // Slave Interface Write Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_WID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_WDATA,
   input  wire [C_AXI_DATA_WIDTH/8-1:0]         S_AXI_WSTRB,
   input  wire                                  S_AXI_WLAST,
   input  wire [C_AXI_WUSER_WIDTH-1:0]          S_AXI_WUSER,
   input  wire                                  S_AXI_WVALID,
   output wire                                  S_AXI_WREADY,
   // Slave Interface Write Response Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_BID,
   output wire [2-1:0]                          S_AXI_BRESP,
   output wire [C_AXI_BUSER_WIDTH-1:0]          S_AXI_BUSER,
   output wire                                  S_AXI_BVALID,
   input  wire                                  S_AXI_BREADY,
   // Slave Interface Read Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_ARID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_ARADDR,
   input  wire [4-1:0]                          S_AXI_ARLEN,
   input  wire [3-1:0]                          S_AXI_ARSIZE,
   input  wire [2-1:0]                          S_AXI_ARBURST,
   input  wire [2-1:0]                          S_AXI_ARLOCK,
   input  wire [4-1:0]                          S_AXI_ARCACHE,
   input  wire [3-1:0]                          S_AXI_ARPROT,
   input  wire [C_AXI_ARUSER_WIDTH-1:0]         S_AXI_ARUSER,
   input  wire                                  S_AXI_ARVALID,
   output wire                                  S_AXI_ARREADY,
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_RDATA,
   output wire [2-1:0]                          S_AXI_RRESP,
   output wire                                  S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0]          S_AXI_RUSER,
   output wire                                  S_AXI_RVALID,
   input  wire                                  S_AXI_RREADY,
   // Master Interface Write Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_AWID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_AWADDR,
   output wire [4-1:0]                          M_AXI_AWLEN,
   output wire [3-1:0]                          M_AXI_AWSIZE,
   output wire [2-1:0]                          M_AXI_AWBURST,
   output wire [2-1:0]                          M_AXI_AWLOCK,
   output wire [4-1:0]                          M_AXI_AWCACHE,
   output wire [3-1:0]                          M_AXI_AWPROT,
   output wire [C_AXI_AWUSER_WIDTH-1:0]         M_AXI_AWUSER,
   output wire                                  M_AXI_AWVALID,
   input  wire                                  M_AXI_AWREADY,
   // Master Interface Write Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_WID,
   output wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_WDATA,
   output wire [C_AXI_DATA_WIDTH/8-1:0]         M_AXI_WSTRB,
   output wire                                  M_AXI_WLAST,
   output wire [C_AXI_WUSER_WIDTH-1:0]          M_AXI_WUSER,
   output wire                                  M_AXI_WVALID,
   input  wire                                  M_AXI_WREADY,
   // Master Interface Write Response Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_BID,
   input  wire [2-1:0]                          M_AXI_BRESP,
   input  wire [C_AXI_BUSER_WIDTH-1:0]          M_AXI_BUSER,
   input  wire                                  M_AXI_BVALID,
   output wire                                  M_AXI_BREADY,
   // Master Interface Read Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_ARID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_ARADDR,
   output wire [4-1:0]                          M_AXI_ARLEN,
   output wire [3-1:0]                          M_AXI_ARSIZE,
   output wire [2-1:0]                          M_AXI_ARBURST,
   output wire [2-1:0]                          M_AXI_ARLOCK,
   output wire [4-1:0]                          M_AXI_ARCACHE,
   output wire [3-1:0]                          M_AXI_ARPROT,
   output wire [C_AXI_ARUSER_WIDTH-1:0]         M_AXI_ARUSER,
   output wire                                  M_AXI_ARVALID,
   input  wire                                  M_AXI_ARREADY,
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_RDATA,
   input  wire [2-1:0]                          M_AXI_RRESP,
   input  wire                                  M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0]          M_AXI_RUSER,
   input  wire                                  M_AXI_RVALID,
   output wire                                  M_AXI_RREADY,
   
   output wire                                  ERROR_TRIGGER,
   output wire [C_AXI_ID_WIDTH-1:0]             ERROR_TRANSACTION_ID
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  localparam C_FIFO_DEPTH_LOG            = 4;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Internal reset.
  reg                                   ARESET;
  
  // AW->W command queue signals.
  wire                                  cmd_w_valid;
  wire                                  cmd_w_check;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_w_id;
  wire                                  cmd_w_ready;
  
  // W->B command queue signals.
  wire                                  cmd_b_push;
  wire                                  cmd_b_error;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_b_id;
  wire                                  cmd_b_full;
  wire [C_FIFO_DEPTH_LOG-1:0]           cmd_b_addr;
  wire                                  cmd_b_ready;
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Internal Reset
  /////////////////////////////////////////////////////////////////////////////
  always @ (posedge ACLK) begin
    ARESET <= !ARESETN;
  end
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Write Channels (AW/W/B)
  /////////////////////////////////////////////////////////////////////////////
  
  // Write Address Channel.
  processing_system7_v5_5_aw_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_ADDR_WIDTH            (C_AXI_ADDR_WIDTH),
   .C_AXI_AWUSER_WIDTH          (C_AXI_AWUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_addr_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (Out)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
   
    // Slave Interface Write Address Ports
    .S_AXI_AWID                 (S_AXI_AWID),
    .S_AXI_AWADDR               (S_AXI_AWADDR),
    .S_AXI_AWLEN                (S_AXI_AWLEN),
    .S_AXI_AWSIZE               (S_AXI_AWSIZE),
    .S_AXI_AWBURST              (S_AXI_AWBURST),
    .S_AXI_AWLOCK               (S_AXI_AWLOCK),
    .S_AXI_AWCACHE              (S_AXI_AWCACHE),
    .S_AXI_AWPROT               (S_AXI_AWPROT),
    .S_AXI_AWUSER               (S_AXI_AWUSER),
    .S_AXI_AWVALID              (S_AXI_AWVALID),
    .S_AXI_AWREADY              (S_AXI_AWREADY),
    
    // Master Interface Write Address Port
    .M_AXI_AWID                 (M_AXI_AWID),
    .M_AXI_AWADDR               (M_AXI_AWADDR),
    .M_AXI_AWLEN                (M_AXI_AWLEN),
    .M_AXI_AWSIZE               (M_AXI_AWSIZE),
    .M_AXI_AWBURST              (M_AXI_AWBURST),
    .M_AXI_AWLOCK               (M_AXI_AWLOCK),
    .M_AXI_AWCACHE              (M_AXI_AWCACHE),
    .M_AXI_AWPROT               (M_AXI_AWPROT),
    .M_AXI_AWUSER               (M_AXI_AWUSER),
    .M_AXI_AWVALID              (M_AXI_AWVALID),
    .M_AXI_AWREADY              (M_AXI_AWREADY)
   );
   
  // Write Data channel.
  processing_system7_v5_5_w_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_DATA_WIDTH            (C_AXI_DATA_WIDTH),
   .C_AXI_WUSER_WIDTH           (C_AXI_WUSER_WIDTH)
    ) write_data_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    
    // Command Interface (Out)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    
    // Slave Interface Write Data Ports
    .S_AXI_WID                  (S_AXI_WID),
    .S_AXI_WDATA                (S_AXI_WDATA),
    .S_AXI_WSTRB                (S_AXI_WSTRB),
    .S_AXI_WLAST                (S_AXI_WLAST),
    .S_AXI_WUSER                (S_AXI_WUSER),
    .S_AXI_WVALID               (S_AXI_WVALID),
    .S_AXI_WREADY               (S_AXI_WREADY),
    
    // Master Interface Write Data Ports
    .M_AXI_WID                  (M_AXI_WID),
    .M_AXI_WDATA                (M_AXI_WDATA),
    .M_AXI_WSTRB                (M_AXI_WSTRB),
    .M_AXI_WLAST                (M_AXI_WLAST),
    .M_AXI_WUSER                (M_AXI_WUSER),
    .M_AXI_WVALID               (M_AXI_WVALID),
    .M_AXI_WREADY               (M_AXI_WREADY)
   );
   
  // Write Response channel.
  processing_system7_v5_5_b_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_BUSER_WIDTH           (C_AXI_BUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_response_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
    
    // Slave Interface Write Response Ports
    .S_AXI_BID                  (S_AXI_BID),
    .S_AXI_BRESP                (S_AXI_BRESP),
    .S_AXI_BUSER                (S_AXI_BUSER),
    .S_AXI_BVALID               (S_AXI_BVALID),
    .S_AXI_BREADY               (S_AXI_BREADY),
    
    // Master Interface Write Response Ports
    .M_AXI_BID                  (M_AXI_BID),
    .M_AXI_BRESP                (M_AXI_BRESP),
    .M_AXI_BUSER                (M_AXI_BUSER),
    .M_AXI_BVALID               (M_AXI_BVALID),
    .M_AXI_BREADY               (M_AXI_BREADY),
    
    // Trigger detection
    .ERROR_TRIGGER              (ERROR_TRIGGER),
    .ERROR_TRANSACTION_ID       (ERROR_TRANSACTION_ID)
   );
  
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Read Channels (AR/R)
  /////////////////////////////////////////////////////////////////////////////
  // Read Address Port
  assign M_AXI_ARID     = S_AXI_ARID;
  assign M_AXI_ARADDR   = S_AXI_ARADDR;
  assign M_AXI_ARLEN    = S_AXI_ARLEN;
  assign M_AXI_ARSIZE   = S_AXI_ARSIZE;
  assign M_AXI_ARBURST  = S_AXI_ARBURST;
  assign M_AXI_ARLOCK   = S_AXI_ARLOCK;
  assign M_AXI_ARCACHE  = S_AXI_ARCACHE;
  assign M_AXI_ARPROT   = S_AXI_ARPROT;
  assign M_AXI_ARUSER   = S_AXI_ARUSER;
  assign M_AXI_ARVALID  = S_AXI_ARVALID;
  assign S_AXI_ARREADY  = M_AXI_ARREADY;
   
  // Read Data Port
  assign S_AXI_RID      = M_AXI_RID;
  assign S_AXI_RDATA    = M_AXI_RDATA;
  assign S_AXI_RRESP    = M_AXI_RRESP;
  assign S_AXI_RLAST    = M_AXI_RLAST;
  assign S_AXI_RUSER    = M_AXI_RUSER;
  assign S_AXI_RVALID   = M_AXI_RVALID;
  assign M_AXI_RREADY   = S_AXI_RREADY;
  
