Upload 4 files
Browse files- README.md +55 -0
- black_agent_model.json +33 -0
- green_agent_model.json +33 -0
- training_statistics.json +20 -0
README.md
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Chess RL Training Export
|
| 2 |
+
|
| 3 |
+
## Export Information
|
| 4 |
+
- Export Date: 2026-01-02T22:48:02.105Z
|
| 5 |
+
- Total Training Games: 0
|
| 6 |
+
- Total Moves: 11
|
| 7 |
+
- Training Time: 00:00:12
|
| 8 |
+
|
| 9 |
+
## Files Included
|
| 10 |
+
|
| 11 |
+
### 1. training_games.json
|
| 12 |
+
Complete dataset of all chess games played during training. Each game includes:
|
| 13 |
+
- Full PGN notation
|
| 14 |
+
- Move-by-move records
|
| 15 |
+
- Game result and metadata
|
| 16 |
+
- Agent parameters for each game
|
| 17 |
+
|
| 18 |
+
### 2. training_games.csv
|
| 19 |
+
Same data as JSON but in CSV format for easy import into spreadsheets or databases.
|
| 20 |
+
|
| 21 |
+
### 3. black_agent_model.json
|
| 22 |
+
Black Agent (Policy Network) configuration and statistics:
|
| 23 |
+
- Neural network architecture
|
| 24 |
+
- Hyperparameters (learning rate, exploration rate, etc.)
|
| 25 |
+
- Training statistics (wins, losses, draws)
|
| 26 |
+
- Model metadata
|
| 27 |
+
|
| 28 |
+
### 4. green_agent_model.json
|
| 29 |
+
Green Agent (Value Network) configuration and statistics:
|
| 30 |
+
- Neural network architecture
|
| 31 |
+
- Hyperparameters
|
| 32 |
+
- Training statistics
|
| 33 |
+
- Model metadata
|
| 34 |
+
|
| 35 |
+
### 5. training_statistics.json
|
| 36 |
+
Overall training summary and statistics including:
|
| 37 |
+
- Training duration
|
| 38 |
+
- Win rates for both agents
|
| 39 |
+
- System information
|
| 40 |
+
- Export metadata
|
| 41 |
+
|
| 42 |
+
## Training System
|
| 43 |
+
Generated by ANN Chess RL Trainer v3.0 - A web-based reinforcement learning system for chess AI development.
|
| 44 |
+
|
| 45 |
+
## Usage
|
| 46 |
+
These files can be used to:
|
| 47 |
+
- Continue training from this point
|
| 48 |
+
- Analyze the learning progress
|
| 49 |
+
- Import into other machine learning frameworks
|
| 50 |
+
- Share with the research community
|
| 51 |
+
|
| 52 |
+
## Notes
|
| 53 |
+
- All data is in standard JSON/CSV formats
|
| 54 |
+
- Compatible with Hugging Face datasets
|
| 55 |
+
- Can be compressed with GZIP, ZSTD, BZ2, LZ4, or LZMA for upload
|
black_agent_model.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "chess_policy_network",
|
| 3 |
+
"color": "black",
|
| 4 |
+
"architecture": {
|
| 5 |
+
"input_size": 896,
|
| 6 |
+
"hidden_layers": [
|
| 7 |
+
128,
|
| 8 |
+
64,
|
| 9 |
+
32
|
| 10 |
+
],
|
| 11 |
+
"output_size": 1,
|
| 12 |
+
"activation": [
|
| 13 |
+
"relu",
|
| 14 |
+
"relu",
|
| 15 |
+
"relu",
|
| 16 |
+
"tanh"
|
| 17 |
+
],
|
| 18 |
+
"dropout": 0.2
|
| 19 |
+
},
|
| 20 |
+
"hyperparameters": {
|
| 21 |
+
"learning_rate": 0.001,
|
| 22 |
+
"exploration_rate": 0.3,
|
| 23 |
+
"discount_factor": 0.95
|
| 24 |
+
},
|
| 25 |
+
"training_stats": {
|
| 26 |
+
"wins": 0,
|
| 27 |
+
"losses": 0,
|
| 28 |
+
"draws": 0,
|
| 29 |
+
"total_games": 0,
|
| 30 |
+
"moves_made": 5
|
| 31 |
+
},
|
| 32 |
+
"export_timestamp": "2026-01-02T22:48:02.101Z"
|
| 33 |
+
}
|
green_agent_model.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "chess_value_network",
|
| 3 |
+
"color": "green",
|
| 4 |
+
"architecture": {
|
| 5 |
+
"input_size": 896,
|
| 6 |
+
"hidden_layers": [
|
| 7 |
+
128,
|
| 8 |
+
64,
|
| 9 |
+
32
|
| 10 |
+
],
|
| 11 |
+
"output_size": 1,
|
| 12 |
+
"activation": [
|
| 13 |
+
"relu",
|
| 14 |
+
"relu",
|
| 15 |
+
"relu",
|
| 16 |
+
"tanh"
|
| 17 |
+
],
|
| 18 |
+
"dropout": 0.2
|
| 19 |
+
},
|
| 20 |
+
"hyperparameters": {
|
| 21 |
+
"learning_rate": 0.001,
|
| 22 |
+
"exploration_rate": 0.3,
|
| 23 |
+
"discount_factor": 0.95
|
| 24 |
+
},
|
| 25 |
+
"training_stats": {
|
| 26 |
+
"wins": 0,
|
| 27 |
+
"losses": 0,
|
| 28 |
+
"draws": 0,
|
| 29 |
+
"total_games": 0,
|
| 30 |
+
"moves_made": 6
|
| 31 |
+
},
|
| 32 |
+
"export_timestamp": "2026-01-02T22:48:02.101Z"
|
| 33 |
+
}
|
training_statistics.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"training_summary": {
|
| 3 |
+
"total_games": 0,
|
| 4 |
+
"total_moves": 11,
|
| 5 |
+
"training_time": "00:00:12",
|
| 6 |
+
"current_game": 2,
|
| 7 |
+
"training_active": false
|
| 8 |
+
},
|
| 9 |
+
"agent_comparison": {
|
| 10 |
+
"black_win_rate": "0.0",
|
| 11 |
+
"green_win_rate": "0.0",
|
| 12 |
+
"draws_rate": "0.0"
|
| 13 |
+
},
|
| 14 |
+
"export_timestamp": "2026-01-02T22:48:02.103Z",
|
| 15 |
+
"system_info": {
|
| 16 |
+
"user_agent": "Mozilla/5.0 (X11; Linux x86_64; rv:146.0) Gecko/20100101 Firefox/146.0",
|
| 17 |
+
"platform": "Linux x86_64",
|
| 18 |
+
"screen_resolution": "1920x1080"
|
| 19 |
+
}
|
| 20 |
+
}
|