{ "dataset_info": { "name": "BCI-FPS_MOTOR_IMAGERY_Dataset", "description": "High-bandwidth neural training data for BCI research. Mode: motor_imagery", "version": "1.0.0", "license": "MIT", "citation": "@misc{bci_fps_motor_imagery_2024,\n title={BCI-FPS motor_imagery Training Dataset},\n author={Neuralink Research},\n year={2024},\n note={High-frequency intent decoding data for brain-computer interface development}\n}", "data_schema": { "neural_data": { "timestamp": "UNIX timestamp in milliseconds", "session_time": "Time since session start in milliseconds", "channels": "Object mapping channel names to neural signal values", "intent_context": "Contextual information about user intent" }, "intent_stream": { "timestamp": "UNIX timestamp in milliseconds", "mouse": "Mouse position and movement data", "keyboard": "Keyboard state", "camera": "Camera position and rotation", "environment": "Game environment state" }, "handwriting_samples": { "letter": "Letter being traced", "samples": "Array of handwriting samples with position and pressure data" } }, "research_applications": [ "Motor imagery decoding for prosthetic control", "Simultaneous intent decoding for fluid BCI interfaces", "Visual evoked potential (c-VEP) calibration", "Handwriting intent recognition for text entry", "Neural network training for brain-computer interfaces" ] }, "session_info": { "session_id": "bci_fps_motor_imagery_1767171179245", "mode": "motor_imagery", "start_time": "2025-12-31T08:52:07.033Z", "duration_ms": 52212, "sampling_rate_hz": 1000, "neural_channels": 32 }, "huggingface": { "compatible": true, "task_categories": [ "brain-computer-interface", "neural-decoding", "human-computer-interaction" ], "task_ids": [ "motor-imagery", "intent-decoding", "visual-evoked-potentials", "handwriting-recognition" ], "language": [ "en" ], "size_categories": [ "10K