  
endmodule | 
| 
	module processing_system7_v5_5_atc #
  (
   parameter         C_FAMILY                         = "rtl",
                       // FPGA Family. Current version: virtex6, spartan6 or later.
   parameter integer C_AXI_ID_WIDTH                   = 4,
                       // Width of all ID signals on SI and MI side of checker.
                       // Range: >= 1.
   parameter integer C_AXI_ADDR_WIDTH                 = 32,
                       // Width of all ADDR signals on SI and MI side of checker.
                       // Range: 32.
   parameter integer C_AXI_DATA_WIDTH                 = 64,
                       // Width of all DATA signals on SI and MI side of checker.
                       // Range: 64.
   parameter integer C_AXI_AWUSER_WIDTH               = 1,
                       // Width of AWUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_ARUSER_WIDTH               = 1,
                       // Width of ARUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_WUSER_WIDTH                = 1,
                       // Width of WUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_RUSER_WIDTH                = 1,
                       // Width of RUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_BUSER_WIDTH                = 1
                       // Width of BUSER signals. 
                       // Range: >= 1.
   )
  (
   // Global Signals
   input  wire                                  ACLK,
   input  wire                                  ARESETN,
   // Slave Interface Write Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_AWID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_AWADDR,
   input  wire [4-1:0]                          S_AXI_AWLEN,
   input  wire [3-1:0]                          S_AXI_AWSIZE,
   input  wire [2-1:0]                          S_AXI_AWBURST,
   input  wire [2-1:0]                          S_AXI_AWLOCK,
   input  wire [4-1:0]                          S_AXI_AWCACHE,
   input  wire [3-1:0]                          S_AXI_AWPROT,
   input  wire [C_AXI_AWUSER_WIDTH-1:0]         S_AXI_AWUSER,
   input  wire                                  S_AXI_AWVALID,
   output wire                                  S_AXI_AWREADY,
   // Slave Interface Write Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_WID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_WDATA,
   input  wire [C_AXI_DATA_WIDTH/8-1:0]         S_AXI_WSTRB,
   input  wire                                  S_AXI_WLAST,
   input  wire [C_AXI_WUSER_WIDTH-1:0]          S_AXI_WUSER,
   input  wire                                  S_AXI_WVALID,
   output wire                                  S_AXI_WREADY,
   // Slave Interface Write Response Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_BID,
   output wire [2-1:0]                          S_AXI_BRESP,
   output wire [C_AXI_BUSER_WIDTH-1:0]          S_AXI_BUSER,
   output wire                                  S_AXI_BVALID,
   input  wire                                  S_AXI_BREADY,
   // Slave Interface Read Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_ARID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_ARADDR,
   input  wire [4-1:0]                          S_AXI_ARLEN,
   input  wire [3-1:0]                          S_AXI_ARSIZE,
   input  wire [2-1:0]                          S_AXI_ARBURST,
   input  wire [2-1:0]                          S_AXI_ARLOCK,
   input  wire [4-1:0]                          S_AXI_ARCACHE,
   input  wire [3-1:0]                          S_AXI_ARPROT,
   input  wire [C_AXI_ARUSER_WIDTH-1:0]         S_AXI_ARUSER,
   input  wire                                  S_AXI_ARVALID,
   output wire                                  S_AXI_ARREADY,
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_RDATA,
   output wire [2-1:0]                          S_AXI_RRESP,
   output wire                                  S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0]          S_AXI_RUSER,
   output wire                                  S_AXI_RVALID,
   input  wire                                  S_AXI_RREADY,
   // Master Interface Write Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_AWID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_AWADDR,
   output wire [4-1:0]                          M_AXI_AWLEN,
   output wire [3-1:0]                          M_AXI_AWSIZE,
   output wire [2-1:0]                          M_AXI_AWBURST,
   output wire [2-1:0]                          M_AXI_AWLOCK,
   output wire [4-1:0]                          M_AXI_AWCACHE,
   output wire [3-1:0]                          M_AXI_AWPROT,
   output wire [C_AXI_AWUSER_WIDTH-1:0]         M_AXI_AWUSER,
   output wire                                  M_AXI_AWVALID,
   input  wire                                  M_AXI_AWREADY,
   // Master Interface Write Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_WID,
   output wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_WDATA,
   output wire [C_AXI_DATA_WIDTH/8-1:0]         M_AXI_WSTRB,
   output wire                                  M_AXI_WLAST,
   output wire [C_AXI_WUSER_WIDTH-1:0]          M_AXI_WUSER,
   output wire                                  M_AXI_WVALID,
   input  wire                                  M_AXI_WREADY,
   // Master Interface Write Response Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_BID,
   input  wire [2-1:0]                          M_AXI_BRESP,
   input  wire [C_AXI_BUSER_WIDTH-1:0]          M_AXI_BUSER,
   input  wire                                  M_AXI_BVALID,
   output wire                                  M_AXI_BREADY,
   // Master Interface Read Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_ARID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_ARADDR,
   output wire [4-1:0]                          M_AXI_ARLEN,
   output wire [3-1:0]                          M_AXI_ARSIZE,
   output wire [2-1:0]                          M_AXI_ARBURST,
   output wire [2-1:0]                          M_AXI_ARLOCK,
   output wire [4-1:0]                          M_AXI_ARCACHE,
   output wire [3-1:0]                          M_AXI_ARPROT,
   output wire [C_AXI_ARUSER_WIDTH-1:0]         M_AXI_ARUSER,
   output wire                                  M_AXI_ARVALID,
   input  wire                                  M_AXI_ARREADY,
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_RDATA,
   input  wire [2-1:0]                          M_AXI_RRESP,
   input  wire                                  M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0]          M_AXI_RUSER,
   input  wire                                  M_AXI_RVALID,
   output wire                                  M_AXI_RREADY,
   
   output wire                                  ERROR_TRIGGER,
   output wire [C_AXI_ID_WIDTH-1:0]             ERROR_TRANSACTION_ID
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  localparam C_FIFO_DEPTH_LOG            = 4;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Internal reset.
  reg                                   ARESET;
  
  // AW->W command queue signals.
  wire                                  cmd_w_valid;
  wire                                  cmd_w_check;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_w_id;
  wire                                  cmd_w_ready;
  
  // W->B command queue signals.
  wire                                  cmd_b_push;
  wire                                  cmd_b_error;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_b_id;
  wire                                  cmd_b_full;
  wire [C_FIFO_DEPTH_LOG-1:0]           cmd_b_addr;
  wire                                  cmd_b_ready;
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Internal Reset
  /////////////////////////////////////////////////////////////////////////////
  always @ (posedge ACLK) begin
    ARESET <= !ARESETN;
  end
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Write Channels (AW/W/B)
  /////////////////////////////////////////////////////////////////////////////
  
  // Write Address Channel.
  processing_system7_v5_5_aw_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_ADDR_WIDTH            (C_AXI_ADDR_WIDTH),
   .C_AXI_AWUSER_WIDTH          (C_AXI_AWUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_addr_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (Out)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
   
    // Slave Interface Write Address Ports
    .S_AXI_AWID                 (S_AXI_AWID),
    .S_AXI_AWADDR               (S_AXI_AWADDR),
    .S_AXI_AWLEN                (S_AXI_AWLEN),
    .S_AXI_AWSIZE               (S_AXI_AWSIZE),
    .S_AXI_AWBURST              (S_AXI_AWBURST),
    .S_AXI_AWLOCK               (S_AXI_AWLOCK),
    .S_AXI_AWCACHE              (S_AXI_AWCACHE),
    .S_AXI_AWPROT               (S_AXI_AWPROT),
    .S_AXI_AWUSER               (S_AXI_AWUSER),
    .S_AXI_AWVALID              (S_AXI_AWVALID),
    .S_AXI_AWREADY              (S_AXI_AWREADY),
    
    // Master Interface Write Address Port
    .M_AXI_AWID                 (M_AXI_AWID),
    .M_AXI_AWADDR               (M_AXI_AWADDR),
    .M_AXI_AWLEN                (M_AXI_AWLEN),
    .M_AXI_AWSIZE               (M_AXI_AWSIZE),
    .M_AXI_AWBURST              (M_AXI_AWBURST),
    .M_AXI_AWLOCK               (M_AXI_AWLOCK),
    .M_AXI_AWCACHE              (M_AXI_AWCACHE),
    .M_AXI_AWPROT               (M_AXI_AWPROT),
    .M_AXI_AWUSER               (M_AXI_AWUSER),
    .M_AXI_AWVALID              (M_AXI_AWVALID),
    .M_AXI_AWREADY              (M_AXI_AWREADY)
   );
   
  // Write Data channel.
  processing_system7_v5_5_w_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_DATA_WIDTH            (C_AXI_DATA_WIDTH),
   .C_AXI_WUSER_WIDTH           (C_AXI_WUSER_WIDTH)
    ) write_data_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    
    // Command Interface (Out)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    
    // Slave Interface Write Data Ports
    .S_AXI_WID                  (S_AXI_WID),
    .S_AXI_WDATA                (S_AXI_WDATA),
    .S_AXI_WSTRB                (S_AXI_WSTRB),
    .S_AXI_WLAST                (S_AXI_WLAST),
    .S_AXI_WUSER                (S_AXI_WUSER),
    .S_AXI_WVALID               (S_AXI_WVALID),
    .S_AXI_WREADY               (S_AXI_WREADY),
    
    // Master Interface Write Data Ports
    .M_AXI_WID                  (M_AXI_WID),
    .M_AXI_WDATA                (M_AXI_WDATA),
    .M_AXI_WSTRB                (M_AXI_WSTRB),
    .M_AXI_WLAST                (M_AXI_WLAST),
    .M_AXI_WUSER                (M_AXI_WUSER),
    .M_AXI_WVALID               (M_AXI_WVALID),
    .M_AXI_WREADY               (M_AXI_WREADY)
   );
   
  // Write Response channel.
  processing_system7_v5_5_b_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_BUSER_WIDTH           (C_AXI_BUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_response_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
    
    // Slave Interface Write Response Ports
    .S_AXI_BID                  (S_AXI_BID),
    .S_AXI_BRESP                (S_AXI_BRESP),
    .S_AXI_BUSER                (S_AXI_BUSER),
    .S_AXI_BVALID               (S_AXI_BVALID),
    .S_AXI_BREADY               (S_AXI_BREADY),
    
    // Master Interface Write Response Ports
    .M_AXI_BID                  (M_AXI_BID),
    .M_AXI_BRESP                (M_AXI_BRESP),
    .M_AXI_BUSER                (M_AXI_BUSER),
    .M_AXI_BVALID               (M_AXI_BVALID),
    .M_AXI_BREADY               (M_AXI_BREADY),
    
    // Trigger detection
    .ERROR_TRIGGER              (ERROR_TRIGGER),
    .ERROR_TRANSACTION_ID       (ERROR_TRANSACTION_ID)
   );
  
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Read Channels (AR/R)
  /////////////////////////////////////////////////////////////////////////////
  // Read Address Port
  assign M_AXI_ARID     = S_AXI_ARID;
  assign M_AXI_ARADDR   = S_AXI_ARADDR;
  assign M_AXI_ARLEN    = S_AXI_ARLEN;
  assign M_AXI_ARSIZE   = S_AXI_ARSIZE;
  assign M_AXI_ARBURST  = S_AXI_ARBURST;
  assign M_AXI_ARLOCK   = S_AXI_ARLOCK;
  assign M_AXI_ARCACHE  = S_AXI_ARCACHE;
  assign M_AXI_ARPROT   = S_AXI_ARPROT;
  assign M_AXI_ARUSER   = S_AXI_ARUSER;
  assign M_AXI_ARVALID  = S_AXI_ARVALID;
  assign S_AXI_ARREADY  = M_AXI_ARREADY;
   
  // Read Data Port
  assign S_AXI_RID      = M_AXI_RID;
  assign S_AXI_RDATA    = M_AXI_RDATA;
  assign S_AXI_RRESP    = M_AXI_RRESP;
  assign S_AXI_RLAST    = M_AXI_RLAST;
  assign S_AXI_RUSER    = M_AXI_RUSER;
  assign S_AXI_RVALID   = M_AXI_RVALID;
  assign M_AXI_RREADY   = S_AXI_RREADY;
  
