wellbeing nielsr HF Staff commited on
Commit
a9ad2b5
·
verified ·
1 Parent(s): d4b6f79

Improve dataset card: Add task categories, GitHub link, and sample usage (#2)

Browse files

- Improve dataset card: Add task categories, GitHub link, and sample usage (34b98aafe310fed9f075d65d06820827e029a2ea)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +52 -0
README.md CHANGED
@@ -1,4 +1,56 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
4
  This is the extended dataset used in the paper [DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern](https://arxiv.org/abs/2509.24975).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - text-generation
5
+ tags:
6
+ - code-generation
7
+ - unit-test-generation
8
+ - diffusion-llm
9
  ---
10
+
11
+ # TestEval-extend
12
+
13
  This is the extended dataset used in the paper [DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern](https://arxiv.org/abs/2509.24975).
14
+
15
+ **Code:** [https://github.com/wellbeingyang/DLM4UTG-open](https://github.com/wellbeingyang/DLM4UTG-open)
16
+
17
+ ## Overview
18
+
19
+ Software development relies heavily on extensive unit testing, making the efficiency of automated Unit Test Generation (UTG) crucial. This dataset, `TestEval-extend`, is designed to evaluate diffusion large language models (dLLMs) in UTG. It extends the original TestEval benchmark by incorporating additional programming languages, including Java and C++, alongside Python, to enable comprehensive evaluation of dLLMs for UTG. The dataset supports research into accelerating UTG without compromising the quality of the generated test cases, as explored by the DiffTester framework.
20
+
21
+ ## Sample Usage
22
+
23
+ To get started with the associated code and reproduce the main results from the paper, follow these steps:
24
+
25
+ ### Installation
26
+
27
+ First, install the Python dependencies:
28
+
29
+ ```bash
30
+ pip install -r requirements.txt
31
+ ```
32
+
33
+ For Java, you need to install JDK17 and Maven. You can set them up with the following commands:
34
+
35
+ ```bash
36
+ wget https://download.oracle.com/java/17/archive/jdk-17.0.12_linux-x64_bin.tar.gz
37
+ wget https://dlcdn.apache.org/maven/maven-3/3.9.11/binaries/apache-maven-3.9.11-bin.tar.gz
38
+ tar -zxvf jdk-17.0.12_linux-x64_bin.tar.gz
39
+ tar -zxvf apache-maven-3.9.11-bin.tar.gz
40
+ export JAVA_HOME=~/jdk-17.0.12
41
+ export PATH=$PATH:$JAVA_HOME/bin
42
+ export MAVEN_HOME=~/apache-maven-3.9.11
43
+ export PATH=$PATH:$MAVEN_HOME/bin
44
+ ```
45
+
46
+ For C++, ensure your environment supports the C++20 standard.
47
+
48
+ ### Run Experiments
49
+
50
+ After environment preparation, you can run the following command to reproduce the main results in the paper:
51
+
52
+ ```bash
53
+ ./run_all.sh
54
+ ```
55
+
56
+ > Note: to enable acceleration, the evaluation code will replace `generate_utils.py` in the model folder with `./generate_utils_diffucoder.py`. Please make sure that `generate_utils.py` in your model folder is writable.