File size: 5,417 Bytes
a525e52 f359f34 a525e52 40c00f1 a525e52 fe4ca5b 40c00f1 a525e52 e624480 a525e52 94f02fd fc1c011 94f02fd a525e52 40c00f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
language:
- en
tags:
- reinforcement-learning
- neural-decoding
- motor-imagery
- human-computer-interaction
- neuralink
- bci
- fps
- humancomputerinteraction
- motorimagery
- neuraldecoding
task_categories:
- reinforcement-learning
- time-series-forecasting
- tabular-classification
task_ids:
- natural-language-inference
- entity-linking-classification
- acceptability-classification
- intent-classification
size_categories:
- 10K<n<100K
---
# Dataset Card for BCI-FPS MOTOR_IMAGERY Dataset
## Dataset Description
*UNDER DEVELOPMENT*
*made using the /generator/ attached for testing*
Use Cases: BCI Intent Data Study and Testing (conceptual early design)
Training machine learning models for neural signal decoding without needing large real neural datasets, addressing data scarcity and privacy issues.
Augmenting real-world BCI data with synthetic samples to improve model robustness and diversity, as in GAN-based approaches.
Testing and calibrating BCI systems for motor imagery tasks like prosthetic control before human trials.
Simulating neural responses in assistive technologies for disabled individuals, enabling faster iteration in labs like Neuralink.
Developing predictive models for intent recognition in human-AI interactions and rehabilitative BCIs.
Enhancing clinical research datasets for disease risk assessment and patient outcome prediction in neuroengineering.
Validating algorithms in frontier labs (e.g., Neuralink, Paradromics) for high-data-rate implants by generating idealized signals.
This dataset contains high-bandwidth neural training data collected from BCI-FPS, a specialized training platform for brain-computer interface research.
### Dataset Summary
- **Training Mode**: MOTOR IMAGERY
- **Session ID**: bci_fps_motor_imagery_1767171179245
- **Duration**: 52 seconds
- **Sampling Rate**: 1000 Hz
- **Neural Channels**: 32
- **Data Points**: 11,314
### Supported Tasks
- **Motor Imagery Training for prosthetic control**
- **Neural Decoding**: Training models to decode user intent from neural signals
- **BCI Calibration**: Providing ground truth data for BCI system calibration
- **Disability Research**: Supporting development of assistive technologies
### Languages
English (interface and documentation)
## Dataset Structure
### Data Instances
```json
{
"timestamp": 1767171127035,
"session_time": 2,
"channels": {
"channel_0": 0.7145493839481488,
"channel_1": 0.6894168445867142,
"channel_2": 0.08142761930267149,
"channel_3": -0.4847495027079371,
"channel_4": -0.7151022782142631,
"channel_5": -0.30725177077599913,
"channel_6": 0.41521139153211245,
"channel_7": 0.8975965762479154,
"channel_8": 0.40940126876082966,
"channel_9": -0.4091680578228324,
"channel_10": -0.8292701881852992,
"channel_11": -0.5904045145284711,
"channel_12": 0.12196528544955941,
"channel_13": 0.7040845591149026,
"channel_14": 0.5296790688037042,
"channel_15": 0.018181536760527098,
"channel_16": -0.6973668262179662,
"channel_17": -0.7437997196398959,
"channel_18": -0.10714886215673841,
"channel_19": 0.6246891444747351,
"channel_20": 0.8560240877317689,
"channel_21": 0.155749695078711,
"channel_22": -0.4754514086663171,
"channel_23": -0.7632646743624881,
"channel_24": -0.42658424045199833,
"channel_25": 0.47380668620054267,
"channel_26": 0.7558851981047924,
"channel_27": 0.5145527444334146,
"channel_28": -0.22899647502709344,
"channel_29": -0.8498710316208474,
"channel_30": -0.5816021940073672,
"channel_31": 0.2096020563849897
},
"intent_context": {
"mouse_movement": [
0,
0
],
"keyboard_state": {
"mouse": false
},
"camera_rotation": [
0,
0,
0
],
"active_targets": 0
}
}
```
### Data Fields
See `metadata.json` for complete schema documentation.
## Dataset Creation
### Source Data
- **Platform**: Web-based BCI-FPS Training Environment
- **Sampling Rate**: 1000 Hz
- **Collection Method**: Real-time telemetry during BCI training tasks
- **Neural Simulation**: Synthetic neural data representing ideal BCI signals
### Annotations
- **Annotation process**: Automatic intent labeling during gameplay
- **Annotation types**: Motor imagery, visual stimuli, handwriting intent
- **Who annotated**: System automatically labels based on game state
### Personal and Sensitive Information
No personal information is collected. All data is synthetic/anonymous.
## Considerations for Using the Data
### Social Impact
This dataset enables research in:
- Neuralink-style brain-computer interfaces
- Assistive technologies for disabled individuals
- Human-AI interaction systems
- Neural decoding algorithms
### Discussion of Biases
Synthetic neural data may not perfectly represent biological signals. Results should be validated with real neural recordings.
### Other Known Limitations
- Simulated neural signals
- Idealized game environment
- Limited to specific training tasks
## Additional Information
### Dataset Curators
BCI-FPS Research Team
### Licensing Information
MIT License
### Citation Information
```bibtex
@misc{bci_fps_motor_imagery_2024,
title={BCI-FPS motor_imagery Training Dataset},
author={Neuralink Research},
year={2024},
note={High-frequency intent decoding data for brain-computer interface development}
}
``` |