  
endmodule | 
| 
	module processing_system7_v5_5_atc #
  (
   parameter         C_FAMILY                         = "rtl",
                       // FPGA Family. Current version: virtex6, spartan6 or later.
   parameter integer C_AXI_ID_WIDTH                   = 4,
                       // Width of all ID signals on SI and MI side of checker.
                       // Range: >= 1.
   parameter integer C_AXI_ADDR_WIDTH                 = 32,
                       // Width of all ADDR signals on SI and MI side of checker.
                       // Range: 32.
   parameter integer C_AXI_DATA_WIDTH                 = 64,
                       // Width of all DATA signals on SI and MI side of checker.
                       // Range: 64.
   parameter integer C_AXI_AWUSER_WIDTH               = 1,
                       // Width of AWUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_ARUSER_WIDTH               = 1,
                       // Width of ARUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_WUSER_WIDTH                = 1,
                       // Width of WUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_RUSER_WIDTH                = 1,
                       // Width of RUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_BUSER_WIDTH                = 1
                       // Width of BUSER signals. 
                       // Range: >= 1.
   )
  (
   // Global Signals
   input  wire                                  ACLK,
   input  wire                                  ARESETN,
   // Slave Interface Write Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_AWID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_AWADDR,
   input  wire [4-1:0]                          S_AXI_AWLEN,
   input  wire [3-1:0]                          S_AXI_AWSIZE,
   input  wire [2-1:0]                          S_AXI_AWBURST,
   input  wire [2-1:0]                          S_AXI_AWLOCK,
   input  wire [4-1:0]                          S_AXI_AWCACHE,
   input  wire [3-1:0]                          S_AXI_AWPROT,
   input  wire [C_AXI_AWUSER_WIDTH-1:0]         S_AXI_AWUSER,
   input  wire                                  S_AXI_AWVALID,
   output wire                                  S_AXI_AWREADY,
   // Slave Interface Write Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_WID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_WDATA,
   input  wire [C_AXI_DATA_WIDTH/8-1:0]         S_AXI_WSTRB,
   input  wire                                  S_AXI_WLAST,
   input  wire [C_AXI_WUSER_WIDTH-1:0]          S_AXI_WUSER,
   input  wire                                  S_AXI_WVALID,
   output wire                                  S_AXI_WREADY,
   // Slave Interface Write Response Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_BID,
   output wire [2-1:0]                          S_AXI_BRESP,
   output wire [C_AXI_BUSER_WIDTH-1:0]          S_AXI_BUSER,
   output wire                                  S_AXI_BVALID,
   input  wire                                  S_AXI_BREADY,
   // Slave Interface Read Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_ARID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_ARADDR,
   input  wire [4-1:0]                          S_AXI_ARLEN,
   input  wire [3-1:0]                          S_AXI_ARSIZE,
   input  wire [2-1:0]                          S_AXI_ARBURST,
   input  wire [2-1:0]                          S_AXI_ARLOCK,
   input  wire [4-1:0]                          S_AXI_ARCACHE,
   input  wire [3-1:0]                          S_AXI_ARPROT,
   input  wire [C_AXI_ARUSER_WIDTH-1:0]         S_AXI_ARUSER,
   input  wire                                  S_AXI_ARVALID,
   output wire                                  S_AXI_ARREADY,
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_RDATA,
   output wire [2-1:0]                          S_AXI_RRESP,
   output wire                                  S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0]          S_AXI_RUSER,
   output wire                                  S_AXI_RVALID,
   input  wire                                  S_AXI_RREADY,
   // Master Interface Write Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_AWID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_AWADDR,
   output wire [4-1:0]                          M_AXI_AWLEN,
   output wire [3-1:0]                          M_AXI_AWSIZE,
   output wire [2-1:0]                          M_AXI_AWBURST,
   output wire [2-1:0]                          M_AXI_AWLOCK,
   output wire [4-1:0]                          M_AXI_AWCACHE,
   output wire [3-1:0]                          M_AXI_AWPROT,
   output wire [C_AXI_AWUSER_WIDTH-1:0]         M_AXI_AWUSER,
   output wire                                  M_AXI_AWVALID,
   input  wire                                  M_AXI_AWREADY,
   // Master Interface Write Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_WID,
   output wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_WDATA,
   output wire [C_AXI_DATA_WIDTH/8-1:0]         M_AXI_WSTRB,
   output wire                                  M_AXI_WLAST,
   output wire [C_AXI_WUSER_WIDTH-1:0]          M_AXI_WUSER,
   output wire                                  M_AXI_WVALID,
   input  wire                                  M_AXI_WREADY,
   // Master Interface Write Response Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_BID,
   input  wire [2-1:0]                          M_AXI_BRESP,
   input  wire [C_AXI_BUSER_WIDTH-1:0]          M_AXI_BUSER,
   input  wire                                  M_AXI_BVALID,
   output wire                                  M_AXI_BREADY,
   // Master Interface Read Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_ARID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_ARADDR,
   output wire [4-1:0]                          M_AXI_ARLEN,
   output wire [3-1:0]                          M_AXI_ARSIZE,
   output wire [2-1:0]                          M_AXI_ARBURST,
   output wire [2-1:0]                          M_AXI_ARLOCK,
   output wire [4-1:0]                          M_AXI_ARCACHE,
   output wire [3-1:0]                          M_AXI_ARPROT,
   output wire [C_AXI_ARUSER_WIDTH-1:0]         M_AXI_ARUSER,
   output wire                                  M_AXI_ARVALID,
   input  wire                                  M_AXI_ARREADY,
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_RDATA,
   input  wire [2-1:0]                          M_AXI_RRESP,
   input  wire                                  M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0]          M_AXI_RUSER,
   input  wire                                  M_AXI_RVALID,
   output wire                                  M_AXI_RREADY,
   
   output wire                                  ERROR_TRIGGER,
   output wire [C_AXI_ID_WIDTH-1:0]             ERROR_TRANSACTION_ID
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  localparam C_FIFO_DEPTH_LOG            = 4;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Internal reset.
  reg                                   ARESET;
  
  // AW->W command queue signals.
  wire                                  cmd_w_valid;
  wire                                  cmd_w_check;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_w_id;
  wire                                  cmd_w_ready;
  
  // W->B command queue signals.
  wire                                  cmd_b_push;
  wire                                  cmd_b_error;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_b_id;
  wire                                  cmd_b_full;
  wire [C_FIFO_DEPTH_LOG-1:0]           cmd_b_addr;
  wire                                  cmd_b_ready;
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Internal Reset
  /////////////////////////////////////////////////////////////////////////////
  always @ (posedge ACLK) begin
    ARESET <= !ARESETN;
  end
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Write Channels (AW/W/B)
  /////////////////////////////////////////////////////////////////////////////
  
  // Write Address Channel.
  processing_system7_v5_5_aw_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_ADDR_WIDTH            (C_AXI_ADDR_WIDTH),
   .C_AXI_AWUSER_WIDTH          (C_AXI_AWUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_addr_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (Out)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
   
    // Slave Interface Write Address Ports
    .S_AXI_AWID                 (S_AXI_AWID),
    .S_AXI_AWADDR               (S_AXI_AWADDR),
    .S_AXI_AWLEN                (S_AXI_AWLEN),
    .S_AXI_AWSIZE               (S_AXI_AWSIZE),
    .S_AXI_AWBURST              (S_AXI_AWBURST),
    .S_AXI_AWLOCK               (S_AXI_AWLOCK),
    .S_AXI_AWCACHE              (S_AXI_AWCACHE),
    .S_AXI_AWPROT               (S_AXI_AWPROT),
    .S_AXI_AWUSER               (S_AXI_AWUSER),
    .S_AXI_AWVALID              (S_AXI_AWVALID),
    .S_AXI_AWREADY              (S_AXI_AWREADY),
    
    // Master Interface Write Address Port
    .M_AXI_AWID                 (M_AXI_AWID),
    .M_AXI_AWADDR               (M_AXI_AWADDR),
    .M_AXI_AWLEN                (M_AXI_AWLEN),
    .M_AXI_AWSIZE               (M_AXI_AWSIZE),
    .M_AXI_AWBURST              (M_AXI_AWBURST),
    .M_AXI_AWLOCK               (M_AXI_AWLOCK),
    .M_AXI_AWCACHE              (M_AXI_AWCACHE),
    .M_AXI_AWPROT               (M_AXI_AWPROT),
    .M_AXI_AWUSER               (M_AXI_AWUSER),
    .M_AXI_AWVALID              (M_AXI_AWVALID),
    .M_AXI_AWREADY              (M_AXI_AWREADY)
   );
   
  // Write Data channel.
  processing_system7_v5_5_w_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_DATA_WIDTH            (C_AXI_DATA_WIDTH),
   .C_AXI_WUSER_WIDTH           (C_AXI_WUSER_WIDTH)
    ) write_data_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    
    // Command Interface (Out)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    
    // Slave Interface Write Data Ports
    .S_AXI_WID                  (S_AXI_WID),
    .S_AXI_WDATA                (S_AXI_WDATA),
    .S_AXI_WSTRB                (S_AXI_WSTRB),
    .S_AXI_WLAST                (S_AXI_WLAST),
    .S_AXI_WUSER                (S_AXI_WUSER),
    .S_AXI_WVALID               (S_AXI_WVALID),
    .S_AXI_WREADY               (S_AXI_WREADY),
    
    // Master Interface Write Data Ports
    .M_AXI_WID                  (M_AXI_WID),
    .M_AXI_WDATA                (M_AXI_WDATA),
    .M_AXI_WSTRB                (M_AXI_WSTRB),
    .M_AXI_WLAST                (M_AXI_WLAST),
    .M_AXI_WUSER                (M_AXI_WUSER),
    .M_AXI_WVALID               (M_AXI_WVALID),
    .M_AXI_WREADY               (M_AXI_WREADY)
   );
   
  // Write Response channel.
  processing_system7_v5_5_b_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_BUSER_WIDTH           (C_AXI_BUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_response_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
    
    // Slave Interface Write Response Ports
    .S_AXI_BID                  (S_AXI_BID),
    .S_AXI_BRESP                (S_AXI_BRESP),
    .S_AXI_BUSER                (S_AXI_BUSER),
    .S_AXI_BVALID               (S_AXI_BVALID),
    .S_AXI_BREADY               (S_AXI_BREADY),
    
    // Master Interface Write Response Ports
    .M_AXI_BID                  (M_AXI_BID),
    .M_AXI_BRESP                (M_AXI_BRESP),
    .M_AXI_BUSER                (M_AXI_BUSER),
    .M_AXI_BVALID               (M_AXI_BVALID),
    .M_AXI_BREADY               (M_AXI_BREADY),
    
    // Trigger detection
    .ERROR_TRIGGER              (ERROR_TRIGGER),
    .ERROR_TRANSACTION_ID       (ERROR_TRANSACTION_ID)
   );
  
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Read Channels (AR/R)
  /////////////////////////////////////////////////////////////////////////////
  // Read Address Port
  assign M_AXI_ARID     = S_AXI_ARID;
  assign M_AXI_ARADDR   = S_AXI_ARADDR;
  assign M_AXI_ARLEN    = S_AXI_ARLEN;
  assign M_AXI_ARSIZE   = S_AXI_ARSIZE;
  assign M_AXI_ARBURST  = S_AXI_ARBURST;
  assign M_AXI_ARLOCK   = S_AXI_ARLOCK;
  assign M_AXI_ARCACHE  = S_AXI_ARCACHE;
  assign M_AXI_ARPROT   = S_AXI_ARPROT;
  assign M_AXI_ARUSER   = S_AXI_ARUSER;
  assign M_AXI_ARVALID  = S_AXI_ARVALID;
  assign S_AXI_ARREADY  = M_AXI_ARREADY;
   
  // Read Data Port
  assign S_AXI_RID      = M_AXI_RID;
  assign S_AXI_RDATA    = M_AXI_RDATA;
  assign S_AXI_RRESP    = M_AXI_RRESP;
  assign S_AXI_RLAST    = M_AXI_RLAST;
  assign S_AXI_RUSER    = M_AXI_RUSER;
  assign S_AXI_RVALID   = M_AXI_RVALID;
  assign M_AXI_RREADY   = S_AXI_RREADY;
  
