import json import numpy as np from datasets import Dataset, DatasetDict def load_bci_dataset(data_path="."): """Load BCI Grid Movement Intent Dataset""" # Load train data train_data = [] with open(f"{data_path}/data/train-00000-of-00001.jsonl", "r") as f: for line in f: train_data.append(json.loads(line.strip())) # Load test data test_data = [] with open(f"{data_path}/data/test-00000-of-00001.jsonl", "r") as f: for line in f: test_data.append(json.loads(line.strip())) # Create dataset dataset = DatasetDict({ "train": Dataset.from_list(train_data), "test": Dataset.from_list(test_data) }) print(f"Dataset loaded: {len(dataset['train'])} train, {len(dataset['test'])} test samples") return dataset def prepare_for_ml(dataset, target_intent="W"): """Prepare data for machine learning""" # Extract neural features (12 channels) X = np.array([sample["neural_channels"] for sample in dataset]) # Extract specific movement intent if target_intent == "W": y = np.array([sample["movement_intent"][0] for sample in dataset]) elif target_intent == "A": y = np.array([sample["movement_intent"][1] for sample in dataset]) elif target_intent == "S": y = np.array([sample["movement_intent"][2] for sample in dataset]) elif target_intent == "D": y = np.array([sample["movement_intent"][3] for sample in dataset]) else: # Multi-label classification y = np.array([sample["movement_intent"] for sample in dataset]) return X, y # Example usage if __name__ == "__main__": # Load dataset dataset = load_bci_dataset() # Prepare for W intent prediction X_train, y_train = prepare_for_ml(dataset["train"], "W") X_test, y_test = prepare_for_ml(dataset["test"], "W") print(f"Training set: {X_train.shape}, {y_train.shape}") print(f"Test set: {X_test.shape}, {y_test.shape}") # Calculate class distribution print(f"Class distribution (W intent):") print(f" True: {np.sum(y_train == 1)} ({np.mean(y_train == 1)*100:.1f}%)") print(f" False: {np.sum(y_train == 0)} ({np.mean(y_train == 0)*100:.1f}%)")