webxos commited on
Commit
608fa70
·
verified ·
1 Parent(s): f7b8004

Upload 4 files

Browse files
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Chess RL Training Export
2
+
3
+ ## Export Information
4
+ - Export Date: 2026-01-02T22:48:02.105Z
5
+ - Total Training Games: 0
6
+ - Total Moves: 11
7
+ - Training Time: 00:00:12
8
+
9
+ ## Files Included
10
+
11
+ ### 1. training_games.json
12
+ Complete dataset of all chess games played during training. Each game includes:
13
+ - Full PGN notation
14
+ - Move-by-move records
15
+ - Game result and metadata
16
+ - Agent parameters for each game
17
+
18
+ ### 2. training_games.csv
19
+ Same data as JSON but in CSV format for easy import into spreadsheets or databases.
20
+
21
+ ### 3. black_agent_model.json
22
+ Black Agent (Policy Network) configuration and statistics:
23
+ - Neural network architecture
24
+ - Hyperparameters (learning rate, exploration rate, etc.)
25
+ - Training statistics (wins, losses, draws)
26
+ - Model metadata
27
+
28
+ ### 4. green_agent_model.json
29
+ Green Agent (Value Network) configuration and statistics:
30
+ - Neural network architecture
31
+ - Hyperparameters
32
+ - Training statistics
33
+ - Model metadata
34
+
35
+ ### 5. training_statistics.json
36
+ Overall training summary and statistics including:
37
+ - Training duration
38
+ - Win rates for both agents
39
+ - System information
40
+ - Export metadata
41
+
42
+ ## Training System
43
+ Generated by ANN Chess RL Trainer v3.0 - A web-based reinforcement learning system for chess AI development.
44
+
45
+ ## Usage
46
+ These files can be used to:
47
+ - Continue training from this point
48
+ - Analyze the learning progress
49
+ - Import into other machine learning frameworks
50
+ - Share with the research community
51
+
52
+ ## Notes
53
+ - All data is in standard JSON/CSV formats
54
+ - Compatible with Hugging Face datasets
55
+ - Can be compressed with GZIP, ZSTD, BZ2, LZ4, or LZMA for upload
black_agent_model.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "chess_policy_network",
3
+ "color": "black",
4
+ "architecture": {
5
+ "input_size": 896,
6
+ "hidden_layers": [
7
+ 128,
8
+ 64,
9
+ 32
10
+ ],
11
+ "output_size": 1,
12
+ "activation": [
13
+ "relu",
14
+ "relu",
15
+ "relu",
16
+ "tanh"
17
+ ],
18
+ "dropout": 0.2
19
+ },
20
+ "hyperparameters": {
21
+ "learning_rate": 0.001,
22
+ "exploration_rate": 0.3,
23
+ "discount_factor": 0.95
24
+ },
25
+ "training_stats": {
26
+ "wins": 0,
27
+ "losses": 0,
28
+ "draws": 0,
29
+ "total_games": 0,
30
+ "moves_made": 5
31
+ },
32
+ "export_timestamp": "2026-01-02T22:48:02.101Z"
33
+ }
green_agent_model.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "chess_value_network",
3
+ "color": "green",
4
+ "architecture": {
5
+ "input_size": 896,
6
+ "hidden_layers": [
7
+ 128,
8
+ 64,
9
+ 32
10
+ ],
11
+ "output_size": 1,
12
+ "activation": [
13
+ "relu",
14
+ "relu",
15
+ "relu",
16
+ "tanh"
17
+ ],
18
+ "dropout": 0.2
19
+ },
20
+ "hyperparameters": {
21
+ "learning_rate": 0.001,
22
+ "exploration_rate": 0.3,
23
+ "discount_factor": 0.95
24
+ },
25
+ "training_stats": {
26
+ "wins": 0,
27
+ "losses": 0,
28
+ "draws": 0,
29
+ "total_games": 0,
30
+ "moves_made": 6
31
+ },
32
+ "export_timestamp": "2026-01-02T22:48:02.101Z"
33
+ }
training_statistics.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "training_summary": {
3
+ "total_games": 0,
4
+ "total_moves": 11,
5
+ "training_time": "00:00:12",
6
+ "current_game": 2,
7
+ "training_active": false
8
+ },
9
+ "agent_comparison": {
10
+ "black_win_rate": "0.0",
11
+ "green_win_rate": "0.0",
12
+ "draws_rate": "0.0"
13
+ },
14
+ "export_timestamp": "2026-01-02T22:48:02.103Z",
15
+ "system_info": {
16
+ "user_agent": "Mozilla/5.0 (X11; Linux x86_64; rv:146.0) Gecko/20100101 Firefox/146.0",
17
+ "platform": "Linux x86_64",
18
+ "screen_resolution": "1920x1080"
19
+ }
20
+ }