  
endmodule | 
| 
	module processing_system7_v5_5_atc #
  (
   parameter         C_FAMILY                         = "rtl",
                       // FPGA Family. Current version: virtex6, spartan6 or later.
   parameter integer C_AXI_ID_WIDTH                   = 4,
                       // Width of all ID signals on SI and MI side of checker.
                       // Range: >= 1.
   parameter integer C_AXI_ADDR_WIDTH                 = 32,
                       // Width of all ADDR signals on SI and MI side of checker.
                       // Range: 32.
   parameter integer C_AXI_DATA_WIDTH                 = 64,
                       // Width of all DATA signals on SI and MI side of checker.
                       // Range: 64.
   parameter integer C_AXI_AWUSER_WIDTH               = 1,
                       // Width of AWUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_ARUSER_WIDTH               = 1,
                       // Width of ARUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_WUSER_WIDTH                = 1,
                       // Width of WUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_RUSER_WIDTH                = 1,
                       // Width of RUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_BUSER_WIDTH                = 1
                       // Width of BUSER signals. 
                       // Range: >= 1.
   )
  (
   // Global Signals
   input  wire                                  ACLK,
   input  wire                                  ARESETN,
   // Slave Interface Write Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_AWID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_AWADDR,
   input  wire [4-1:0]                          S_AXI_AWLEN,
   input  wire [3-1:0]                          S_AXI_AWSIZE,
   input  wire [2-1:0]                          S_AXI_AWBURST,
   input  wire [2-1:0]                          S_AXI_AWLOCK,
   input  wire [4-1:0]                          S_AXI_AWCACHE,
   input  wire [3-1:0]                          S_AXI_AWPROT,
   input  wire [C_AXI_AWUSER_WIDTH-1:0]         S_AXI_AWUSER,
   input  wire                                  S_AXI_AWVALID,
   output wire                                  S_AXI_AWREADY,
   // Slave Interface Write Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_WID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_WDATA,
   input  wire [C_AXI_DATA_WIDTH/8-1:0]         S_AXI_WSTRB,
   input  wire                                  S_AXI_WLAST,
   input  wire [C_AXI_WUSER_WIDTH-1:0]          S_AXI_WUSER,
   input  wire                                  S_AXI_WVALID,
   output wire                                  S_AXI_WREADY,
   // Slave Interface Write Response Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_BID,
   output wire [2-1:0]                          S_AXI_BRESP,
   output wire [C_AXI_BUSER_WIDTH-1:0]          S_AXI_BUSER,
   output wire                                  S_AXI_BVALID,
   input  wire                                  S_AXI_BREADY,
   // Slave Interface Read Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_ARID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_ARADDR,
   input  wire [4-1:0]                          S_AXI_ARLEN,
   input  wire [3-1:0]                          S_AXI_ARSIZE,
   input  wire [2-1:0]                          S_AXI_ARBURST,
   input  wire [2-1:0]                          S_AXI_ARLOCK,
   input  wire [4-1:0]                          S_AXI_ARCACHE,
   input  wire [3-1:0]                          S_AXI_ARPROT,
   input  wire [C_AXI_ARUSER_WIDTH-1:0]         S_AXI_ARUSER,
   input  wire                                  S_AXI_ARVALID,
   output wire                                  S_AXI_ARREADY,
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_RDATA,
   output wire [2-1:0]                          S_AXI_RRESP,
   output wire                                  S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0]          S_AXI_RUSER,
   output wire                                  S_AXI_RVALID,
   input  wire                                  S_AXI_RREADY,
   // Master Interface Write Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_AWID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_AWADDR,
   output wire [4-1:0]                          M_AXI_AWLEN,
   output wire [3-1:0]                          M_AXI_AWSIZE,
   output wire [2-1:0]                          M_AXI_AWBURST,
   output wire [2-1:0]                          M_AXI_AWLOCK,
   output wire [4-1:0]                          M_AXI_AWCACHE,
   output wire [3-1:0]                          M_AXI_AWPROT,
   output wire [C_AXI_AWUSER_WIDTH-1:0]         M_AXI_AWUSER,
   output wire                                  M_AXI_AWVALID,
   input  wire                                  M_AXI_AWREADY,
   // Master Interface Write Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_WID,
   output wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_WDATA,
   output wire [C_AXI_DATA_WIDTH/8-1:0]         M_AXI_WSTRB,
   output wire                                  M_AXI_WLAST,
   output wire [C_AXI_WUSER_WIDTH-1:0]          M_AXI_WUSER,
   output wire                                  M_AXI_WVALID,
   input  wire                                  M_AXI_WREADY,
   // Master Interface Write Response Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_BID,
   input  wire [2-1:0]                          M_AXI_BRESP,
   input  wire [C_AXI_BUSER_WIDTH-1:0]          M_AXI_BUSER,
   input  wire                                  M_AXI_BVALID,
   output wire                                  M_AXI_BREADY,
   // Master Interface Read Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_ARID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_ARADDR,
   output wire [4-1:0]                          M_AXI_ARLEN,
   output wire [3-1:0]                          M_AXI_ARSIZE,
   output wire [2-1:0]                          M_AXI_ARBURST,
   output wire [2-1:0]                          M_AXI_ARLOCK,
   output wire [4-1:0]                          M_AXI_ARCACHE,
   output wire [3-1:0]                          M_AXI_ARPROT,
   output wire [C_AXI_ARUSER_WIDTH-1:0]         M_AXI_ARUSER,
   output wire                                  M_AXI_ARVALID,
   input  wire                                  M_AXI_ARREADY,
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_RDATA,
   input  wire [2-1:0]                          M_AXI_RRESP,
   input  wire                                  M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0]          M_AXI_RUSER,
   input  wire                                  M_AXI_RVALID,
   output wire                                  M_AXI_RREADY,
   
   output wire                                  ERROR_TRIGGER,
   output wire [C_AXI_ID_WIDTH-1:0]             ERROR_TRANSACTION_ID
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  localparam C_FIFO_DEPTH_LOG            = 4;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Internal reset.
  reg                                   ARESET;
  
  // AW->W command queue signals.
  wire                                  cmd_w_valid;
  wire                                  cmd_w_check;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_w_id;
  wire                                  cmd_w_ready;
  
  // W->B command queue signals.
  wire                                  cmd_b_push;
  wire                                  cmd_b_error;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_b_id;
  wire                                  cmd_b_full;
  wire [C_FIFO_DEPTH_LOG-1:0]           cmd_b_addr;
  wire                                  cmd_b_ready;
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Internal Reset
  /////////////////////////////////////////////////////////////////////////////
  always @ (posedge ACLK) begin
    ARESET <= !ARESETN;
  end
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Write Channels (AW/W/B)
  /////////////////////////////////////////////////////////////////////////////
  
  // Write Address Channel.
  processing_system7_v5_5_aw_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_ADDR_WIDTH            (C_AXI_ADDR_WIDTH),
   .C_AXI_AWUSER_WIDTH          (C_AXI_AWUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_addr_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (Out)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
   
    // Slave Interface Write Address Ports
    .S_AXI_AWID                 (S_AXI_AWID),
    .S_AXI_AWADDR               (S_AXI_AWADDR),
    .S_AXI_AWLEN                (S_AXI_AWLEN),
    .S_AXI_AWSIZE               (S_AXI_AWSIZE),
    .S_AXI_AWBURST              (S_AXI_AWBURST),
    .S_AXI_AWLOCK               (S_AXI_AWLOCK),
    .S_AXI_AWCACHE              (S_AXI_AWCACHE),
    .S_AXI_AWPROT               (S_AXI_AWPROT),
    .S_AXI_AWUSER               (S_AXI_AWUSER),
    .S_AXI_AWVALID              (S_AXI_AWVALID),
    .S_AXI_AWREADY              (S_AXI_AWREADY),
    
    // Master Interface Write Address Port
    .M_AXI_AWID                 (M_AXI_AWID),
    .M_AXI_AWADDR               (M_AXI_AWADDR),
    .M_AXI_AWLEN                (M_AXI_AWLEN),
    .M_AXI_AWSIZE               (M_AXI_AWSIZE),
    .M_AXI_AWBURST              (M_AXI_AWBURST),
    .M_AXI_AWLOCK               (M_AXI_AWLOCK),
    .M_AXI_AWCACHE              (M_AXI_AWCACHE),
    .M_AXI_AWPROT               (M_AXI_AWPROT),
    .M_AXI_AWUSER               (M_AXI_AWUSER),
    .M_AXI_AWVALID              (M_AXI_AWVALID),
    .M_AXI_AWREADY              (M_AXI_AWREADY)
   );
   
  // Write Data channel.
  processing_system7_v5_5_w_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_DATA_WIDTH            (C_AXI_DATA_WIDTH),
   .C_AXI_WUSER_WIDTH           (C_AXI_WUSER_WIDTH)
    ) write_data_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    
    // Command Interface (Out)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    
    // Slave Interface Write Data Ports
    .S_AXI_WID                  (S_AXI_WID),
    .S_AXI_WDATA                (S_AXI_WDATA),
    .S_AXI_WSTRB                (S_AXI_WSTRB),
    .S_AXI_WLAST                (S_AXI_WLAST),
    .S_AXI_WUSER                (S_AXI_WUSER),
    .S_AXI_WVALID               (S_AXI_WVALID),
    .S_AXI_WREADY               (S_AXI_WREADY),
    
    // Master Interface Write Data Ports
    .M_AXI_WID                  (M_AXI_WID),
    .M_AXI_WDATA                (M_AXI_WDATA),
    .M_AXI_WSTRB                (M_AXI_WSTRB),
    .M_AXI_WLAST                (M_AXI_WLAST),
    .M_AXI_WUSER                (M_AXI_WUSER),
    .M_AXI_WVALID               (M_AXI_WVALID),
    .M_AXI_WREADY               (M_AXI_WREADY)
   );
   
  // Write Response channel.
  processing_system7_v5_5_b_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_BUSER_WIDTH           (C_AXI_BUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_response_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
    
    // Slave Interface Write Response Ports
    .S_AXI_BID                  (S_AXI_BID),
    .S_AXI_BRESP                (S_AXI_BRESP),
    .S_AXI_BUSER                (S_AXI_BUSER),
    .S_AXI_BVALID               (S_AXI_BVALID),
    .S_AXI_BREADY               (S_AXI_BREADY),
    
    // Master Interface Write Response Ports
    .M_AXI_BID                  (M_AXI_BID),
    .M_AXI_BRESP                (M_AXI_BRESP),
    .M_AXI_BUSER                (M_AXI_BUSER),
    .M_AXI_BVALID               (M_AXI_BVALID),
    .M_AXI_BREADY               (M_AXI_BREADY),
    
    // Trigger detection
    .ERROR_TRIGGER              (ERROR_TRIGGER),
    .ERROR_TRANSACTION_ID       (ERROR_TRANSACTION_ID)
   );
  
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Read Channels (AR/R)
  /////////////////////////////////////////////////////////////////////////////
  // Read Address Port
  assign M_AXI_ARID     = S_AXI_ARID;
  assign M_AXI_ARADDR   = S_AXI_ARADDR;
  assign M_AXI_ARLEN    = S_AXI_ARLEN;
  assign M_AXI_ARSIZE   = S_AXI_ARSIZE;
  assign M_AXI_ARBURST  = S_AXI_ARBURST;
  assign M_AXI_ARLOCK   = S_AXI_ARLOCK;
  assign M_AXI_ARCACHE  = S_AXI_ARCACHE;
  assign M_AXI_ARPROT   = S_AXI_ARPROT;
  assign M_AXI_ARUSER   = S_AXI_ARUSER;
  assign M_AXI_ARVALID  = S_AXI_ARVALID;
  assign S_AXI_ARREADY  = M_AXI_ARREADY;
   
  // Read Data Port
  assign S_AXI_RID      = M_AXI_RID;
  assign S_AXI_RDATA    = M_AXI_RDATA;
  assign S_AXI_RRESP    = M_AXI_RRESP;
  assign S_AXI_RLAST    = M_AXI_RLAST;
  assign S_AXI_RUSER    = M_AXI_RUSER;
  assign S_AXI_RVALID   = M_AXI_RVALID;
  assign M_AXI_RREADY   = S_AXI_RREADY;
  
