File size: 5,417 Bytes
a525e52
 
 
 
f359f34
a525e52
 
 
 
40c00f1
 
 
 
 
a525e52
fe4ca5b
40c00f1
 
a525e52
e624480
 
 
 
a525e52
 
 
 
 
 
 
 
94f02fd
 
fc1c011
 
94f02fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a525e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40c00f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
language:
- en
tags:
- reinforcement-learning
- neural-decoding
- motor-imagery
- human-computer-interaction
- neuralink
- bci
- fps
- humancomputerinteraction
- motorimagery
- neuraldecoding
task_categories:
- reinforcement-learning
- time-series-forecasting
- tabular-classification
task_ids:
- natural-language-inference
- entity-linking-classification
- acceptability-classification
- intent-classification
size_categories:
- 10K<n<100K
---

# Dataset Card for BCI-FPS MOTOR_IMAGERY Dataset

## Dataset Description

*UNDER DEVELOPMENT*

*made using the /generator/ attached for testing*

Use Cases: BCI Intent Data Study and Testing (conceptual early design)

Training machine learning models for neural signal decoding without needing large real neural datasets, addressing data scarcity and privacy issues.

Augmenting real-world BCI data with synthetic samples to improve model robustness and diversity, as in GAN-based approaches.

Testing and calibrating BCI systems for motor imagery tasks like prosthetic control before human trials.

Simulating neural responses in assistive technologies for disabled individuals, enabling faster iteration in labs like Neuralink.

Developing predictive models for intent recognition in human-AI interactions and rehabilitative BCIs.

Enhancing clinical research datasets for disease risk assessment and patient outcome prediction in neuroengineering.

Validating algorithms in frontier labs (e.g., Neuralink, Paradromics) for high-data-rate implants by generating idealized signals.

This dataset contains high-bandwidth neural training data collected from BCI-FPS, a specialized training platform for brain-computer interface research.

### Dataset Summary

- **Training Mode**: MOTOR IMAGERY
- **Session ID**: bci_fps_motor_imagery_1767171179245
- **Duration**: 52 seconds
- **Sampling Rate**: 1000 Hz
- **Neural Channels**: 32
- **Data Points**: 11,314

### Supported Tasks

- **Motor Imagery Training for prosthetic control**
- **Neural Decoding**: Training models to decode user intent from neural signals
- **BCI Calibration**: Providing ground truth data for BCI system calibration
- **Disability Research**: Supporting development of assistive technologies

### Languages

English (interface and documentation)

## Dataset Structure

### Data Instances

```json
{
  "timestamp": 1767171127035,
  "session_time": 2,
  "channels": {
    "channel_0": 0.7145493839481488,
    "channel_1": 0.6894168445867142,
    "channel_2": 0.08142761930267149,
    "channel_3": -0.4847495027079371,
    "channel_4": -0.7151022782142631,
    "channel_5": -0.30725177077599913,
    "channel_6": 0.41521139153211245,
    "channel_7": 0.8975965762479154,
    "channel_8": 0.40940126876082966,
    "channel_9": -0.4091680578228324,
    "channel_10": -0.8292701881852992,
    "channel_11": -0.5904045145284711,
    "channel_12": 0.12196528544955941,
    "channel_13": 0.7040845591149026,
    "channel_14": 0.5296790688037042,
    "channel_15": 0.018181536760527098,
    "channel_16": -0.6973668262179662,
    "channel_17": -0.7437997196398959,
    "channel_18": -0.10714886215673841,
    "channel_19": 0.6246891444747351,
    "channel_20": 0.8560240877317689,
    "channel_21": 0.155749695078711,
    "channel_22": -0.4754514086663171,
    "channel_23": -0.7632646743624881,
    "channel_24": -0.42658424045199833,
    "channel_25": 0.47380668620054267,
    "channel_26": 0.7558851981047924,
    "channel_27": 0.5145527444334146,
    "channel_28": -0.22899647502709344,
    "channel_29": -0.8498710316208474,
    "channel_30": -0.5816021940073672,
    "channel_31": 0.2096020563849897
  },
  "intent_context": {
    "mouse_movement": [
      0,
      0
    ],
    "keyboard_state": {
      "mouse": false
    },
    "camera_rotation": [
      0,
      0,
      0
    ],
    "active_targets": 0
  }
}
```

### Data Fields

See `metadata.json` for complete schema documentation.

## Dataset Creation

### Source Data

- **Platform**: Web-based BCI-FPS Training Environment
- **Sampling Rate**: 1000 Hz
- **Collection Method**: Real-time telemetry during BCI training tasks
- **Neural Simulation**: Synthetic neural data representing ideal BCI signals

### Annotations

- **Annotation process**: Automatic intent labeling during gameplay
- **Annotation types**: Motor imagery, visual stimuli, handwriting intent
- **Who annotated**: System automatically labels based on game state

### Personal and Sensitive Information

No personal information is collected. All data is synthetic/anonymous.

## Considerations for Using the Data

### Social Impact

This dataset enables research in:
- Neuralink-style brain-computer interfaces
- Assistive technologies for disabled individuals
- Human-AI interaction systems
- Neural decoding algorithms

### Discussion of Biases

Synthetic neural data may not perfectly represent biological signals. Results should be validated with real neural recordings.

### Other Known Limitations

- Simulated neural signals
- Idealized game environment
- Limited to specific training tasks

## Additional Information

### Dataset Curators

BCI-FPS Research Team

### Licensing Information

MIT License

### Citation Information

```bibtex
@misc{bci_fps_motor_imagery_2024,
  title={BCI-FPS motor_imagery Training Dataset},
  author={Neuralink Research},
  year={2024},
  note={High-frequency intent decoding data for brain-computer interface development}
}
```