  
endmodule | 
| 
	module processing_system7_v5_5_atc #
  (
   parameter         C_FAMILY                         = "rtl",
                       // FPGA Family. Current version: virtex6, spartan6 or later.
   parameter integer C_AXI_ID_WIDTH                   = 4,
                       // Width of all ID signals on SI and MI side of checker.
                       // Range: >= 1.
   parameter integer C_AXI_ADDR_WIDTH                 = 32,
                       // Width of all ADDR signals on SI and MI side of checker.
                       // Range: 32.
   parameter integer C_AXI_DATA_WIDTH                 = 64,
                       // Width of all DATA signals on SI and MI side of checker.
                       // Range: 64.
   parameter integer C_AXI_AWUSER_WIDTH               = 1,
                       // Width of AWUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_ARUSER_WIDTH               = 1,
                       // Width of ARUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_WUSER_WIDTH                = 1,
                       // Width of WUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_RUSER_WIDTH                = 1,
                       // Width of RUSER signals. 
                       // Range: >= 1.
   parameter integer C_AXI_BUSER_WIDTH                = 1
                       // Width of BUSER signals. 
                       // Range: >= 1.
   )
  (
   // Global Signals
   input  wire                                  ACLK,
   input  wire                                  ARESETN,
   // Slave Interface Write Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_AWID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_AWADDR,
   input  wire [4-1:0]                          S_AXI_AWLEN,
   input  wire [3-1:0]                          S_AXI_AWSIZE,
   input  wire [2-1:0]                          S_AXI_AWBURST,
   input  wire [2-1:0]                          S_AXI_AWLOCK,
   input  wire [4-1:0]                          S_AXI_AWCACHE,
   input  wire [3-1:0]                          S_AXI_AWPROT,
   input  wire [C_AXI_AWUSER_WIDTH-1:0]         S_AXI_AWUSER,
   input  wire                                  S_AXI_AWVALID,
   output wire                                  S_AXI_AWREADY,
   // Slave Interface Write Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_WID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_WDATA,
   input  wire [C_AXI_DATA_WIDTH/8-1:0]         S_AXI_WSTRB,
   input  wire                                  S_AXI_WLAST,
   input  wire [C_AXI_WUSER_WIDTH-1:0]          S_AXI_WUSER,
   input  wire                                  S_AXI_WVALID,
   output wire                                  S_AXI_WREADY,
   // Slave Interface Write Response Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_BID,
   output wire [2-1:0]                          S_AXI_BRESP,
   output wire [C_AXI_BUSER_WIDTH-1:0]          S_AXI_BUSER,
   output wire                                  S_AXI_BVALID,
   input  wire                                  S_AXI_BREADY,
   // Slave Interface Read Address Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             S_AXI_ARID,
   input  wire [C_AXI_ADDR_WIDTH-1:0]           S_AXI_ARADDR,
   input  wire [4-1:0]                          S_AXI_ARLEN,
   input  wire [3-1:0]                          S_AXI_ARSIZE,
   input  wire [2-1:0]                          S_AXI_ARBURST,
   input  wire [2-1:0]                          S_AXI_ARLOCK,
   input  wire [4-1:0]                          S_AXI_ARCACHE,
   input  wire [3-1:0]                          S_AXI_ARPROT,
   input  wire [C_AXI_ARUSER_WIDTH-1:0]         S_AXI_ARUSER,
   input  wire                                  S_AXI_ARVALID,
   output wire                                  S_AXI_ARREADY,
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]           S_AXI_RDATA,
   output wire [2-1:0]                          S_AXI_RRESP,
   output wire                                  S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0]          S_AXI_RUSER,
   output wire                                  S_AXI_RVALID,
   input  wire                                  S_AXI_RREADY,
   // Master Interface Write Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_AWID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_AWADDR,
   output wire [4-1:0]                          M_AXI_AWLEN,
   output wire [3-1:0]                          M_AXI_AWSIZE,
   output wire [2-1:0]                          M_AXI_AWBURST,
   output wire [2-1:0]                          M_AXI_AWLOCK,
   output wire [4-1:0]                          M_AXI_AWCACHE,
   output wire [3-1:0]                          M_AXI_AWPROT,
   output wire [C_AXI_AWUSER_WIDTH-1:0]         M_AXI_AWUSER,
   output wire                                  M_AXI_AWVALID,
   input  wire                                  M_AXI_AWREADY,
   // Master Interface Write Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_WID,
   output wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_WDATA,
   output wire [C_AXI_DATA_WIDTH/8-1:0]         M_AXI_WSTRB,
   output wire                                  M_AXI_WLAST,
   output wire [C_AXI_WUSER_WIDTH-1:0]          M_AXI_WUSER,
   output wire                                  M_AXI_WVALID,
   input  wire                                  M_AXI_WREADY,
   // Master Interface Write Response Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_BID,
   input  wire [2-1:0]                          M_AXI_BRESP,
   input  wire [C_AXI_BUSER_WIDTH-1:0]          M_AXI_BUSER,
   input  wire                                  M_AXI_BVALID,
   output wire                                  M_AXI_BREADY,
   // Master Interface Read Address Port
   output wire [C_AXI_ID_WIDTH-1:0]             M_AXI_ARID,
   output wire [C_AXI_ADDR_WIDTH-1:0]           M_AXI_ARADDR,
   output wire [4-1:0]                          M_AXI_ARLEN,
   output wire [3-1:0]                          M_AXI_ARSIZE,
   output wire [2-1:0]                          M_AXI_ARBURST,
   output wire [2-1:0]                          M_AXI_ARLOCK,
   output wire [4-1:0]                          M_AXI_ARCACHE,
   output wire [3-1:0]                          M_AXI_ARPROT,
   output wire [C_AXI_ARUSER_WIDTH-1:0]         M_AXI_ARUSER,
   output wire                                  M_AXI_ARVALID,
   input  wire                                  M_AXI_ARREADY,
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]             M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]           M_AXI_RDATA,
   input  wire [2-1:0]                          M_AXI_RRESP,
   input  wire                                  M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0]          M_AXI_RUSER,
   input  wire                                  M_AXI_RVALID,
   output wire                                  M_AXI_RREADY,
   
   output wire                                  ERROR_TRIGGER,
   output wire [C_AXI_ID_WIDTH-1:0]             ERROR_TRANSACTION_ID
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  localparam C_FIFO_DEPTH_LOG            = 4;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Internal reset.
  reg                                   ARESET;
  
  // AW->W command queue signals.
  wire                                  cmd_w_valid;
  wire                                  cmd_w_check;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_w_id;
  wire                                  cmd_w_ready;
  
  // W->B command queue signals.
  wire                                  cmd_b_push;
  wire                                  cmd_b_error;
  wire [C_AXI_ID_WIDTH-1:0]             cmd_b_id;
  wire                                  cmd_b_full;
  wire [C_FIFO_DEPTH_LOG-1:0]           cmd_b_addr;
  wire                                  cmd_b_ready;
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Internal Reset
  /////////////////////////////////////////////////////////////////////////////
  always @ (posedge ACLK) begin
    ARESET <= !ARESETN;
  end
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Write Channels (AW/W/B)
  /////////////////////////////////////////////////////////////////////////////
  
  // Write Address Channel.
  processing_system7_v5_5_aw_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_ADDR_WIDTH            (C_AXI_ADDR_WIDTH),
   .C_AXI_AWUSER_WIDTH          (C_AXI_AWUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_addr_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (Out)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
   
    // Slave Interface Write Address Ports
    .S_AXI_AWID                 (S_AXI_AWID),
    .S_AXI_AWADDR               (S_AXI_AWADDR),
    .S_AXI_AWLEN                (S_AXI_AWLEN),
    .S_AXI_AWSIZE               (S_AXI_AWSIZE),
    .S_AXI_AWBURST              (S_AXI_AWBURST),
    .S_AXI_AWLOCK               (S_AXI_AWLOCK),
    .S_AXI_AWCACHE              (S_AXI_AWCACHE),
    .S_AXI_AWPROT               (S_AXI_AWPROT),
    .S_AXI_AWUSER               (S_AXI_AWUSER),
    .S_AXI_AWVALID              (S_AXI_AWVALID),
    .S_AXI_AWREADY              (S_AXI_AWREADY),
    
    // Master Interface Write Address Port
    .M_AXI_AWID                 (M_AXI_AWID),
    .M_AXI_AWADDR               (M_AXI_AWADDR),
    .M_AXI_AWLEN                (M_AXI_AWLEN),
    .M_AXI_AWSIZE               (M_AXI_AWSIZE),
    .M_AXI_AWBURST              (M_AXI_AWBURST),
    .M_AXI_AWLOCK               (M_AXI_AWLOCK),
    .M_AXI_AWCACHE              (M_AXI_AWCACHE),
    .M_AXI_AWPROT               (M_AXI_AWPROT),
    .M_AXI_AWUSER               (M_AXI_AWUSER),
    .M_AXI_AWVALID              (M_AXI_AWVALID),
    .M_AXI_AWREADY              (M_AXI_AWREADY)
   );
   
  // Write Data channel.
  processing_system7_v5_5_w_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_DATA_WIDTH            (C_AXI_DATA_WIDTH),
   .C_AXI_WUSER_WIDTH           (C_AXI_WUSER_WIDTH)
    ) write_data_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_w_valid                (cmd_w_valid),
    .cmd_w_check                (cmd_w_check),
    .cmd_w_id                   (cmd_w_id),
    .cmd_w_ready                (cmd_w_ready),
    
    // Command Interface (Out)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    
    // Slave Interface Write Data Ports
    .S_AXI_WID                  (S_AXI_WID),
    .S_AXI_WDATA                (S_AXI_WDATA),
    .S_AXI_WSTRB                (S_AXI_WSTRB),
    .S_AXI_WLAST                (S_AXI_WLAST),
    .S_AXI_WUSER                (S_AXI_WUSER),
    .S_AXI_WVALID               (S_AXI_WVALID),
    .S_AXI_WREADY               (S_AXI_WREADY),
    
    // Master Interface Write Data Ports
    .M_AXI_WID                  (M_AXI_WID),
    .M_AXI_WDATA                (M_AXI_WDATA),
    .M_AXI_WSTRB                (M_AXI_WSTRB),
    .M_AXI_WLAST                (M_AXI_WLAST),
    .M_AXI_WUSER                (M_AXI_WUSER),
    .M_AXI_WVALID               (M_AXI_WVALID),
    .M_AXI_WREADY               (M_AXI_WREADY)
   );
   
  // Write Response channel.
  processing_system7_v5_5_b_atc #
  (
   .C_FAMILY                    (C_FAMILY),
   .C_AXI_ID_WIDTH              (C_AXI_ID_WIDTH),
   .C_AXI_BUSER_WIDTH           (C_AXI_BUSER_WIDTH),
   .C_FIFO_DEPTH_LOG            (C_FIFO_DEPTH_LOG)
    ) write_response_inst
   (
    // Global Signals
    .ARESET                     (ARESET),
    .ACLK                       (ACLK),
    // Command Interface (In)
    .cmd_b_push                 (cmd_b_push),
    .cmd_b_error                (cmd_b_error),
    .cmd_b_id                   (cmd_b_id),
    .cmd_b_full                 (cmd_b_full),
    .cmd_b_addr                 (cmd_b_addr),
    .cmd_b_ready                (cmd_b_ready),
    
    // Slave Interface Write Response Ports
    .S_AXI_BID                  (S_AXI_BID),
    .S_AXI_BRESP                (S_AXI_BRESP),
    .S_AXI_BUSER                (S_AXI_BUSER),
    .S_AXI_BVALID               (S_AXI_BVALID),
    .S_AXI_BREADY               (S_AXI_BREADY),
    
    // Master Interface Write Response Ports
    .M_AXI_BID                  (M_AXI_BID),
    .M_AXI_BRESP                (M_AXI_BRESP),
    .M_AXI_BUSER                (M_AXI_BUSER),
    .M_AXI_BVALID               (M_AXI_BVALID),
    .M_AXI_BREADY               (M_AXI_BREADY),
    
    // Trigger detection
    .ERROR_TRIGGER              (ERROR_TRIGGER),
    .ERROR_TRANSACTION_ID       (ERROR_TRANSACTION_ID)
   );
  
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle Read Channels (AR/R)
  /////////////////////////////////////////////////////////////////////////////
  // Read Address Port
  assign M_AXI_ARID     = S_AXI_ARID;
  assign M_AXI_ARADDR   = S_AXI_ARADDR;
  assign M_AXI_ARLEN    = S_AXI_ARLEN;
  assign M_AXI_ARSIZE   = S_AXI_ARSIZE;
  assign M_AXI_ARBURST  = S_AXI_ARBURST;
  assign M_AXI_ARLOCK   = S_AXI_ARLOCK;
  assign M_AXI_ARCACHE  = S_AXI_ARCACHE;
  assign M_AXI_ARPROT   = S_AXI_ARPROT;
  assign M_AXI_ARUSER   = S_AXI_ARUSER;
  assign M_AXI_ARVALID  = S_AXI_ARVALID;
  assign S_AXI_ARREADY  = M_AXI_ARREADY;
   
  // Read Data Port
  assign S_AXI_RID      = M_AXI_RID;
  assign S_AXI_RDATA    = M_AXI_RDATA;
  assign S_AXI_RRESP    = M_AXI_RRESP;
  assign S_AXI_RLAST    = M_AXI_RLAST;
  assign S_AXI_RUSER    = M_AXI_RUSER;
  assign S_AXI_RVALID   = M_AXI_RVALID;
  assign M_AXI_RREADY   = S_AXI_RREADY;
  
  
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module altera_avalon_sc_fifo
#(
    // --------------------------------------------------
    // Parameters
    // --------------------------------------------------
    parameter SYMBOLS_PER_BEAT  = 1,
    parameter BITS_PER_SYMBOL   = 8,
    parameter FIFO_DEPTH        = 16,
    parameter CHANNEL_WIDTH     = 0,
    parameter ERROR_WIDTH       = 0,
    parameter USE_PACKETS       = 0,
    parameter USE_FILL_LEVEL    = 0,
    parameter USE_STORE_FORWARD = 0,
    parameter USE_ALMOST_FULL_IF = 0,
    parameter USE_ALMOST_EMPTY_IF = 0,
    // --------------------------------------------------
    // Empty latency is defined as the number of cycles
    // required for a write to deassert the empty flag.
    // For example, a latency of 1 means that the empty
    // flag is deasserted on the cycle after a write.
    //
    // Another way to think of it is the latency for a
    // write to propagate to the output. 
    // 
    // An empty latency of 0 implies lookahead, which is
    // only implemented for the register-based FIFO.
    // --------------------------------------------------
    parameter EMPTY_LATENCY     = 3,
    parameter USE_MEMORY_BLOCKS = 1,
    // --------------------------------------------------
    // Internal Parameters
    // --------------------------------------------------
    parameter DATA_WIDTH  = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL,
    parameter EMPTY_WIDTH = log2ceil(SYMBOLS_PER_BEAT)
)
(
    // --------------------------------------------------
    // Ports
    // --------------------------------------------------
    input                       clk,
    input                       reset,
    input [DATA_WIDTH-1: 0]     in_data,
    input                       in_valid,
    input                       in_startofpacket,
    input                       in_endofpacket,
    input [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]     in_empty,
    input [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]     in_error,
    input [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0]  in_channel,
    output                      in_ready,
    output [DATA_WIDTH-1 : 0]   out_data,
    output reg                  out_valid,
    output                      out_startofpacket,
    output                      out_endofpacket,
    output [((EMPTY_WIDTH>0) ? (EMPTY_WIDTH-1):0) : 0]    out_empty,
    output [((ERROR_WIDTH>0) ? (ERROR_WIDTH-1):0) : 0]    out_error,
    output [((CHANNEL_WIDTH>0) ? (CHANNEL_WIDTH-1):0): 0] out_channel,
    input                       out_ready,
    input [(USE_STORE_FORWARD ? 2 : 1) : 0]   csr_address,
    input                       csr_write,
    input                       csr_read,
    input [31 : 0]              csr_writedata,
    output reg [31 : 0]         csr_readdata,
    output  wire                almost_full_data,
    output  wire                almost_empty_data
);
    // --------------------------------------------------
    // Local Parameters
    // --------------------------------------------------
    localparam ADDR_WIDTH   = log2ceil(FIFO_DEPTH);
    localparam DEPTH        = FIFO_DEPTH;
    localparam PKT_SIGNALS_WIDTH = 2 + EMPTY_WIDTH;
    localparam PAYLOAD_WIDTH     = (USE_PACKETS == 1) ? 
                   2 + EMPTY_WIDTH + DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH:
                   DATA_WIDTH + ERROR_WIDTH + CHANNEL_WIDTH;
    // --------------------------------------------------
    // Internal Signals
    // --------------------------------------------------
    genvar i;
    reg [PAYLOAD_WIDTH-1 : 0] mem [DEPTH-1 : 0];
    reg [ADDR_WIDTH-1 : 0]  wr_ptr;
    reg [ADDR_WIDTH-1 : 0]  rd_ptr;
    reg [DEPTH-1      : 0]  mem_used;
    wire [ADDR_WIDTH-1 : 0] next_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] next_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_wr_ptr;
    wire [ADDR_WIDTH-1 : 0] incremented_rd_ptr;
    wire [ADDR_WIDTH-1 : 0] mem_rd_ptr;
    wire read;
    wire write;
    reg empty;
    reg next_empty;
    reg full;
    reg next_full;
    wire [PKT_SIGNALS_WIDTH-1 : 0] in_packet_signals;
    wire [PKT_SIGNALS_WIDTH-1 : 0] out_packet_signals;
    wire [PAYLOAD_WIDTH-1 : 0] in_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] internal_out_payload;
    reg  [PAYLOAD_WIDTH-1 : 0] out_payload;
    reg  internal_out_valid;
    wire internal_out_ready;
    reg  [ADDR_WIDTH : 0] fifo_fill_level;
    reg  [ADDR_WIDTH : 0] fill_level;
    reg  [ADDR_WIDTH-1 : 0]   sop_ptr = 0;
    wire [ADDR_WIDTH-1 : 0]   curr_sop_ptr;
    reg  [23:0]   almost_full_threshold;
    reg  [23:0]   almost_empty_threshold;
    reg  [23:0]   cut_through_threshold;
    reg  [15:0]   pkt_cnt;
    reg           drop_on_error_en;
    reg           error_in_pkt;
    reg           pkt_has_started;
    reg           sop_has_left_fifo;
    reg           fifo_too_small_r;
    reg           pkt_cnt_eq_zero;
    reg           pkt_cnt_eq_one;
    wire          wait_for_threshold;
    reg           pkt_mode;
    wire          wait_for_pkt;
    wire          ok_to_forward;
    wire          in_pkt_eop_arrive;
    wire          out_pkt_leave;
    wire          in_pkt_start;
    wire          in_pkt_error;
    wire          drop_on_error;
    wire          fifo_too_small;
    wire          out_pkt_sop_leave;
    wire [31:0]   max_fifo_size;
    reg           fifo_fill_level_lt_cut_through_threshold;
    // --------------------------------------------------
    // Define Payload
    //
    // Icky part where we decide which signals form the
    // payload to the FIFO with generate blocks.
    // --------------------------------------------------
    generate
        if (EMPTY_WIDTH > 0) begin : gen_blk1
            assign in_packet_signals = {in_startofpacket, in_endofpacket, in_empty};
            assign {out_startofpacket, out_endofpacket, out_empty} = out_packet_signals;
        end 
        else begin : gen_blk1_else
            assign out_empty = in_error;
            assign in_packet_signals = {in_startofpacket, in_endofpacket};
            assign {out_startofpacket, out_endofpacket} = out_packet_signals;
        end
    endgenerate
    generate
        if (USE_PACKETS) begin : gen_blk2
            if (ERROR_WIDTH > 0) begin : gen_blk3
                if (CHANNEL_WIDTH > 0) begin : gen_blk4
                    assign in_payload = {in_packet_signals, in_data, in_error, in_channel};
                    assign {out_packet_signals, out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk4_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data, in_error};
                    assign {out_packet_signals, out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk3_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk5
                    assign in_payload = {in_packet_signals, in_data, in_channel};
                    assign {out_packet_signals, out_data, out_channel} = out_payload;
                end
                else begin : gen_blk5_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_packet_signals, in_data};
                    assign {out_packet_signals, out_data} = out_payload;
                end
            end
        end
        else begin : gen_blk2_else
            assign out_packet_signals = 0;
            if (ERROR_WIDTH > 0) begin : gen_blk6
                if (CHANNEL_WIDTH > 0) begin : gen_blk7
                    assign in_payload = {in_data, in_error, in_channel};
                    assign {out_data, out_error, out_channel} = out_payload;
                end
                else begin : gen_blk7_else
                    assign out_channel = in_channel;
                    assign in_payload = {in_data, in_error};
                    assign {out_data, out_error} = out_payload;
                end
            end
            else begin : gen_blk6_else
                assign out_error = in_error;
                if (CHANNEL_WIDTH > 0) begin : gen_blk8
                    assign in_payload = {in_data, in_channel};
                    assign {out_data, out_channel} = out_payload;
                end
                else begin : gen_blk8_else
                    assign out_channel = in_channel;
                    assign in_payload = in_data;
                    assign out_data = out_payload;
                end
            end
        end
    endgenerate
    // --------------------------------------------------
    // Memory-based FIFO storage
    //
    // To allow a ready latency of 0, the read index is 
    // obtained from the next read pointer and memory 
    // outputs are unregistered.
    //
    // If the empty latency is 1, we infer bypass logic
    // around the memory so writes propagate to the
    // outputs on the next cycle.
    //
    // Do not change the way this is coded: Quartus needs
    // a perfect match to the template, and any attempt to 
    // refactor the two always blocks into one will break
    // memory inference.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin  : gen_blk9
        if (EMPTY_LATENCY == 1) begin : gen_blk10
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] = in_payload;
                internal_out_payload = mem[mem_rd_ptr];
            end
        end else begin : gen_blk10_else
            always @(posedge clk) begin
                if (in_valid && in_ready)
                    mem[wr_ptr] <= in_payload;
                internal_out_payload <= mem[mem_rd_ptr];
            end
        end
        assign mem_rd_ptr = next_rd_ptr;
    
    end else begin : gen_blk9_else
    // --------------------------------------------------
    // Register-based FIFO storage
    //
    // Uses a shift register as the storage element. Each
    // shift register slot has a bit which indicates if
    // the slot is occupied (credit to Sam H for the idea).
    // The occupancy bits are contiguous and start from the
    // lsb, so 0000, 0001, 0011, 0111, 1111 for a 4-deep
    // FIFO.
    // 
    // Each slot is enabled during a read or when it
    // is unoccupied. New data is always written to every
    // going-to-be-empty slot (we keep track of which ones
    // are actually useful with the occupancy bits). On a
    // read we shift occupied slots.
    // 
    // The exception is the last slot, which always gets 
    // new data when it is unoccupied.
    // --------------------------------------------------
        for (i = 0; i < DEPTH-1; i = i + 1) begin : shift_reg
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem[i] <= 0;
                end 
                else if (read || !mem_used[i]) begin
                    if (!mem_used[i+1])
                        mem[i] <= in_payload;
                    else
                        mem[i] <= mem[i+1];
                end
            end
        end
        always @(posedge clk, posedge reset) begin
            if (reset) begin
                mem[DEPTH-1] <= 0;
            end 
            else begin
                if (DEPTH == 1) begin
                    if (write)
                        mem[DEPTH-1] <= in_payload;
                end
                else if (!mem_used[DEPTH-1])
                    mem[DEPTH-1] <= in_payload;    
            end
        end
    end
    endgenerate
    assign read  = internal_out_ready && internal_out_valid  && ok_to_forward;
    assign write = in_ready && in_valid;
    // --------------------------------------------------
    // Pointer Management
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk11
        assign incremented_wr_ptr = wr_ptr + 1'b1;
        assign incremented_rd_ptr = rd_ptr + 1'b1;
        assign next_wr_ptr =  drop_on_error ? curr_sop_ptr : write ?  incremented_wr_ptr : wr_ptr;
        assign next_rd_ptr = (read) ? incremented_rd_ptr : rd_ptr;
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                wr_ptr <= 0;
                rd_ptr <= 0;
            end
            else begin
                wr_ptr <= next_wr_ptr;
                rd_ptr <= next_rd_ptr;
            end
        end
    end else begin : gen_blk11_else
    // --------------------------------------------------
    // Shift Register Occupancy Bits
    //
    // Consider a 4-deep FIFO with 2 entries: 0011
    // On a read and write, do not modify the bits.
    // On a write, left-shift the bits to get 0111.
    // On a read, right-shift the bits to get 0001.
    //
    // Also, on a write we set bit0 (the head), while
    // clearing the tail on a read.
    // --------------------------------------------------
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                mem_used[0] <= 0;
            end 
            else begin
                if (write ^ read) begin
                    if (write)
                        mem_used[0] <= 1;
                    else if (read) begin
                        if (DEPTH > 1)
                            mem_used[0] <= mem_used[1];
                        else
                            mem_used[0] <= 0;
                    end    
                end
            end
        end
        if (DEPTH > 1) begin : gen_blk12
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    mem_used[DEPTH-1] <= 0;
                end
                else begin 
                    if (write ^ read) begin            
                        mem_used[DEPTH-1] <= 0;
                        if (write)
                            mem_used[DEPTH-1] <= mem_used[DEPTH-2];
                    end
                end
            end
          end
     
        for (i = 1; i < DEPTH-1; i = i + 1) begin : storage_logic
            always @(posedge clk, posedge reset) begin
                if (reset) begin
                    mem_used[i] <= 0;
                end 
                else begin
                    if (write ^ read) begin
                        if (write)
                            mem_used[i] <= mem_used[i-1];
                        else if (read)
                            mem_used[i] <= mem_used[i+1];     
                    end
                end
            end
        end
     
    end
    endgenerate
    // --------------------------------------------------
    // Memory FIFO Status Management
    //
    // Generates the full and empty signals from the
    // pointers. The FIFO is full when the next write 
    // pointer will be equal to the read pointer after
    // a write. Reading from a FIFO clears full.
    //
    // The FIFO is empty when the next read pointer will
    // be equal to the write pointer after a read. Writing
    // to a FIFO clears empty.
    //
    // A simultaneous read and write must not change any of 
    // the empty or full flags unless there is a drop on error event.
    // --------------------------------------------------
    generate if (USE_MEMORY_BLOCKS == 1) begin : gen_blk13
        always @* begin
            next_full = full;
            next_empty = empty;
     
            if (read && !write) begin
                next_full = 1'b0;
     
                if (incremented_rd_ptr == wr_ptr)
                    next_empty = 1'b1;
            end
            
            if (write && !read) begin
                if (!drop_on_error)
                  next_empty = 1'b0;
                else if (curr_sop_ptr == rd_ptr)   // drop on error and only 1 pkt in fifo
                  next_empty = 1'b1;
     
                if (incremented_wr_ptr == rd_ptr && !drop_on_error)
                    next_full = 1'b1;
            end
            if (write && read && drop_on_error) begin
                if (curr_sop_ptr == next_rd_ptr)
                  next_empty = 1'b1;
            end
        end
     
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                empty <= 1;
                full  <= 0;
            end
            else begin 
                empty <= next_empty;
                full  <= next_full;
            end
        end
    end else begin : gen_blk13_else
    // --------------------------------------------------
    // Register FIFO Status Management
    //
    // Full when the tail occupancy bit is 1. Empty when
    // the head occupancy bit is 0.
    // --------------------------------------------------
        always @* begin
            full  = mem_used[DEPTH-1];
            empty = !mem_used[0];
            // ------------------------------------------
            // For a single slot FIFO, reading clears the
            // full status immediately.
            // ------------------------------------------
            if (DEPTH == 1)
                full = mem_used[0] && !read;
            internal_out_payload = mem[0];
            // ------------------------------------------
            // Writes clear empty immediately for lookahead modes.
            // Note that we use in_valid instead of write to avoid
            // combinational loops (in lookahead mode, qualifying
            // with in_ready is meaningless).
            //
            // In a 1-deep FIFO, a possible combinational loop runs
            // from write -> out_valid -> out_ready -> write
            // ------------------------------------------
            if (EMPTY_LATENCY == 0) begin
                empty = !mem_used[0] && !in_valid;
                if (!mem_used[0] && in_valid)
                    internal_out_payload = in_payload;
            end
        end
    end
    endgenerate
    // --------------------------------------------------
    // Avalon-ST Signals
    //
    // The in_ready signal is straightforward. 
    //
    // To match memory latency when empty latency > 1, 
    // out_valid assertions must be delayed by one clock
    // cycle.
    //
    // Note: out_valid deassertions must not be delayed or 
    // the FIFO will underflow.
    // --------------------------------------------------
    assign in_ready = !full;
    assign internal_out_ready = out_ready || !out_valid;
    generate if (EMPTY_LATENCY > 1) begin : gen_blk14
        always @(posedge clk or posedge reset) begin
            if (reset)
                internal_out_valid <= 0;
            else begin
                internal_out_valid <= !empty & ok_to_forward & ~drop_on_error;
                if (read) begin
                    if (incremented_rd_ptr == wr_ptr)
                        internal_out_valid <= 1'b0;
                end
            end
        end
    end else begin : gen_blk14_else
        always @* begin
            internal_out_valid = !empty & ok_to_forward;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Single Output Pipeline Stage
    //
    // This output pipeline stage is enabled if the FIFO's 
    // empty latency is set to 3 (default). It is disabled
    // for all other allowed latencies.
    //
    // Reason: The memory outputs are unregistered, so we have to
    // register the output or fmax will drop if combinatorial
    // logic is present on the output datapath.
    // 
    // Q: The Avalon-ST spec says that I have to register my outputs
    //    But isn't the memory counted as a register?
    // A: The path from the address lookup to the memory output is
    //    slow. Registering the memory outputs is a good idea. 
    //
    // The registers get packed into the memory by the fitter
    // which means minimal resources are consumed (the result
    // is a altsyncram with registered outputs, available on 
    // all modern Altera devices). 
    //
    // This output stage acts as an extra slot in the FIFO, 
    // and complicates the fill level.
    // --------------------------------------------------
    generate if (EMPTY_LATENCY == 3) begin : gen_blk15
        always @(posedge clk or posedge reset) begin
            if (reset) begin
                out_valid   <= 0;
                out_payload <= 0;
            end
            else begin
                if (internal_out_ready) begin
                    out_valid   <= internal_out_valid & ok_to_forward;
                    out_payload <= internal_out_payload;
                end
            end
        end
    end
    else begin : gen_blk15_else
        always @* begin
            out_valid   = internal_out_valid;
            out_payload = internal_out_payload;
        end
    end
    endgenerate
    // --------------------------------------------------
    // Fill Level
    //
    // The fill level is calculated from the next write
    // and read pointers to avoid unnecessary latency
    // and logic.
    //
    // However, if the store-and-forward mode of the FIFO
    // is enabled, the fill level is an up-down counter
    // for fmax optimization reasons.
    //
    // If the output pipeline is enabled, the fill level 
    // must account for it, or we'll always be off by one.
    // This may, or may not be important depending on the
    // application.
    //
    // For now, we'll always calculate the exact fill level
    // at the cost of an extra adder when the output stage
    // is enabled.
    // --------------------------------------------------
    generate if (USE_FILL_LEVEL) begin : gen_blk16
        wire [31:0] depth32;
        assign depth32 = DEPTH;
        if (USE_STORE_FORWARD) begin
            reg [ADDR_WIDTH : 0] curr_packet_len_less_one;
            
            // --------------------------------------------------
            // We only drop on endofpacket. As long as we don't add to the fill
            // level on the dropped endofpacket cycle, we can simply subtract
            // (packet length - 1) from the fill level for dropped packets.
            // --------------------------------------------------
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    curr_packet_len_less_one <= 0;
                end else begin
                    if (write) begin
                        curr_packet_len_less_one <= curr_packet_len_less_one + 1'b1;
                        if (in_endofpacket)
                            curr_packet_len_less_one <= 0;
                    end
                end
            end
            always @(posedge clk or posedge reset) begin
                if (reset) begin
                    fifo_fill_level <= 0;
                end else if (drop_on_error) begin
                    fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one;
                    if (read)
                        fifo_fill_level <= fifo_fill_level - curr_packet_len_less_one - 1'b1;
                end else if (write && !read) begin
                    fifo_fill_level <= fifo_fill_level + 1'b1;
                end else if (read && !write) begin
                    fifo_fill_level <= fifo_fill_level - 1'b1;
                end
            end
        end else begin
            always @(posedge clk or posedge reset) begin
                if (reset) 
                    fifo_fill_level <= 0;
                else if (next_full & !drop_on_error)
                    fifo_fill_level <= depth32[ADDR_WIDTH:0];
                else begin
                    fifo_fill_level[ADDR_WIDTH]     <= 1'b0;
                    fifo_fill_level[ADDR_WIDTH-1 : 0] <= next_wr_ptr - next_rd_ptr;
                end
            end
        end
        always @* begin
            fill_level = fifo_fill_level;
            if (EMPTY_LATENCY == 3)
                fill_level = fifo_fill_level + {{ADDR_WIDTH{1'b0}}, out_valid};
        end
    end
    else begin : gen_blk16_else
        always @* begin
            fill_level = 0;
        end  
    end
    endgenerate
    generate if (USE_ALMOST_FULL_IF) begin : gen_blk17
      assign almost_full_data = (fill_level >= almost_full_threshold);
    end
    else
      assign almost_full_data = 0;
    endgenerate
    generate if (USE_ALMOST_EMPTY_IF) begin : gen_blk18
      assign almost_empty_data = (fill_level <= almost_empty_threshold);
    end
    else
      assign almost_empty_data = 0;
    endgenerate
    // --------------------------------------------------
    // Avalon-MM Status & Control Connection Point
    //
    // Register map:
    //
    // | Addr   | RW |     31 - 0      |
    // |  0     | R  |   Fill level    |
    //
    // The registering of this connection point means
    // that there is a cycle of latency between 
    // reads/writes and the updating of the fill level.
    // --------------------------------------------------
    generate if (USE_STORE_FORWARD) begin : gen_blk19
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              cut_through_threshold  <= 0;
              drop_on_error_en       <= 0;
              csr_readdata           <= 0;
              pkt_mode               <= 1'b1;
          end
          else begin
              if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 5)
                    csr_readdata <= {31'b0, drop_on_error_en};
                else if (csr_address == 4)
                    csr_readdata <= {8'b0, cut_through_threshold};
                else if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b101)
                   drop_on_error_en       <= csr_writedata[0];
               else if(csr_address == 3'b100) begin
                   cut_through_threshold  <= csr_writedata[23:0];
                   pkt_mode <= (csr_writedata[23:0] == 0);
               end
               else if(csr_address == 3'b011)
                    almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end     
          end
      end
    end
    else if (USE_ALMOST_FULL_IF || USE_ALMOST_EMPTY_IF) begin : gen_blk19_else1
    assign max_fifo_size = FIFO_DEPTH - 1;
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              almost_full_threshold  <= max_fifo_size[23 : 0];
              almost_empty_threshold <= 0;
              csr_readdata           <= 0;
          end
          else begin
             if (csr_read) begin
                csr_readdata <= 32'b0;
                if (csr_address == 3)
                    csr_readdata <= {8'b0, almost_empty_threshold};
                else if (csr_address == 2)
                    csr_readdata <= {8'b0, almost_full_threshold};
                else if (csr_address == 0)
                    csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
             end
             else if (csr_write) begin
               if(csr_address == 3'b011)
                   almost_empty_threshold <= csr_writedata[23:0];
               else if(csr_address == 3'b010)
                  almost_full_threshold  <= csr_writedata[23:0];
             end       
          end
      end
    end
    else begin : gen_blk19_else2
      always @(posedge clk or posedge reset) begin
          if (reset) begin
              csr_readdata <= 0;
          end
          else if (csr_read) begin
              csr_readdata <= 0;
              if (csr_address == 0) 
                  csr_readdata <= {{(31 - ADDR_WIDTH){1'b0}}, fill_level};
          end
      end
    end
    endgenerate
    // --------------------------------------------------
    // Store and forward logic
    // --------------------------------------------------
    // if the fifo gets full before the entire packet or the
    // cut-threshold condition is met then start sending out
    // data in order to avoid dead-lock situation
    generate if (USE_STORE_FORWARD) begin : gen_blk20
      assign wait_for_threshold   = (fifo_fill_level_lt_cut_through_threshold) & wait_for_pkt ;
      assign wait_for_pkt         = pkt_cnt_eq_zero  | (pkt_cnt_eq_one  & out_pkt_leave);
      assign ok_to_forward        = (pkt_mode ? (~wait_for_pkt | ~pkt_has_started) : 
                                     ~wait_for_threshold) | fifo_too_small_r;
      assign in_pkt_eop_arrive    = in_valid & in_ready & in_endofpacket;
      assign in_pkt_start         = in_valid & in_ready & in_startofpacket;
      assign in_pkt_error         = in_valid & in_ready & |in_error;
      assign out_pkt_sop_leave    = out_valid & out_ready & out_startofpacket;
      assign out_pkt_leave        = out_valid & out_ready & out_endofpacket;
      assign fifo_too_small       = (pkt_mode ? wait_for_pkt : wait_for_threshold) & full & out_ready;
      // count packets coming and going into the fifo
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          pkt_cnt           <= 0;
          pkt_has_started   <= 0;
          sop_has_left_fifo <= 0;
          fifo_too_small_r  <= 0;
          pkt_cnt_eq_zero   <= 1'b1;
          pkt_cnt_eq_one    <= 1'b0;
          fifo_fill_level_lt_cut_through_threshold <= 1'b1;
        end
        else begin
          fifo_fill_level_lt_cut_through_threshold <= fifo_fill_level < cut_through_threshold;
          fifo_too_small_r <= fifo_too_small;
          if( in_pkt_eop_arrive )
            sop_has_left_fifo <= 1'b0;
          else if (out_pkt_sop_leave & pkt_cnt_eq_zero )
            sop_has_left_fifo <= 1'b1;
          if (in_pkt_eop_arrive & ~out_pkt_leave & ~drop_on_error ) begin
            pkt_cnt <= pkt_cnt + 1'b1;
            pkt_cnt_eq_zero <= 0;
            if (pkt_cnt == 0)
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          else if((~in_pkt_eop_arrive | drop_on_error) & out_pkt_leave) begin
            pkt_cnt <= pkt_cnt - 1'b1;
            if (pkt_cnt == 1) 
              pkt_cnt_eq_zero <= 1'b1;
            else
              pkt_cnt_eq_zero <= 1'b0;
            if (pkt_cnt == 2) 
              pkt_cnt_eq_one <= 1'b1;
            else
              pkt_cnt_eq_one <= 1'b0;
          end
          if (in_pkt_start)
            pkt_has_started <= 1'b1;
          else if (in_pkt_eop_arrive)
            pkt_has_started <= 1'b0;
        end
      end
      // drop on error logic
      always @(posedge clk or posedge reset) begin
        if (reset) begin
          sop_ptr <= 0;
          error_in_pkt <= 0;
        end
        else begin
          // save the location of the SOP
          if ( in_pkt_start ) 
            sop_ptr <= wr_ptr;
          // remember if error in pkt
          // log error only if packet has already started
          if (in_pkt_eop_arrive)
            error_in_pkt <= 1'b0;
          else if ( in_pkt_error & (pkt_has_started | in_pkt_start))
            error_in_pkt <= 1'b1;
        end
      end
      assign drop_on_error = drop_on_error_en & (error_in_pkt | in_pkt_error) & in_pkt_eop_arrive & 
                            ~sop_has_left_fifo & ~(out_pkt_sop_leave & pkt_cnt_eq_zero);
      assign curr_sop_ptr = (write && in_startofpacket && in_endofpacket) ? wr_ptr : sop_ptr;
    end
    else begin : gen_blk20_else
      assign ok_to_forward = 1'b1;
      assign drop_on_error = 1'b0;
      if (ADDR_WIDTH <= 1)
        assign curr_sop_ptr = 1'b0;
      else
        assign curr_sop_ptr = {ADDR_WIDTH - 1 { 1'b0 }};
    end
    endgenerate
    // --------------------------------------------------
    // Calculates the log2ceil of the input value
    // --------------------------------------------------
    function integer log2ceil;
        input integer val;
        reg[31:0] i;
        begin
            i = 1;
            log2ceil = 0;
            while (i < val) begin
                log2ceil = log2ceil + 1;
                i = i[30:0] << 1;
            end
        end
    endfunction
endmodule | 
| 
	module axi_protocol_converter_v2_1_r_axi3_conv #
  (
   parameter C_FAMILY                            = "none",
   parameter integer C_AXI_ID_WIDTH              = 1,
   parameter integer C_AXI_ADDR_WIDTH            = 32,
   parameter integer C_AXI_DATA_WIDTH            = 32,
   parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
   parameter integer C_AXI_RUSER_WIDTH           = 1,
   parameter integer C_SUPPORT_SPLITTING              = 1,
                       // Implement transaction splitting logic.
                       // Disabled whan all connected masters are AXI3 and have same or narrower data width.
   parameter integer C_SUPPORT_BURSTS                 = 1
                       // Disabled when all connected masters are AxiLite,
                       //   allowing logic to be simplified.
   )
  (
   // System Signals
   input wire ACLK,
   input wire ARESET,
   // Command Interface
   input  wire                              cmd_valid,
   input  wire                              cmd_split,
   output wire                              cmd_ready,
   
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]    S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]  S_AXI_RDATA,
   output wire [2-1:0]                 S_AXI_RRESP,
   output wire                         S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
   output wire                         S_AXI_RVALID,
   input  wire                         S_AXI_RREADY,
   
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]    M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]  M_AXI_RDATA,
   input  wire [2-1:0]                 M_AXI_RRESP,
   input  wire                         M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
   input  wire                         M_AXI_RVALID,
   output wire                         M_AXI_RREADY
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Variables for generating parameter controlled instances.
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  // Constants for packing levels.
  localparam [2-1:0] C_RESP_OKAY        = 2'b00;
  localparam [2-1:0] C_RESP_EXOKAY      = 2'b01;
  localparam [2-1:0] C_RESP_SLVERROR    = 2'b10;
  localparam [2-1:0] C_RESP_DECERR      = 2'b11;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Throttling help signals.
  wire                            cmd_ready_i;
  wire                            pop_si_data;
  wire                            si_stalling;
  
  // Internal MI-side control signals.
  wire                            M_AXI_RREADY_I;
   
  // Internal signals for SI-side.
  wire [C_AXI_ID_WIDTH-1:0]       S_AXI_RID_I;
  wire [C_AXI_DATA_WIDTH-1:0]     S_AXI_RDATA_I;
  wire [2-1:0]                    S_AXI_RRESP_I;
  wire                            S_AXI_RLAST_I;
  wire [C_AXI_RUSER_WIDTH-1:0]    S_AXI_RUSER_I;
  wire                            S_AXI_RVALID_I;
  wire                            S_AXI_RREADY_I;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle interface handshaking:
  //
  // Forward data from MI-Side to SI-Side while a command is available. When
  // the transaction has completed the command is popped from the Command FIFO.
  // 
  // 
  /////////////////////////////////////////////////////////////////////////////
  
  // Pop word from SI-side.
  assign M_AXI_RREADY_I = ~si_stalling & cmd_valid;
  assign M_AXI_RREADY   = M_AXI_RREADY_I;
  
  // Indicate when there is data available @ SI-side.
  assign S_AXI_RVALID_I = M_AXI_RVALID & cmd_valid;
  
  // Get SI-side data.
  assign pop_si_data    = S_AXI_RVALID_I & S_AXI_RREADY_I;
  
  // Signal that the command is done (so that it can be poped from command queue).
  assign cmd_ready_i    = cmd_valid & pop_si_data & M_AXI_RLAST;
  assign cmd_ready      = cmd_ready_i;
  
  // Detect when MI-side is stalling.
  assign si_stalling    = S_AXI_RVALID_I & ~S_AXI_RREADY_I;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Simple AXI signal forwarding:
  // 
  // USER, ID, DATA and RRESP passes through untouched.
  // 
  // LAST has to be filtered to remove any intermediate LAST (due to split 
  // trasactions). LAST is only removed for the first parts of a split 
  // transaction. When splitting is unsupported is the LAST filtering completely
  // completely removed.
  // 
  /////////////////////////////////////////////////////////////////////////////
  
  // Calculate last, i.e. mask from split transactions.
  assign S_AXI_RLAST_I  = M_AXI_RLAST & 
                          ( ~cmd_split | ( C_SUPPORT_SPLITTING == 0 ) );
  
  // Data is passed through.
  assign S_AXI_RID_I    = M_AXI_RID;
  assign S_AXI_RUSER_I  = M_AXI_RUSER;
  assign S_AXI_RDATA_I  = M_AXI_RDATA;
  assign S_AXI_RRESP_I  = M_AXI_RRESP;
      
  
  /////////////////////////////////////////////////////////////////////////////
  // SI-side output handling
  // 
  /////////////////////////////////////////////////////////////////////////////
// TODO: registered?  
  assign S_AXI_RREADY_I = S_AXI_RREADY;
  assign S_AXI_RVALID   = S_AXI_RVALID_I;
  assign S_AXI_RID      = S_AXI_RID_I;
  assign S_AXI_RDATA    = S_AXI_RDATA_I;
  assign S_AXI_RRESP    = S_AXI_RRESP_I;
  assign S_AXI_RLAST    = S_AXI_RLAST_I;
  assign S_AXI_RUSER    = S_AXI_RUSER_I;
  
  
endmodule | 
| 
	module axi_protocol_converter_v2_1_r_axi3_conv #
  (
   parameter C_FAMILY                            = "none",
   parameter integer C_AXI_ID_WIDTH              = 1,
   parameter integer C_AXI_ADDR_WIDTH            = 32,
   parameter integer C_AXI_DATA_WIDTH            = 32,
   parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
   parameter integer C_AXI_RUSER_WIDTH           = 1,
   parameter integer C_SUPPORT_SPLITTING              = 1,
                       // Implement transaction splitting logic.
                       // Disabled whan all connected masters are AXI3 and have same or narrower data width.
   parameter integer C_SUPPORT_BURSTS                 = 1
                       // Disabled when all connected masters are AxiLite,
                       //   allowing logic to be simplified.
   )
  (
   // System Signals
   input wire ACLK,
   input wire ARESET,
   // Command Interface
   input  wire                              cmd_valid,
   input  wire                              cmd_split,
   output wire                              cmd_ready,
   
   // Slave Interface Read Data Ports
   output wire [C_AXI_ID_WIDTH-1:0]    S_AXI_RID,
   output wire [C_AXI_DATA_WIDTH-1:0]  S_AXI_RDATA,
   output wire [2-1:0]                 S_AXI_RRESP,
   output wire                         S_AXI_RLAST,
   output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
   output wire                         S_AXI_RVALID,
   input  wire                         S_AXI_RREADY,
   
   // Master Interface Read Data Ports
   input  wire [C_AXI_ID_WIDTH-1:0]    M_AXI_RID,
   input  wire [C_AXI_DATA_WIDTH-1:0]  M_AXI_RDATA,
   input  wire [2-1:0]                 M_AXI_RRESP,
   input  wire                         M_AXI_RLAST,
   input  wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
   input  wire                         M_AXI_RVALID,
   output wire                         M_AXI_RREADY
   );
   
  /////////////////////////////////////////////////////////////////////////////
  // Variables for generating parameter controlled instances.
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Local params
  /////////////////////////////////////////////////////////////////////////////
  
  // Constants for packing levels.
  localparam [2-1:0] C_RESP_OKAY        = 2'b00;
  localparam [2-1:0] C_RESP_EXOKAY      = 2'b01;
  localparam [2-1:0] C_RESP_SLVERROR    = 2'b10;
  localparam [2-1:0] C_RESP_DECERR      = 2'b11;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Functions
  /////////////////////////////////////////////////////////////////////////////
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Internal signals
  /////////////////////////////////////////////////////////////////////////////
  
  // Throttling help signals.
  wire                            cmd_ready_i;
  wire                            pop_si_data;
  wire                            si_stalling;
  
  // Internal MI-side control signals.
  wire                            M_AXI_RREADY_I;
   
  // Internal signals for SI-side.
  wire [C_AXI_ID_WIDTH-1:0]       S_AXI_RID_I;
  wire [C_AXI_DATA_WIDTH-1:0]     S_AXI_RDATA_I;
  wire [2-1:0]                    S_AXI_RRESP_I;
  wire                            S_AXI_RLAST_I;
  wire [C_AXI_RUSER_WIDTH-1:0]    S_AXI_RUSER_I;
  wire                            S_AXI_RVALID_I;
  wire                            S_AXI_RREADY_I;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Handle interface handshaking:
  //
  // Forward data from MI-Side to SI-Side while a command is available. When
  // the transaction has completed the command is popped from the Command FIFO.
  // 
  // 
  /////////////////////////////////////////////////////////////////////////////
  
  // Pop word from SI-side.
  assign M_AXI_RREADY_I = ~si_stalling & cmd_valid;
  assign M_AXI_RREADY   = M_AXI_RREADY_I;
  
  // Indicate when there is data available @ SI-side.
  assign S_AXI_RVALID_I = M_AXI_RVALID & cmd_valid;
  
  // Get SI-side data.
  assign pop_si_data    = S_AXI_RVALID_I & S_AXI_RREADY_I;
  
  // Signal that the command is done (so that it can be poped from command queue).
  assign cmd_ready_i    = cmd_valid & pop_si_data & M_AXI_RLAST;
  assign cmd_ready      = cmd_ready_i;
  
  // Detect when MI-side is stalling.
  assign si_stalling    = S_AXI_RVALID_I & ~S_AXI_RREADY_I;
  
  
  /////////////////////////////////////////////////////////////////////////////
  // Simple AXI signal forwarding:
  // 
  // USER, ID, DATA and RRESP passes through untouched.
  // 
  // LAST has to be filtered to remove any intermediate LAST (due to split 
  // trasactions). LAST is only removed for the first parts of a split 
  // transaction. When splitting is unsupported is the LAST filtering completely
  // completely removed.
  // 
  /////////////////////////////////////////////////////////////////////////////
  
  // Calculate last, i.e. mask from split transactions.
  assign S_AXI_RLAST_I  = M_AXI_RLAST & 
                          ( ~cmd_split | ( C_SUPPORT_SPLITTING == 0 ) );
  
  // Data is passed through.
  assign S_AXI_RID_I    = M_AXI_RID;
  assign S_AXI_RUSER_I  = M_AXI_RUSER;
  assign S_AXI_RDATA_I  = M_AXI_RDATA;
  assign S_AXI_RRESP_I  = M_AXI_RRESP;
      
  
  /////////////////////////////////////////////////////////////////////////////
  // SI-side output handling
  // 
  /////////////////////////////////////////////////////////////////////////////
// TODO: registered?  
  assign S_AXI_RREADY_I = S_AXI_RREADY;
  assign S_AXI_RVALID   = S_AXI_RVALID_I;
  assign S_AXI_RID      = S_AXI_RID_I;
  assign S_AXI_RDATA    = S_AXI_RDATA_I;
  assign S_AXI_RRESP    = S_AXI_RRESP_I;
  assign S_AXI_RLAST    = S_AXI_RLAST_I;
  assign S_AXI_RUSER    = S_AXI_RUSER_I;
  
  
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
| 
	module e1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]};
endmodule | 
| 
	module ch (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = z ^ (x & (y ^ z));
endmodule | 
| 
	module maj (x, y, z, o);
	input [31:0] x, y, z;
	output [31:0] o;
	assign o = (x & y) | (z & (x | y));
endmodule | 
| 
	module s0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:29] = x[6:4] ^ x[17:15];
	assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3];
endmodule | 
| 
	module s1 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y[31:22] = x[16:7] ^ x[18:9];
	assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10];
endmodule | 
| 
	module e0 (x, y);
	input [31:0] x;
	output [31:0] y;
	assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]};
endmodule | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.